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Abstract
We consider k mobile agents initially located at distinct nodes of an undirected graph (on n

nodes, with edge lengths). The agents have to deliver a single item from a given source node s
to a given target node t. The agents can move along the edges of the graph, starting at time
0, with respect to the following: Each agent i has a weight ωi that defines the rate of energy
consumption while travelling a distance in the graph, and a velocity υi with which it can move.

We are interested in schedules (operating the k agents) that result in a small delivery time T
(time when the item arrives at t), and small total energy consumption E . Concretely, we ask for
a schedule that: either (i) Minimizes T , (ii) Minimizes lexicographically (T , E) (prioritizing fast
delivery), or (iii) Minimizes ε · T + (1− ε) · E , for a given ε ∈ (0, 1).

We show that (i) is solvable in polynomial time, and show that (ii) is polynomial-time solvable
for uniform velocities and solvable in time O(n+ k log k) for arbitrary velocities on paths, but in
general is NP-hard even on planar graphs. As a corollary of our hardness result, (iii) is NP-hard,
too. We show that there is a 2-approximation algorithm for (iii) using a single agent.
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1 Introduction

Technological development has allowed for low-cost mass production of small and simple
mobile robots. Autonomous vacuum cleaners, mowers, or drones are some of the best known
examples. There are attempts to deploy such autonomous agents to deliver physical goods
– packages [24, 26]. In the future, for delivering over longer distances, a swarm of such
autonomous agents is a likely option to be adapted, since the energy supply of the agents is
limited, or the agents are simply required to operate locally, or simply because the usage of
some agents is more costly than others. A careful cooperation and planning of the agents is
thus necessary to provide energy, time, and cost efficient delivery. This leads to plentiful
optimization problems regarding the operation of the agents.
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56:2 Collective Fast Delivery by Energy-Efficient Agents

Here we consider the problem of delivering a single package as quickly as possible from a
source node s to a target node t in a graph G = (V,E) with edge lengths by a team of k
agents. The agents have individual velocities, with which they can move along the edges of
the graph, and also an energy-consumption rate for a travelled unit distance. The goal is
to design centralized algorithms to coordinate the agents such that the package is delivered
from s to t in an efficient way. In the literature, delivery problems focusing solely on energy
efficiency have been studied. One research direction considers every agent to have an initial
amount of energy (battery) that restricts the agents’ movements [1, 11]. The decision problem
of whether the agents can deliver the package has been shown to be strongly NP-hard on
planar graphs [6, 7] and weakly NP-hard on paths [12], and it remains NP-hard on general
graphs even if the agents can exchange energy [13]. The second research direction considers
every agent to have unlimited energy supply, and an individual energy-consumption rate per
travelled distance [8, 9]. The problem of delivering the package and minimizing the total
energy consumption can be solved in time O(k + n3) [8].

In this paper, we primarily focus on delivering the package in a quickest possible way, and
only secondarily on the total energy that is consumed by the agents. This has not been, to
the best of our knowledge, studied before. Specifically, we consider the algorithmic problem
of finding a delivery schedule that: (i) minimizes the delivery time, (ii) minimizes the delivery
time using the least amount of energy, and (iii) minimizes a linear combination of delivery
time and energy consumption.

Our model. We are given an undirected graph G = (V,E) on n = |V | nodes. Each edge
e ∈ E has a positive length le. The length of a path is the sum of the lengths of its edges.
We consider every edge e = {u, v} to consist of infinitely many points, where every point
is uniquely characterized by its distance from u, which is between 0 and le. We consider
every such point to subdivide the edge {u, v} into two edges of lengths proportional to the
position of the point on the edge. The distance dG(p, q) between two points p and q (nodes
or points inside edges) of the graph is the length of a shortest path from p to q in G. There
are k mobile agents initially placed on nodes p1, . . . , pk of G. Every agent i = 1, . . . , k has a
weight 0 ≤ ωi <∞ and a velocity 0 < υi ≤ ∞. Agents can traverse the edges of the graph.
To traverse an edge e (in either direction), agent i needs time le/υi and ωi · le units of energy.

Furthermore there is a single package, initially (at time 0) placed on a source node s,
which has to be delivered to a given target node t. Each agent can walk from its current
location to the current location of the package (along a path in the graph), pick the package
up, carry it to another location (a point of the graph), and drop it there. From this moment,
another agent can pick up the package again. Only the moving in the graph takes time –
picking up the package and dropping it off is done instantaneously. (The time spent by the
package being dropped at a point until picked up again is, however, taken into account.)

We call a schedule that operates the agents such that the package is delivered a solution.
In such a schedule S, we denote by di(S) the total distance travelled by agent i, and by d∗i (S)
the distance travelled by agent i while carrying the package. The total energy consumption
of the solution is thus E(S) =

∑k
i=1 ωi · di(S) and the time needed to deliver the package

is given by T (S) =
∑k
i=1 d

∗
i (S)/υi + (the overall time the package is not carried). Fast and

energy-efficient Delivery is the optimization problem of finding a solution that has small
delivery time T as well as total energy consumption E . In particular, we study the following
three objectives (see Figure 1 for illustration):
(i) Minimize the delivery time T .
(ii) Lexicographically minimize the tuple (T , E), i.e. among all solutions with minimum T ,

find a solution that has minimum energy consumption E .
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Figure 1 Example for optima of variants of fast and energy-efficient Delivery:
(ii) Using agents 2 and 4, we get (T , E) = (max {6/2, 12/3}+ 12/3, 4 · 6 + 2 · 12 + 2 · 12) = (8, 72).
(iii) For ε = 4

5 , using agents 1 and 4, we get 4
5T = 4

5 (max {4.5/1, (12 + 1.5)/3}+ (1.5 + 12)/3) and
1
5E = 1

5 (4.5·2+(12+1.5)·2+(1.5+12)·2) for a combined total of 4
5 (4.5 + 4.5)+ 1

5 (9+27+27) = 19.8.
(iv) Using agents 1 and 3, we get (E , T ) = (2 · 6 + 1 · 12 + 1 · 12, max {6/1, 12/2}+ 12/2) = (36, 12).

