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a b s t r a c t 

Increasingly more digital communication is routed among wireless, mobile computers over ad-hoc, un- 

secured communication channels. In this paper, we design two stochastic search algorithms (a greedy 

heuristic, and an evolutionary algorithm) which automatically search for strong insider attack methods 

against a given ad-hoc, delay-tolerant communication protocol, and thus expose its weaknesses. To assess 

their performance, we apply the two algorithms to two simulated, large-scale mobile scenarios (of differ- 

ent route morphology) with 200 nodes having free range of movement. We investigate a choice of two 

standard attack strategies (dropping messages and flooding the network), and four delay-tolerant routing 

protocols: First Contact, Epidemic, Spray and Wait, and MaxProp. We find dramatic drops in performance: 

replicative protocols (Epidemic, Spray and Wait, MaxProp), formerly deemed resilient, are compromised 

to different degrees (delivery rates between 24% and 87%), while a forwarding protocol (First Contact) 

is shown to drop delivery rates to under 5% — in all cases by well-crafted attack strategies and with an 

attacker group of size less than 10% the total network size. Overall, we show that the two proposed meth- 

ods combined constitute an effective means to discover (at design-time) and raise awareness about the 

weaknesses and strengths of existing ad-hoc, delay-tolerant communication protocols against potential 

malicious cyber-attacks. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Delay-Tolerant Networking (DTN) is a family of multi-hop com-

unication protocols suitable for applications which have discon-

inuous connectivity ( Fall & Farrell, 2008 ), such as terrestrial-and-

pace networks where some of the nodes are Low-Earth Orbiting

atellites ( Jain, Fall, & Patra, 2004 ), or the more recent opportunis-

ic urban networks ( Burgess, Gallagher, Jensen, & Levine, 2006 ).

ince the connectivity graph of such a network is dynamic and

ften disconnected, for a message to be communicated along on

n end-to-end path between any two nodes A and Z , the message

ay be stored in the buffers of any number of intermediate nodes

, C , etc., until an opportunity for further delivery towards Z arises

t B and C . DTNs are an option for the future of the Internet in

ommunication-challenged communities, where they add a degree

f connectivity, and for local, city-scale networking which does not

ely on a preexisting communication infrastructure. 
∗ Corresponding author. 
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By definition, urban DTN applications consist of volunteer con-

ributors, and must remain open to all willing participants, rather

han require authentication. Thus, all nodes in an urban DTN are

ffectively insiders. One cyber-security question therefore arises:

ill a DTN communication protocol be resilient to insider attacks,

n various practical, mobile deployment scenarios? It is easy to de-

ign attacks where a malicious insider B either drops the messages

t should route, or injects an unusually large number of messages

nto the network. In the worst case, a group of strong colluding at-

ackers, i.e. collaborative malicious nodes with full knowledge of

he network, may disrupt the network. If the urban DTN normally

ropagates news about crime and accidents in the city, the actions

f malicious attacker could raise the number of victims. For an an-

lytical answer to this question, one should calculate the optimal

et of nodes to be attacked; however, this computation is hard:

ven given a known node connectivity pattern, this vertex vulnera-

ility problem was proven NP-hard ( Burgess et al., 2006 ). In related

ork, the calculation was done using simple random sampling , and

lso greedy heuristics with relatively few variables to optimize (e.g.,

he attackers did not have freedom of movement) ( Burgess, Bis-

ias, Corner, & Levine, 2007; Kempe, Kleinberg, & Éva Tardos, 2015 ).

hese studies showed that small DTNs were remarkably resilient

http://dx.doi.org/10.1016/j.eswa.2017.03.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
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against a large number of attackers: e.g., the data delivery rate in a

certain DTN scenario dropped to 50% only when 50% of the nodes

in the network executed a single attack logic. In our own previ-

ous work ( Bucur, Iacca, Gaudesi, Squillero, & Tonda, 2016; Bucur,

Iacca, Squillero, & Tonda, 2015 ) we empirically found these results

by using evolutionary algorithms (EAs), yet also with a low degree

of generality (in particular, our previous experiments were limited

to fixed-size groups of homogeneous attackers, i.e. malicious nodes

constrained to a single attack logic). In this paper we further de-

velop this research line by presenting the following contributions: 

• We design two improved search methods to find the most ef-

fective attack strategies upon a given DTN communication pro-

tocol: 

1. A greedy heuristic inspired by the existing literature

( Kempe et al., 2015 ), but improved here —in an original

way— to allow the attackers full freedom of movement. 