(iii) Minimize a convex combination ε · T + (1− ε) · E , for some given value ε ∈ (0, 1).
Recent parallel work studied the following complementary – energy focused – variants:
(iv) Lexicographically minimize the tuple (E , T ), i.e. prioritize the minimization of E [10].
(v) Minimize the energy consumption E [8, 9].
In all variants it is natural to (without loss of generality) only consider simple paths as the
trajectory of the package, i.e., if at times t1, t2 (0 ≤ t1 ≤ t2 ≤ T ) the package is at the same
position p, then it remains at position p for the time in-between (∀t ∈ [t1, t2]). We will make
this assumption throughout this paper.

Our contribution. First, in Section 2, we prove for the first time that optimum solutions
exist for all mentioned variants of Delivery (while previous work on (iv) and (v) implicitly
assumed this). Then, in Section 3, we investigate the problem of minimizing the delivery time
T only. We call this optimization problem FastDelivery and show that there is a polynomial-
time dynamic program of time complexity O(k2|E|+ k|V |2 + APSP) ⊆ O(k2n2 + n3), where
O(APSP) is the running time of an all-pair shortest path algorithm for undirected graphs.

In Section 4, we study FastEfficientDelivery, prioritizing the delivery time T over
the energy consumption E . We first show that the problem can be solved in polynomial time
for uniform velocities. However, we prove the problem to be NP-hard for general velocities
even on planar graphs. We therefore consider the restricted graph class of paths, in which
we can decompose the problem into uniform velocity instances. For each such instance, we
establish a characterization of handover points. Using geometric point-line duality [18] and
dynamic planar convex hull techniques [4], we give an O(n+ k log k) algorithm for paths.

In Section 5, we show that for arbitrary given weights ε ∈ (0, 1), the minimum convex
combination ε · T + (1− ε) · E can be 2-approximated by a single agent, while NP-hardness
follows from an adaptation of the hardness proof in the preceding section. We call the task
of minimizing the convex combination CombinedDelivery. Finally, in Section 6 we discuss
several extended models to which our approach can be generalized. Due to the limited space,
some proofs are omitted, but are provided in a thesis on several variants of Delivery [5].

Comparison to related work. Among the earliest problems related to Delivery are the
Chinese Postman Problem [19] and the Traveling Salesman Problem [2], in which a single
agent has to visit multiple destinations located in edges or nodes of the graph, respectively.
The latter has given rise to a class of problems known as Vehicle Routing Problems [25],
which are concerned with the distribution of goods by a fleet of (homogeneous) vehicles
under additional hard constraints such as time windows. Minimizing the total or the
maximum travel distance of a group of agents for several tasks such as the formation of
configurations [17] or the visit of designated arcs [20] have been studied for identical agents
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56:4 Collective Fast Delivery by Energy-Efficient Agents

as well. Energy-efficient Delivery (without optimization of delivery time) has been recently
introduced [8] for an arbitrary number of packages, with handovers restricted to take place
at nodes of the graph only. This setting turns out to be NP-hard, but can be solved in
polynomial-time for a single package, in which case the restriction of handovers to nodes
becomes irrelevant (there is always an optimal solution which does not use any in-edge
handovers). To the best of our knowledge, this present paper and a parallel work [10] on
variant (iv) are the only ones studying the Delivery problem with agents which have
different velocities. Similar to our approach, the latter studies a uniform weight setting first.
The uniform weight result is then used as a subroutine in a dynamic program for general
weights. Our hardness result shows that such an approach (combination of uniform velocities)
is not possible for FastEfficientDelivery, even on planar graphs. Finally, mobile agents
with distinct maximal velocities have been getting attention in areas such as searching [3],
walking [14] and patrolling [15].

2 Preliminaries

We first formally establish that optimum solutions for all variants of efficient Delivery exist.
To this end, each solution which operates agents i1, i2, . . . , i` in this order can be represented
by the drop-off locations of these agents only (note that for two consecutive agents i, j, the
drop-off location of agent i, denoted by q−i , corresponds to the pick-up location of agent
j, denoted by q+

j ). Since we allow in-edge handovers, there are infinitely many solutions –
however, these can be divided into finitely many topologically compact sets. As E , T act as
continuous functions on these sets, we have in each set a minimum solution.

I Theorem 1 (Existence of optimum solutions). There exists an optimum solution minimizing
the delivery time T (the energy consumption E, or ε·T +(1−ε)·E, (T , E), (E , T ), respectively).

3 Optimizing delivery time only

Throughout this section, we assume that all agents have weight ωi = 0. Hence in all three
variants of fast energy-efficient Delivery, E = 0 and we are after a solution for delivery with
earliest-possible delivery time. We show that FastDelivery is polynomial-time solvable,
due to the following characterization of optimum solutions (which exist by Theorem 1):

I Lemma 2. For every instance of FastDelivery, there is an optimum solution in which
(i) the velocities of the involved agents are strictly increasing, (ii) no involved agent arrives
at its pick-up location earlier than the package (carried by the preceding agent), and (iii) if
more than one agent is involved in transporting the package over an edge {u, v} in direction
from u to v, then only the first involved agent will ever visit u.