2. An evolutionary algorithm that optimizes a large set of

variables concerning the attack strategy, namely: 
• the number of attackers in the group; 
• the attack logic, independently for each attacker in the

group; 
• the speed and route of each attacker in the group. 

By allowing the EA to choose the number of attackers and

the attack logic for each attacker, we largely improve upon

our previous works ( Bucur et al., 2016; Bucur et al., 2015 )

as we can now find optimally-sized groups of heterogeneous

attackers (as opposed to fixed-size homogeneous groups). 
• We experiment via simulation on two realistic, large-scale ur-

ban DTN scenarios with completely different map morphology:

a regular, grid-like 5 km 

2 area of downtown San Francisco, US,

and an irregular (from a morphological point of view) 5 km 

2 

area of Venice, Italy. For each scenario we consider four DTN

routing protocols, i.e. First Contact, Epidemic, Spray and Wait,

and MaxProp. This set of protocols was chosen because it cov-

ers the range of features specific to DTNs, in particular the

aspect of message replication (discussed later in Section 2.1 ).

Also, we study the presence of a variable-sized group of attack-

ers (from 1 to 20), out of a total network size of 200 mobile

nodes (while related work focuses on much smaller networks).

In all the test cases, we compare the greedy heuristic and the

EA against random sampling. 
• We find that both our improved search methods shed new light

upon the weaknesses of these protocols now known from exist-

ing literature: replicative protocols (Epidemic, Spray and Wait,

MaxProp), deemed resilient in the related work, are found com-

promisable to very different degrees (down to delivery rates of

24%, 68%, and 87%, respectively), while a forwarding protocol

(First Contact) is shown to drop its delivery rate under 5% — in

all cases by well-crafted attack variables, but with an attacker

group of size less than 10% the total network size. 

The rest of the paper is organized as follows. Section 2 details

the background concepts. Section 3 introduces the related work

on search algorithms applied to DTN security. The proposed meth-

ods are described in Section 4 , and the numerical experiments are

presented and analysed in Sections 5 and 6 , respectively. Finally,

Section 7 concludes this work. 

2. Background 

In this section we first summarize the main elements of DTN

routing, and the existing protocols. We then focus on the compu-

tational models of agent movement in DTNs. Finally, we detail the

most common kinds of attack in these networks. 
.1. DTN routing: routing and performance objectives 

The main functional performance factor for a Delay-Tolerant

etwork is the data delivery ratio (DDR): the percentage of those

onest messages injected in the network which were successfully

elivered to their destinations. We focus our study on optimizing

he effect of attackers upon data delivery, i.e., on minimizing the

DR. Other relevant performance factors for DTNs include message

atency , i.e., the average time interval between the injection of a

essage in the network (by an honest node) until the delivery of

he message. 

In the design of a DTN routing protocol, the computation of

outing paths at a node may be aided if the node is able to predict

uture networks factors such as the pattern of contact with other

odes, the set of nodes with congested buffers, and the pattern of

raffic demands. While such network knowledge may be acquired

n practice by an attacker via monitoring the network, many prac-

ical protocols do not assume any, and are thus zero-knowledge . 

DTN protocols differ in their choices for message replication :

eplicative DTN routing protocols are designed such that nodes will

nject into the network copies of each message they need to for-

ard, and each of these copies is forwarded independently. This is

 best-effort scheme to raise the likelihood that a copy of the mes-

age reaches its destination, given unpredictable mobility in the

etwork. On the other hand, in single-copy forwarding protocols

nly one copy of a message exists at each time in the network. A

urvey of existing protocols is given in Wei, Liang, and Xu (2014) . 