Proof. All three properties can be shown by exchange arguments. Taking any optimum
solution, we turn it into an optimum solution that adheres to the three properties as follows:

(i) Label the agents 1, 2, . . . , i, . . . in the order in which they transport the package. Let
i be the first agent such that υi ≥ υi+1. Now we can simply replace agent i+ 1 by letting
agent i travel on the same trajectory on which i+ 1 transported the package; and by doing
so, we don’t increase the delivery time.

(ii) Let i be the first agent that has to wait at its pick-up location for the package to
arrive. Instead of waiting, we let i proceed on the original trajectory of the package towards
s until it meets the preceding agent i− 1. Handing over the package at this new spot cannot
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u v∗

i-4

T [i-1, v∗] ≤ dG(pi, v
∗)/vi T [i-1, v∗] > dG(pi, v

∗)/vi

i u v∗

i-4

i

i-3

p[i-3, (u, v∗)]
p[i, (u, v∗)]

Figure 2 Examples for cases a) and b): (left) Agent i picks up the package at node v∗.
(right) Agent i picks up the package inside the edge (u, v∗) at the earliest possible time.

increase the delivery time T , as υi−1 < υi (we only increase velocities along the trajectory).
However, T might remain constant if this increase in velocity is countered by a longer waiting
time of the package at the handover to agent i+ 1.

(iii) Assume that multiple agents bring the package from u to v over the edge {u, v}, by
visiting u first. By assumption (i) the last such agent i has the highest velocity and thus
agent i can just as well pick up the package at u without the help of the other agents. J

I Corollary 3. After a preprocessing step of time O(k + |V |) – in which we remove in each
node all but the agent with maximum velocity υi – we may assume that k ≤ |V |.

Towards a dynamic program. Making use of characterization (i) of Lemma 2, we relabel
the agents such that υ1 ≤ υ2 ≤ . . . ≤ υk. We can then look at subproblems where we only
use the first i− 1 among all k agents. Assume node v∗ is the first node that the new agent i
(starting at pi) passes while actually carrying the package. According to characterizations (ii)
and (iii), when defining the recursion, we have to take care of these two cases, see Figure 2:
a) Agent i might arrive at node v∗ ‘late’, the package has already been dropped off there

before by one of the agents 1, 2, . . . , i− 1 and had been waiting.
b) Agent i might arrive at node v∗ ‘early’, in which case it should walk towards the package

to receive it earlier and bring it back to v∗ faster (having larger velocity than the currently
carrying agent, after all). In this case, agent i picks up the package at a point p which is
strictly in the interior of the edge {u, v∗} and which is as close to node v∗ as possible,
i.e., p must be reachable by both agent i and the package – carried by only the first i− 1
agents – at the earliest possible time: (d(pi, v∗) + d(v∗, p))/υi.

Dynamic Program. First we are interested in the distance between any two nodes in the
graph, which we can find with an all-pair-shortest-paths algorithm APSP. We denote the
time needed for this precomputation by O(APSP). Then, given the agents in ascending
order of their velocities υi, for each prefix 1, 2, . . . i of the agent order and each node v we
define the following subproblem:

S [i, v] = A fastest schedule to bring the package to node v using agents {1, . . . , i}.
T [i, v] = The time needed in S [i, v] to deliver the package to v.
A [i, v] = Index of the last agent to carry the package in S [i, v].

p [i, (u, v)] = The pick-up point p strictly inside edge {u, v} and closest to v, reachable
by both the package (coming from u, delivered by agents 1, . . . , i− 1)
and agent i (coming via v) in time (d(pi, v) + d(v, p))/υi (if applicable).

Note that although our graph only has undirected edges, p[i, (u, v)] considers an ordered
tuple of nodes (u, v), denoting that the package is transported from u to v. Thus p[i, (v, u)]
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56:6 Collective Fast Delivery by Energy-Efficient Agents

has the analogous meaning of the package crossing edge {u, v} from v towards u. Both
p[i, (u, v)] and p[i, (v, u)] might be undefined, as can be seen below.

We compute the optimum delivery times T [i, v] (together with A[i, v]) without explicitly
maintaining the schedules S[i, v]. A concrete final schedule S can then be retraced from A[, ],
see Theorem 4. For computing T [i, v] and A[i, v] we ‘guess’ the first node v∗ of cases a) and
b) above by trying each node v as a candidate. We then can compute T [i, v] and A[i, v] for
all other nodes using the pre-computed distances between all pair of nodes:
1. Initialization: For all nodes v, we initialize S[i, v] := S[i− 1, v], A[i, v] := A[i− 1, v] and
T [i, v] := T [i− 1, v]. This automatically takes care of case a), where the package arrives
at v before agent i can reach v.

2. In-edge pick-ups: We go over all node pairs (u, v) such that {u, v} ∈ E and check whether
agent i can pick up the package inside {u, v} to advance it to node v faster than in
schedule S[i − 1, v]. We do so by checking whether we have d(pi, v)/υi < T [i − 1, v]
and d(pi, u)/υi > T [i− 1, u]. In this case, agent i receives the package from a previous
agent j that brought it from u or from p[j, (u, v)]. Thus we get a set P of candidates for
p[i, (u, v)] := arg minp∈P {d(p, v)}. The candidate set P consists of all points p strictly
inside the edge {u, v} such that there exists an agent of index j, A[i− 1, u] ≤ j < i, for
which we have

max
{
T [i− 1, u], d(pj , u)

υj

}
+ d(u, p)

υj
= d(pi, v) + d(v, p)

υi

if j is coming from u, or – if p[j, (u, v)] is defined –

d(pj , v) + d(v, p[j, (u, v)]) + d(p[j, (u, v)], p)
υj

= d(pi, v) + d(v, p)
υi

.