We describe classic DTN routing protocols in these two cate-

ories, below. 

First Contact ( Jain et al., 2004 ) is a zero-knowledge protocol,

urely forwarding rather than replicative, and thus economical; it

outes messages opportunistically using any available contacts with

ther nodes. A single copy of each message in the network exists

t a time, is stored in a node’s finite buffer, and is forwarded to the

rst available contact (if more contacts are available, one is chosen

andomly among all the current contacts). If a node’s buffer is al-

eady full with other messages, any new messages are dropped.

ue to the lack of route planning, no guarantee can be given

bout the likelihood of a message reaching its intended destina-

ion. On simple network topologies, First Contact was shown ( Jain

t al., 2004 ) to have performance comparable to partial-knowledge

rotocols; the performance will degrade in complex topologies to

arying degrees, depending on the network load. 

Epidemic routing ( Vahdat, Becker et al., 20 0 0 ) is zero-

nowledge and essentially adapts the basic concept of network

ooding to DTNs. Every node carrying a message will replicate this

essage to a number of carrier nodes. The amount of replication is

imited by two fixed upper bounds: on (a) the message hop count

nd (b) the buffer space that any node dedicates to storing the mes-

ages of any other nodes. When two nodes come into contact, one

equests copies of those messages from the other’s buffer which

t has not seen yet, subject to the hop-count limit. When the per-

ode buffer becomes full, the oldest messages are dropped. In a

cenario with 50 nodes visiting random points in a 1500 m ×
00 m area, it was shown that (1) lowering the message hop

ount can preserve the delivery ratio, but will raise the average

essage delay, and (2) the delivery rate reaches 100% when the

uffers can store more than 10% of all the messages injected in the

etwork ( Vahdat et al., 20 0 0 ). 

Spray and Wait ( Spyropoulos, Psounis, & Raghavendra, 2005 )

ombines replicative and single-copy features. At every injection

f a new message into the network (the “spray” phase), a num-

er n of messages copies are spread to different carrier nodes. If

he destination node of the message is not found among these car-

iers, then the n carriers are allowed only one choice: to do di-

ect transmission of their copy to the destination node, if, in time,
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hey make direct contact with it (the “wait” phase). The n carrier

odes in the spray phase may be chosen to be the first distinct n

odes encountered. A better option is the binary spray scheme , in

hich the sender distributes roughly half of the message copies it

olds (initially n ) to any carrier node it encounters, with all car-

iers then also further spraying half of their copies; the spraying

rocess ends at a node when there is a single remaining message,

t which point the node switches to the wait phase. 

MaxProp ( Burgess et al., 2006 ) implements a contextual opti-

ization to its buffer management, to increase the message deliv-

ry rate and decrease the latency of delivered messages. A node

rioritizes the messages waiting to be forwarded based on a cost

ssigned to each destination node in the network. This cost is an

stimate of delivery likelihood, and is updated continuously during

he lifetime of the network. The estimation works by first approx-

mating the likelihood that a node will next meet a certain other

ode; these estimations are exchanged between nodes at connec-

ion times, and effectively allow each node to approximate shortest

aths to any destination in the network. A complementary mech-

nism uses end-to-end acknowledgments of packet deliveries to

lear out local buffers. 

.2. Movement model in DTNs: random waypoint with shortest paths 

Computational models of urban DTNs require realistic mod-

lling of the free, stochastic movement of agents of different

ypes (pedestrians, cars, boats, etc.). In our experimentation (see

ection 5 ), we have used the Opportunistic Network Environment

imulator The ONE ( Keränen, Ott, & Kärkkäinen, 2009 ). In The ONE,

gents following a specific movement model are first associated to

 specific map layer , which describes the physical paths reachable

y that type of agents. Then, a node moves as per a set of points of

nterest (POIs) located on that map layer. In the random waypoint

ith shortest paths movement model, a node randomly chooses a

ext destination point from a set of points of interest; the node

ravels there at a realistic speed on the shortest path possible on

hat map layer, and takes a break. Then, it repeats the process. 

Therefore given a realistic map scenario, the combination of

ap layer, the set of points of interest, the range of speeds al-

owed, and the duration of the breaks will differentiate the move-

ent model of a city car from that of a small boat and from that

f a pedestrian. For example, the two urban scenarios tested in our

xperiments are configured with two map layers: one accessible to

edestrians, and one to motorized vehicles (either boats or cars). 

.3. Types of security attacks 

Similar to a DTN routing protocol, an attack protocol may use a

egree of network knowledge. A weak attacker cannot predict any

uture network conditions; his/her only resort consists of simply

andomly attacking nodes in the network. A strong attacker is that

ith full network knowledge, who can predict the future pattern

f network encounters: for example, a statistical estimation of how

any honest nodes will be in the proximity of any given map lo-

ation. 

A group of colluding attackers is that which has the means nec-

ssary to synchronize and distribute their individual attacks, rather

han execute an independent attack protocol on each node. Any of

he colluding nodes may adopt one of the following basic attack

ogics, which we study here: 

• Black-hole attacks : The attacker silently drops all the messages

received, rather than store and forward them. 
• Flooding attacks : The attacker executes the same routing pro-

tocol as the honest nodes in the network, but attempts a

denial-of-service procedure by injecting a (large) number of
(large) messages into the network. t
Other known attack strategies include the falsification of rout-

ng tables to mislead network nodes (effective in the case when a

outing protocol transmits routing metadata as part of replicated

essages), counterfeiting acknowledgement messages, and the im-

ersonation of other nodes (effective against protocols which build

rust relationships between nodes). 

Finally, the model of an attacker may be free range , i.e., the at-

ackers can freely select their movement model (including the set

f points of interest on the relevant map layer); this general model

s studied here. On the contrary, an attacker may also have no free-

om of movement. A scenario for this latter model is that in which

he communication system of an honest network user is corrupted

y the attacker, while the honest user still dictates the physical

oute; this scenario was studied in some of the related work (see

he next section). 

. Related work 

In this section we distinguish four categories of algorithms used

or testing the robustness of DTNs against attacks, and briefly

urvey the state-of-the-art algorithms belonging to each category.

verall, the current related work studies either relatively small

TN scenarios, or heterogeneous attack methods among attackers

ith no freedom of movement. It never studies, though, the effec-

iveness of heterogeneous attackers with free range of mobility. 

.1. Random sampling 

The conventional method to test the resilience of network pro-

ocols against attacks uses simulation and a random injection of

vents of interest. Such a computational study of DTN robust-

ess was performed in Burgess et al. (2007) , which evaluated

he theoretical resilience of the real-world DieselNet and Haggle

TN prototypes based on long-term trace recordings of these net-

orks’ mobility and connectivity patterns. In particular, the Diesel-

et experiment consisted of roughly 30 sparsely connected re-

ional buses communicating via WiFi. The connectivity traces used

howed that Haggle nodes mimic the random-waypoint mobility

odel fairly closely. Four DTN routing protocols, variations of Max-

rop ( Burgess et al., 2006 ) (both forwarding and replicative), are

valuated post-factum over these prerecorded traces. Weak attacks

ere simulated by randomly reassigning some of the honest nodes

s attackers (i.e., these attackers have no free range). A protocol

imilar to First Contact is then shown to only lower its data de-

ivery ratio by 50% (under the baseline DDR obtained in the net-

ork without attackers) in the situation when 50% of the number

f honest nodes in the network are corrupted by either black-hole

r flooding attackers. The replicative MaxProp is shown to be more

obust to weak attacks: with the same large number of attacks, the

rop in data delivery was roughly 20% under the baseline. 