Having computed p[i, (u, v)] as the point in P closest to v, we update node v accordingly:
Set T [i, v] := min

{
T [i, v], d(pi,v)+2d(p[i,(u,v)],v)

υi

}
, where using ‘min’ takes care of cases in

which we have multiple incident edges to v that all potentially have in-edge pick-ups by i,
and set A[i, v] = i (valid since we consider the case where d(pi, v) < T [i− 1, v]).

3. Updates: So far we have computed the subproblems S[i, v] correctly, if node v corresponds
to the first node v∗ of cases a) and b) (in particular we checked whether the faster agent i
can help to advance the package over only one edge). Now we also consider all cases where
agent i transports the package over arbitrary distances, by updating all other schedules
S[i, u] accordingly: For each node v, for each node u, if T [i, u] > max {T [i, v], d(pi, v)/υi}+
d(v, u)/υi we set A[i, u] := i and T [i, u] := max {T [i, v], d(pi, v)/υi}+ d(v, u)/υi.

I Theorem 4. An optimum schedule for FastDelivery of a single package can be computed
in time O(k2|E|+ k|V |2 + APSP) ⊆ O(k2n2 + n3).

Proof. For each i from 1 to k we can compute all values A[i, v], T [i, v] in time O(|V |) for
the initialization, O(|E|k) to check for in-edge pick-ups and O(|V |2) for the updates (for
which we need precomputed all-pair shortest paths). Overall we get a running time of
O(APSP + k2|E| + k|V |2). The delivery time is then given in T [k, t]. Correctness of the
algorithm follows from the definition of the subproblems and the case distinction stemming
from Lemma 2. Since we did not explicitly maintain the schedules S[i, v], we retrace the
concrete schedule S from A[, ] by backtracking: Let i denote the last used agent A[k, t]. We
can find i’s ‘first node’ v∗ in time O(|V |) by searching for the smallest value T [i, u] such that

max {T [i, u], d(pi, u)/υi} = T [k, t]− d(u, t)/υi.
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If A[i, v∗] 6= i, we recurse, otherwise we find the correct adjacent node and all in-edge
handovers by looking – for each of the O(deg(v∗)) many neighbors u of v∗ – at the overall
O(k deg(v∗)) many values p[j, (u, v∗)] (where j ≤ i) and T [j, u] (where j < i). J

4 Prioritizing delivery time over energy consumption

In this Section, we want to find the most efficient among all fastest delivery schedules. We call
this problem FastEfficientDelivery and will first show that it can be solved in polynomial
time for uniform velocities (∀i, j : υi = υj), due to a characterization of optimum schedules.
In contrast, we prove NP-hardness for arbitrary speeds, even on planar graphs. However, for
paths we show how one can subdivide general instances into phases of concecutive agents
having the same velocity, and achieve an efficient O(n+ k log k)-time algorithm.

4.1 A polynomial-time algorithm for uniform velocities
I Lemma 5. Consider FastEfficientDelivery on instances with uniform agent velocities
and let δ denote the offset of the closest agent’s starting position to s. Then there exists an
optimum schedule such that the pick-up position q+

i of each involved agent i satisfies:
d(s, q+

i ) + d(q+
i , t) = d(s, t), i.e., q+

i lies on a shortest s-t-path, and
d(pi, q+

i ) ≤ δ + d(s, q+
i ), with equality if q+

i lies strictly inside an edge.

Proof. Since all agents have the same velocity υ, any fastest delivery of the package must
follow a shortest path from s to t. Furthermore, since the closest agent could deliver the
package on its own in time (δ + d(s, t))/υ, each involved agent i has to arrive at q+

i no later
than the package itself, giving d(pi, q+

i ) ≤ δ+d(s, q+
i ). It remains to show that we can modify

every optimum solution into an optimum solution in which we have d(pi, q+
i ) = δ + d(s, q+

i )
whenever q+

i lies strictly inside an edge e = {u, v}. Denote by i the first agent for which
this is not the case and by i − 1 its preceding agent. Assume that the package enters
e via u (i.e. d(s, u) < d(s, v)). Note that i must have entered e via v, since otherwise
the energy consumption could be improved by letting i pick up the package already at u
(without increasing the delivery time), contradicting the optimality of our solution. Now
we distinguish two cases relating the weights ωi and ωi−1, yielding either a decrease of the
energy consumption, or a possibility to move q+

i to a position satisfying the characterization.
2ωi > ωi−1: Moving q+

i by ε > 0 towards v decreases E by an amount of (2ωi−ωi−1)·ε > 0.
2ωi ≤ ωi−1: We move q+

i towards u (without increasing neither delivery time nor
energy consumption) until we reach q+

i = u, or q+
i inside the edge {u, v} such that

d(pi, q+
i ) = δ + d(s, q+

i ), or q+
i = q+

i−1. In the last case, discarding agent i− 1 from our
solution results in an energy consumption decrease of at least ωi−1 · d(pi−1, q

+
i−1) > 0. J

Polynomial-time algorithm. We use the characterization in Lemma 5 to find an optimum
solution for FastEfficientDelivery of delivery time T = (δ + d(s, t))/υ: For each agent i,
we compute the set Qi of all potential pick-up locations, i.e., the set of points qi that satisfy
Lemma 5. The number of potential locations is |Qi| ∈ O(|V | + |E|) ⊆ O(n2). Then we
build an auxiliary directed acyclic multi-graph H on a node set V (H) =