Choo, Chan, and Chang (2010) further evaluated MaxProp on

he same prerecorded traces, showing it to be less robust when a

mall number (one to five) of random attackers execute two attack

ogics concurrently: flooding and node impersonation. The drop

n DDR with only five such combined attackers was found to be

oughly 30% under the baseline without attacks. 

This related work is less than general: it studies the resilience

f DTN protocols on the same, relatively small and sparse DTN pro-

otypes, post-factum, i.e., essentially constraining network nodes to

ne mobility pattern across all experiments. In the present work,

e lift this constraint: we experiment with networks an order of

agnitude larger (200 nodes), and study the resilience of the pro-

ocols under the general random-waypoint mobility model. 
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k ∈ [ k , k max ] ;
3.2. Greedy heuristics 

A greedy heuristic was proven to compute approximations of

the absolute optimum solutions to the problem of selecting the

nodes with highest viral influence in static social networks ( Kempe

et al., 2015 ), given specific stochastic protocols dictating how a

node may spread its influence in the network. This problem is re-

lated to ours, and was proved NP-hard in Kempe et al. (2015) by

reducing it to the NP-complete vertex-cover problem. With some

constraints upon the allowed rate of change in the network, the

approximation algorithms are also practically interesting for solv-

ing similar open questions from the domain of dynamic social net-

works ( Zhuang, Sun, Tang, Zhang, & Sun, 2013 ). 

To generate strong attacks (again, without free range, and on

DTNs of fixed, prerecorded movement models), Burgess et al.

(2007) used a greedy heuristic to maximize the effect of black-hole

attacks. As a first note, their method does not aim to minimize the

delivery rate of the network, but substitutes it with the simpler

quality-of-service metric of total reachability , defined as follows. A

DTN model D = (N, C) is a single predefined list of connection events

C on the set N of n honest nodes; this is obtained simply from the

prerecorded DTN trace used. Two nodes are temporally connected

in D if there exists a (temporally non-decreasing) sequence of con-

nection events in C . Then, the total reachability of D , denoted R ( D ),

is the number of pairs of temporally connected nodes. To select k

attackers out of the set N while minimizing R ( D ) on a predefined

D , a greedy heuristic simply selects as the i th attacker that node

which lowers the total reachability of D (excluding the first i − 1

attackers) the most. While this greedy heuristic is not proven ana-

lytically to be optimal at minimizing R ( D ), it is shown experimen-

tally to give similar results as a brute-force method, for k ≤ 5, on

the two DTN traces under study. 

The greedy heuristic in Burgess et al. (2007) is shown to out-

perform a random sampling of nodes when k ≥ n 
10 (i.e., at least 3

strong attackers for n = 30 honest nodes) on the DieselNet DTN,

and for any k ≥ 1 on the Haggle DTN, only for black-hole at-

tacks and the MaxProp routing protocol. The heuristic is particu-

larly advantageous for a very large k ; there, the delivery rate when

k equals n 
2 is found to be under 20% (and reaches nearly zero for

DieselNet). 

This design of a greedy heuristic has the following limitations,

which are then addressed in the present work: (1) a single attack

method is studied, i.e., all attackers in the group perform the same

attack logic; (2) the attackers studied are not allowed free range,

but must follow the route of a previously honest node in that DTN;

(3) the message delivery rate of a DTN D is evaluated via a proxy

metric, the total reachability R ( D ). 

3.3. Evolutionary algorithms 

Evolutionary algorithms (EAs) have been traditionally used as

optimization tools for various applications. However, thorough ob-

servations of EA dynamics Auerbach, Iacca, and Floreano (2016) ;

Pugh, Soros, Szerlip, and Stanley (2015) have recently suggested

the idea that EAs work best as an explorative tool, rather than

exploitative one (i.e., an optimizer). This intuition has originated

new breeds of EAs which are based on mechanisms for preserving

(or even promoting) the population diversity ( Squillero & Tonda,

2016 ): rather than refining the search over a basin of attraction of

the landscape, these algorithms foster the spread of new solutions

over the search space in the attempt of finding uncovered, possibly

rare instances of a given problem solution. Example of this kind of

EAs are Novelty Search ( Lehman & Stanley, 2011 ) and MAP-Elites

( Mouret & Clune, 2015 ). 