⋃k
i=1 Qi, of size

|V (H)| ∈ O(|V |+ k|E|) ⊆ O(kn2). Each directed edge in E(H) describes how agent i can
contribute to the delivery by bringing the package from its starting position qi to another
agent’s starting position qj along a shortest s-t-path: For each pair of nodes qi ∈ Qi and
qj ∈ V (H) such that qi 6= qj and d(s, qi)+d(qi, qj)+d(qj , t) = d(s, t), we add an arc (qi, qj) of
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u1 ∨ u2 u2 ∨ u3 ∨ u4

u1 ∨ u2 ∨ u4 u2 ∨ u3 ∨ u4

u1 u2 u3

u4

u4
s

t

P1,true

P1,false

u1 u2 u3 u4

F G(F )

P2,true

P3,true

P3,false

P4,true

P4,false

P2,false

pa

q+a

Figure 3 (left) A planar 3CNF formula F , satisfiable by (u1, u2, u3, u4) = (true, false, false, true).
(right) Its transformation into a corresponding delivery graph G(F ). The satisfiable assignment of F
corresponds to a low-cost delivery in G(F ) via paths P1,true, P2,false, P3,false, P4,true, and vice versa.
We have slow agents for clauses (�), fast agents for variables/literals (+) and a very fast agent (×).

weight ωi·(d(pi, qi)+d(qi, qj)) to E(H). Overall, we have at most |E(H)| ∈ O(k·n2·kn2) many
arcs. By construction of H, running Dijkstra’s shortest path algorithm on the multi-graph
H finds a shortest path from s to t corresponding to an optimal solution.

I Theorem 6. An optimum solution for FastEfficientDelivery can be found in time
O(k2n4), assuming all agents have the same velocity.

4.2 NP-hardness on planar graphs
Contrary to FastDelivery (where we had non-decreasing velocities υi), when prioritizing
delivery time but still regarding energy consumption, we can’t characterize the order of the
agents by their coefficients (υi, ωi): Consider an instance in which both the starting position
pa of the absolutely fastest agent a as well as the package destination t are separated from
the rest of the graph by two very long edges q+

a —pa, q+
a —t. Then in every fastest solution,

agent a (with υa large, e.g. 8) must deliver the package from q+
a to t, see Figure 3 (right).

In FastEfficientDelivery, the task is thus to balance slow but efficient agents (with,
e.g., υ = 1, ω = 0) and fast inefficient agents (with, e.g., υ = 2, ω = 1) to collectively
deliver the package to a’s pick-up location q+

a just-in-time – i.e., in time d(pa, q+
a )/υa –

without using too much energy. We can construct suitable instances by a reduction from
Planar3SAT [23] (Sketch): Starting from a planar formula F in three-conjunctive normal
form, as in Figure 3 (left), we build a delivery graph G(F ). This can be done such that the
instance is guaranteed to have schedules with minimum delivery time, i.e. with T = d(pa, t)/υa.
However, there should only be such a minimum-time schedule which simultaneously has low
energy consumption E if and only if the formula F has a satisfiable variable assignment.

To this end, we place the fast agents on nodes corresponding to variables and literals.
Intuitively, these agents decide on the routing of the package, thus setting the assignment of
each variable. The slow agents, on the other hand, are placed on clause nodes, each clause
receiving just one agent short of the number of its literals. Intuitively, for a just-in-time
delivery to q+

a with small energy consumption, each clause has to spend one of its agents for
each of its unsatisfied literals. By construction, this is only possible if each clause is satisfied:

I Theorem 7. FastEfficientDelivery is NP-hard, even on planar graphs.

4.3 An efficient algorithm for paths
The preceding hardness result raises the question for which restricted graph classes we can
expect an efficient algorithm for arbitrary velocity instances. To contribute to this question
it is natural to study paths – on paths, the V-shaped pa—qa—t component attached to the
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Figure 4 (left) Possible optima: If agent 4 is involved, it must take over the package from agent
2, since agent 3 is too slow. Using agents 2 and 4 to bring the package to agent 5’s pick-up position
takes the same time as using agent 1 on its own. Agents 1 and 5 have the same velocity, so in terms
of delivery time we could use either or even both of them, but agent 1 only if agents 2 and 4 are
both not used (otherwise they all consume energy). (right) Fastest solutions correspond to at most 1
agent with pi < s and a number of agents corresponding to a suffix of the upper envelope.

rest of the graph, as used in the hardness proof, ‘collapses’ to a line. We show that this
allows us to decompose the problem into linearly many uniform velocity instances in time
O(n + k log k). Theorem 6 then implies that FastEfficientDelivery can be solved in
polynomial-time. Improving on this by a careful analysis of paths, we show how to solve
each uniform velocity instance in time O(n+ k log k) as well, and that these instances can
be combined in time O(k), giving an overall O(n+ k log k)-time algorithm.

Decomposition into uniform velocity instances

In the following, we look at the path graph G as the real line, and assume (after performing a
depth-first search from s and ordering the starting positions in time O(n+ k log k)) without
loss of generality that s = 0 < t, that p1 ≤ p2 ≤ . . . ≤ pk and that n = k + 2, as the only
relevant nodes on the line are s, t and the starting positions pi. Note that in an optimum
solution of FastEfficientDelivery, no agent i will ever take over the package from another
agent j which i overtakes from the left. In particular, this means that we will need at most
one agent with starting position pi < s, and that after the package is picked up at s, it will
never have to wait between a drop-off by an agent j and a pick-up by the next agent i, since
j could continue carrying the package towards i, thus decreasing the overall delivery time.
Hence in an optimum schedule we also have for consecutive agents i, j with s < pj < pi, that
υj ≤ υi (otherwise we can discard i, by this decreasing the delivery time).

Decomposition. Assume that agent i is the agent that delivers the package to t. We
represent the trajectory of the package while being carried by i as a ray giving the position
y on the real line as a function fi(x) of the time x passed so far, see Figure 4 (right). We
now inductively compute a set containing all functions f0, f1, . . . , fk, where f0(x) = s = 0.

If we have pi < 0, then by the reasoning above, i is the only involved agent, and the
function is simply fi : y = υi · x+ pi. For pi > s, the slope υi of the ray is set, but not its
pick-up position. In order to minimize the earliest possible delivery time x (i.e. fi(x) = t),
by the non-decreasing velocity property i must pick up the package as early as possible –
e.g. in Figure 4 (left), the fastest agent 6 would not get the package from agent 4, but from
agent 5 who is able to speed up the transport between agents 4 and 6, thus advancing the
last handover position and allowing agent 6 to pick up the package earlier.

Formally, the pick-up position is given by the time-wise first (or in other words leftmost)
intersection of a query line y = pi − υi · x (modelling the agent moving towards s) with
any preceding ray f0, . . . , fi−1. Let qi := (xi, yi) denote the intersection point of the query
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line with the upper envelope of the preceding rays, and denote by fj a ray of steepest slope
υj among all rays f0, . . . , fi−1 that contain qi – e.g. the query line “6?” in Figure 4 (right)
intersects both f1 and f5 on the upper envelope, and since both have the same slope, we can
consider either.

In case υj > υi, agent i will not be used in an optimal schedule and we set fi = 0. If,
however, υj ≤ υi, then fi is given by the line equality fi : y = υi · x + (yi − υi · xi). After
completion, an optimum schedule corresponds to a path along the rays of our diagram from
(0, 0) to the ray reaching y = t at the earliest possible time.

Fast computation and recombination. To quickly compute the equation of each ray fi,
we need to find the intersection of a query line with the upper envelope of O(k) many rays.
Precomputing this envelope as an ordered list of its segments would allow us to speed up
the intersection queries from a linear to a binary search (convex hull trick for dynamic
programming [21]). However, the set of functions that we query here is not known up front.
Instead, we apply the classic geometric point-line duality [18]. In this dual setting, the task
of finding the leftmost intersection point of a query line with a set of lines turns into finding
a right tangent from a query point (the dual of the query line) onto the convex hull of a
point set (the dual of the rays fi). The dynamic planar convex hull data structure by Brodal
and Jacob [4, 22] allows point insertions and tangent queries all in O(log k) amortized time,
giving an overall running time of O(k log k). Assuming that we know the optimum schedule
for each of the uniform velocity intervals, it remains to recombine these subschedules:

I Lemma 8. Arbitrary velocity instances of FastEfficientDelivery on paths can be
decomposed into and recombined from uniform velocity instances in time O(n+ k log k).

A fast algorithm for uniform velocity instances on the line

We are left to solve the case where all agents have the same uniform velocity υ. As before,
we denote by δ the offset of the closest agent’s starting position to s, and let a denote the
corresponding agent. No agent i with pi < s other than maybe agent a is involved in an
optimum schedule (all others would only slow down delivery). Also note that if pa < s, the
setting is equivalent to one where a starts at s+ (s− pa), so we can assume (after relabelling
the agents) a = 1, δ = p1. This also implies T = (δ + (t− s))/υ and we can ignore agents i
that are dominated by earlier, cheaper agents j with pj < pi and ωj < ωi.

Towards a dynamic program. We define the point qi as the leftmost point on the line
where agent i can pick up the package without causing a delay, i.e., we have qi := pi+s−δ

2
since pi − qi = δ + (qi − s). Note that q1 = s and qj < qi for j < i. Similarly as – but more
specific than – in the characterization of uniform instances on general graphs (Lemma 5) we
get a limited set of possible pick-up locations:

I Lemma 9. There is an optimum solution where each agent i that is involved in advancing
the package picks it up at q+

i = qi or at q+
i = pi.
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Case 1. Case 2.a) Case 2.b) Case 2.c)

qi qi

Figure 5 Case distinction in the dynamic program for FastEfficientDelivery on the line.
Either agent i is not involved at all, does all on its own or is subsequent to some agent j, where we
distinguish between pj ≤ qi and pj > qi.

Dynamic program. Lemma 9 suggests that in an inductive approach from left to right it
suffices to consider only finitely many handover options. We define the following subproblems:

S [i] = An energy-optimal schedule to deliver the package to pi
in time (δ + (pi − s))/υ, using only the agents {1, 2, . . . , i}.

E [i] = Energy consumption of S [i].
A [i] = Index of the last package-carrying agent in S [i].
A′ [i] = Index of the second to last carrying agent in S [i] (if any).

We will argue how to compute the optimum energy costs E [i] (and with it A[i] and A′[i])
without explicitly maintaining the schedules S[i] (S[i] can later be retraced from A[i] and
A′[i]). For computing E [i], A[i] and A′[i], we distinguish four cases (also shown in Figure 5):
1. Agent i is not involved in S[i].
2. Agent i is involved in S[i]. Hence by Lemma 9, agent i has pick-up location q+

i = qi; and
we get the following three variations:
a. i = 1 and agent 1 picks up the package at s itself.
b. Agent i picks up the package from some other agent j with pj ≤ qi.
c. Agent i picks up the package from some other agent j with pj > qi.

In cases 1, 2b) and 2c), we can determine E [i] in constant time using a single prior entry of
the dynamic programming table:

Case 1. If i is not involved in S[i], the best choice for the agent who transports the package
to pi is agent i− 1, as it is the cheapest one on the last segment [pi−1, pi] and we have
E [i− 1] ≤ E [j] + (pi−1 − pj) · ωj for all j < i− 1 by induction. Hence we can optimize in
constant time:

E [i] = min
j<i
{E [j] + (pi − pj) · ωj} = E [i− 1] + (pi − pi−1) · ωi−1,

A[i] = i− 1 and A′[i] = A[i− 1].