In the networking domain, the exploration capabilities of EAs

have been used recently to devise stress-testing methods for net-
ork protocols, with the aim of maximizing or minimizing certain

functional or non-functional) network performance factors, such

s message throughput or energy consumption. In this context,

he key idea is that the working conditions which lead the net-

ork to a decreased performance are anomalous and, possibly, rare

nd hard to find (they are, essentially, a needle in the haystack).

owever, modern EAs can tackle this problem efficiently: in Bucur,

acca, Squillero, and Tonda (2014) , we tested this idea on stress-

esting routing protocols for ad hoc Wireless Sensor Networks (on

his topic, see also: Alcaraz and Lopez (2010) ; Brooks, Pillai, Racu-

as, and Rai (2007) ; Islam, Shen, and Wang (2012) ; Rogers, David,

nd Jennings (2005) ). We then extended the applicability of this

ethodology to DTNs in Bucur et al. (2015) , a feasibility study

f the present work; there, we used an evolutionary algorithm to

etermine small groups of homogeneous attackers (i.e., nodes per-

orming the same kind of attack) capable of compromising a DTN.

n Bucur et al. (2016) , we instead tackled this problem from a co-

perative co-evolution perspective, which led to a further decrease

f the network performance. 

.4. Other approaches 

Recently, alternative approaches have also been considered to

ssess the security of mobile networks. In Li, Yang, and Wu (2010) ,

 game-theory-based framework is proposed to model and anal-

se the behaviour of a group of 40 malicious nodes attacking a

obile ad hoc network made up of 100 nodes in total. Malicious

odes can perform attacks of two types: dropping packets (simi-

ar to a black-hole attack, but the choice of dropping a packet is

ade for each packet), or altered packets (in this case the packet

s forwarded after a malicious modification). Honest and malicious

odes are modelled as rational decision-making agents aiming to

aximize their own individual utility function. A limitation of this

ramework is that, while honest nodes are allowed to cooperate

n order to alleviate the effect of the attack, no form of collusion

mong malicious nodes is allowed. In the present work, we instead

onsider colluding attackers, which may “distribute” the work and

hus more effectively point to weaknesses of the protocol under

tudy. 

. Proposed methods 

In this section we describe the two proposed search algorithms

or attack-effect maximization. Both algorithms receive in input a

TN scenario consisting of: 

• A set of (possibly overlapping) map layers L (e.g., city streets

or pedestrian walkways), each defined as a set of line segments

between pairs of map points from a set. The set of map points

for a given map layer l is denoted l .POIs; 
• A set of movement models M for nodes, each corresponding

to a type of mobile agent in the scenario (e.g., pedestrians or

cars) and each constrained to a single map layer from L : ∀ m ∈
M, ∃ l ∈ L : m. map = l; 

• A preset network size n and a distribution of the n nodes

among the movement models M , n = 

∑ | M| 
i =1 

n i (e.g., a DTN sce-

nario may have n = 200 and consist of n 1 = 150 pedestrians

and n 2 = 50 cars); 
• A set of possible attack logics to choose from, A (e.g., black-

hole or flooding), kept constant for each node during the attack;
• An interval [ k min , k max ] constraining the colluding attackers’

group size , with k min ≥ 1 and k max ≤ n . 

The algorithms will then output a maximal-effect strong attack

onfiguration; this is a valuation of the following parameters: 

• A concrete number of colluding attackers 
min 
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Algorithm 1 Greedy heuristic to compute exactly k max attack tu- 

ples for each possible combination of attack logic and movement 

model. 