Case 2.a) This is the base case where the first agent is on its own:

E [1] = 2 · |p1 − s| · ω1 = 2 · δ · ω1, A[1] = none, A′[1] = none.

Case 2.b) If agent i is involved in S[i] and takes over at qi from an agent j with pj ≤ qi,
we want j to minimize E [j] + (qi − pj) · ωj , the cost of bringing the package to qi. Now
let i′ = max{j | pj ≤ qi} be the agent starting closest to the left of qi. As in Case 1, we
argue that i′ is the optimum choice for j, as it minimizes the cost on [pi′ , qi] and does
not constrain the schedule up to pi′ further. Hence, we again get in amortized constant
time, i.e., we update i′ by incrementing it lazily when going from i to i+ 1:

E [i] = E [i′] + (qi − pi′) · ωi′ + 2 · (pi − qi) · ωi, A[i] = i, A′[i] = i′.
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The most interesting case is the remaining case (2.c), where the agent j handing over to i
starts in between qi and pi. Where can we look up the energy consumption c of an optimum
schedule that ends with j bringing the package qi – the dynamic program being only defined
for points pj? For some j, we might have A[j] = j, so S[j] ends by j walking to qj and back.
In that case, we can exploit qj < qi and use E [j]− (pj − qi) · ωj as a candidate for the energy
consumption c. But what if A[j] 6= j? As we saw, this implies A[j] = j − 1, but in that case
we cannot just subtract (pj − qi)ωj : We do not know how S[j] looks like between qi and pj .
We argue that we do not need to consider these agents j as candidates at all!

I Lemma 10. If in some optimal schedule S[i] the agent j preceding i is of type 2.c), then
in the schedule S[j] we have A[j] = j.

Proof. Under the assumption of Case 2.c), the cost of agent i is fixed to 2 · (pi − qi) · ωi.
Agents 1 to i− 1 will collaborate in the most efficient way to bring the package up to qi. By
definition of j, j is the last agent bringing the package to qi. From the decreasing weight
property, we know that none of the agents j + 1 to i− 1 were involved in S[i]. So if we take
the partial schedule of S[i] up to qi and extend it by letting j bring the package to pj , we
obtain a feasible candidate schedule S′ for S[j] as none of the agents j + 1 to i are involved.
We now argue that S′ is an optimum schedule for S[j]. The segment [qi, pj ] is covered with
the minimum possible energy, as j is the unique most efficient agent available for S[j]. The
segment [s, qi] is also covered cheapest possible as its part of S[i] was optimized over all
agents 1 to i, so a superset of the agents available for S[j]. Moreover, the uniqueness implies
that all optimum schedules for S[j] need to end with agent j on [qi, pj ], hence A[j] = j. J

Case 2.c) Lemma 10 leaves us with only those agents j whose schedules S[j] we understand
sufficiently to modify them into candidates for S[i] under Case 2.c):

E [i] = min
j
{E [j]− (pj − qi)ωj | qi < pj < pi ∧A[j] = j}+ 2(pi − qi)ωi,

A[i] = i, A′[i] = arg min
j
{E [j]− (pj − qi)ωj | qi < pj < pi ∧A[j] = j}.

We can now take E [i] as the minimum over the four cases 1–2.c) and compute all schedules
S[i] by proceeding over all subproblems in increasing order, giving us the energy-optimal
schedules for delivering the package to the points pi in time (δ + (pi − s))/υ. How can we
use the solutions to the subproblems E [i] to find the energy E of an energy-optimal schedule
delivering the package to the target t in optimum time (δ + (t− s))/υ? Let k′ be the closest
agent on the left of t, i.e., k′ := arg maxi pi ≤ t. Clearly, if in an optimum schedule the
package is delivered to t by an agent starting to the left of t, then by the decreasing weight
property this agent must be agent k′, giving us E = E [k′] + (t− pk′) · ωk.

Delivery to t and agents with pi > t. It remains to take care of agents with starting
positions pi > t: As illustrated in Figure 6, multiple agents with pi > t might be involved
in the most efficient delivery. Note that our dynamic programming problem E [i] is defined
independent of t and so we can also easily compute E [i] for pi > t. Agents i with qi > t are
not useful, however, for a delivery to t, as they arrive in [s, t] only after the package has been
delivered. Similar to Lemma 10, we claim that among the remaining agents i only those with
A[i] = i need to be considered:

I Lemma 11. If an agent i with pi > t is the last agent in any optimal schedule S from s to
t, then A[i] = i.
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Figure 6 An example, where the only optimum schedule uses both agents on the right of t.
The optimum schedule has delivery time T = (p1 + t − s)/υ = 5/1 = 5 and energy consumption
E = p1 · ω1 + (p2 − q2 + q3 − q2) · ω2 + (p3 − q3 + t− q3) · ω3 = 3 · 5 + 4 · 1 + 5 · 0 = 19.

Proof. We have qi < t < pi. By the decreasing weight property, no agent j > i will be
used in S. We extend S to a schedule S′ by letting agent i walk from t to pi. Then S′ is a
candidate for S[i]. Similar to Lemma 10, S′ consists of an optimal solution for [s, t] and the
strictly cheapest agent on [t, pi] and hence S′ is optimal for S[i] and all optimum schedules
for S[i] have A[i] = i. The optimum s-t-delivery is thus given by:

E = min
j
{E [j]− (pj − t)ωj | (qj < t < pj and A[j] = j) or j = k′} ,

which takes linear time once at the very end. J

Details of the dynamic program. The computational bottleneck of our dynamic program
is (for each subproblem E [i]) the minimization over the set of options in Case 2.c). Each
option evaluates a linear function fj(qi) := ωj · qi + (E [j] − pj · ωj) at position qi, which
can be seen as a lower envelope intersection query. Similarly to before, we use point-line
duality and a dynamic convex hull data structure to avoid considering all agents explicitly as
predecessors and instead quickly search the best one.

I Lemma 12. An optimum schedule for FastEfficientDelivery with uniform velocity υ
on the line can be computed in O(n+ k log k) time.

Combining this with Lemma 8 gives the full solution on paths. Note that strictly speaking,
in the uniform velocity instances, the package is not available at s at time zero, but is brought
there by agents of preceding instances at exactly the time when the first agent can reach it.

I Theorem 13. An optimum solution for FastEfficientDelivery on paths can be com-
puted in O(n+ k log k) time.

5 Optimizing convex combinations of objectives

In this section, we look at a convex combination of the two objectives: minimizing both the
delivery time T and the energy consumption E by minimizing the term ε · T + (1− ε) · E ,
for a given value ε, 0 < ε < 1. We call the problem of minimizing this combined objective
CombinedDelivery. As an application of the NP-hardness proof for FastEfficient-
Delivery, we get NP-hardness of CombinedDelivery as well: The main idea is to counter
small values of ε by scaling the weights of the agents by a small factor δ(ε), thus decreasing
the importance of E alongside T as well.

I Theorem 14. CombinedDelivery is NP-hard for all ε ∈ (0, 1), even on planar graphs.

MFCS 2018



56:14 Collective Fast Delivery by Energy-Efficient Agents

A 2-approximation for CombinedDelivery using a single agent

Recall that for FastDelivery, the agents involved in an optimum delivery were characterized
by increasing velocities υi, while for FastEfficientDelivery on path graphs, the agents of
an optimum solution were characterized by decreasing tuples (υ−1

i , ωi).
Although it is not possible to characterize the order of the agents in an optimum

CombinedDelivery schedule by their velocities and weights alone, we can at least charac-
terize the position of a minimal agent, leading to a 2-approximation using a single agent:

I Lemma 15. Let without loss of generality 1, 2, . . . , i denote the indices of all involved
agents appearing in that order in an optimum CombinedDelivery schedule. Then the last
agent i is minimal in the following sense: i ∈ arg minj

{
ε · υ−1

j + (1− ε) · ωj
}
.

Proof. Recall that we denote by dj the total distance travelled by agent j and by d∗j the
distance travelled by agent j while carrying the package. Thus agent j contributes at least
ε · d∗j · υ

−1
j + (1− ε) · (dj · ωj) ≥ d∗j ·

(
ευ−1
j + (1− ε)ωj

)
towards εT + (1− ε)E . Assume for

the sake of contradiction that the minimum value ευ−1
j + (1− ε)ωj is not obtained by agent

i but by an agent m < i. Then we can replace the agents m+ 1, . . . , i by agent m, resulting
in a decrease in the objective function of at least

i∑
j=m

εd∗jυ
−1
j + (1− ε)djωj −

i∑
j=m

d∗j
(
ευ−1
m + (1− ε)ωm

)
≥

i∑
j=m

d∗j
(
ευ−1
j + (1− ε)ωj

)
−

i∑
j=m

d∗j
(
ευ−1
m + (1− ε)ωm

)
≥ d∗i

(
ευ−1
i + (1− ε)ωi

)
− d∗i

(
ευ−1
m + (1− ε)ωm

)
> 0,

contradicting the minimality of the optimum CombinedDelivery schedule. J

I Theorem 16. There is a 2-approximation for CombinedDelivery which uses only a
single agent (and thus can be found in polynomial time).

Proof. Note that agent i contributes at most εdiυ−1
i + (1 − ε)diωi towards εT + (1 − ε)E .

Starting from an optimum CombinedDelivery schedule we can replace all agents 1, . . . , i−1
along their trajectories by the minimal agent i. This prolongs the travel distance of agent i
by 2 ·

∑i−1
j=1 d

∗
j . Overall, we increase the objective function by at most

2
i−1∑
j=1

d∗j
(
ευ−1
i + (1− ε)ωi

)
−

i−1∑
j=1

d∗j
(
ευ−1
j + (1− ε)ωj

)
≤

i−1∑
j=1

d∗j
(
ευ−1
i + (1− ε)ωi

)
≤

i−1∑
j=1

d∗j
(
ευ−1
j + (1− ε)ωj

)
<

i∑
j=1

d∗j
(
ευ−1
j + (1− ε)ωj

)
≤ εT + (1− ε)E .

Hence only using agent i to deliver the package is a 2-approximation for CombinedDelivery.
We get a polynomial-time approximation algorithm with approximation ratio 2 by choosing
among all k agents the one with minimum value

(
ευ−1
j + (1− ε)ωj

)
· (d(pj , s) + d(s, t)). J

6 Discussion

Our techniques and results extend to a variety of delivery problems and model generalizations.
A key ingredient here is that the order of our dynamic programming subproblems depends
only on the parameters the agent has while carrying the package. Hence it is possible to, e.g.,
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incorporate 2-speed agent models (modeling different speeds [16] with/without carrying the
package) or topographical features (modeling edge traversals in uphill/downhill direction).

Furthermore, the 2-approximation given for CombinedDelivery is applicable to Fast-
Delivery as well, and a relaxation of FastEfficientDelivery, in which one allows the
optimum delivery time to be achieved with a constant-factor approximation of the energy
consumption, stays NP-hard. It is unclear whether FastEfficientDelivery can be solved
efficiently on trees or whether CombinedDelivery allows a PTAS. We consider these two
problems the major open questions raised by this work.
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