1: procedure Greedy ( p, L, M, A, n = 

∑ | M| 
i =1 

n i , k max ) 

2: D ← the DTN without attackers L, M, n = 

∑ | M| 
i =1 

n i 
3: Sample 10 random evaluations of D 

4: for each m i ∈ M do 

5: P i ← p most visited map points in m i . map . POIs 

6: end for 

7: k ← k max 

8: for each tuple (a j , m i ) ∈ A × M do 

9: K ji ← k times the tuple (a j , m i , P i ) 

10: end for 

11: Return all sets K ji , 1 ≤ j ≤ | A | and 1 ≤ i ≤ | M| 
12: end procedure 
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1 http://ugp3.sourceforge.net . 
• A set K of exactly | K| = k attack tu ples 

( a l ∈ A, m l ∈ M, P l ⊆ m l . map . POIs ) where 1 ≤ l ≤ k. 

In essence, every malicious node l is free to select its attack

ogic a l , movement model m l (and thus map layer), and a subset

f map points P l from this map layer; this set dictates the route of

he attacker, which will follow the same model (random waypoint

ith shortest paths) as the honest nodes, except for the fact that

he set of waypoints is now strictly P l . 

In our study, the k attackers added to the network will replace

 honest nodes, so that the network size remains equal to n , and

 simple calculation can be made on the proportion of malicious

odes out of n . This entails that, when generating k attack tuples,

e have a further constraint in that the number of attackers which

an be assigned to a certain map layer m i ∈ M is upper-bounded

y the number of honest nodes on that map layer. In practice

hough, our network size n is one order of magnitude larger than

he largest k max used, so that this constraint is always satisfied. 

.1. Greedy heuristic 

We use a computationally efficient, greedy procedure to set k

nd calculate the set K of k attack tuples ( a l , m l , P l ), with 1 ≤ l ≤ k

nd k ∈ [ k min , k max ]. The procedure (shown in Algorithm 1 ) uses

he DTN configuration L, M, A, n = 

∑ | M| 
i =1 

n i , and a supplementary,

onfigurable parameter p , which is the size desired for the P l of

ny attacker l . 

Intuitively, this heuristic achieves the following: it first evalu-

tes the DTN without attackers; after this, it calculates, for every

ap layer, the set of points most visited by honest nodes, selects a

umber of the top such map points, and assigns them to all attack-

rs mobile on that map layer. Essentially, this heuristic attempts

o optimize the number of connection events in a general way, by

btaining the “heat map” for our DTN geographical locations, in a

ay suitable to a DTN for which we do not have, as (Burgess et al.,

007) did, prerecorded logs of connection events. 

Our heuristic could also be called a dynamic version of a greedy

euristic used for computing the nodes of maximum influence in

tatic social networks ( Kempe et al., 2015 ): given a fixed directed

raph, that heuristic selected a subset of nodes which had the

ighest degree in the graph. Here, it is the geographic location of

odes which enable communication, so our heuristic considers the

eat map of the most visited geographic points to be the graph

nderlying the DTN, and greedily selects a subset of nodes which

ave the highest number of visits. 

The heuristic outputs | A | × | M | sets of attacker groups: rather

han trying to maximize the effectiveness of a single set K , the
euristic computes a set K ji for each combination of attack logic

 j ∈ A and movement model m i ∈ M . With this, the procedure es-

entially tries to “place” a single type of attack on each map layer,

eaving to a later step the task of evaluating which among these

ombinations is best. Then, it maximizes the number of attackers

n each set K to exactly k = k max . Finally, it greedily computes a

ingle set of map points P i for all the attackers of movement model

 i ; this is the set of the p most visited map points on m i .map,

stimated from repeatedly sampling the execution of the network

ithout attackers. Note that assigning the same set of POIs P i to all

ttackers in the group is arguably very beneficial, because a single

ttacker can only be at one such map point at one time; on the

ther hand, when another attacker also travels to the same map

oints, these points will have better coverage. 

.2. Evolutionary algorithm 

The evolutionary algorithm is applied here to maximize the ef-

ect of the attackers on the network, by optimizing the attacker

eam composition (i.e., number and types of attackers) and move-

ent. A candidate solution — or individual in the evolutionary jar-

on — represents in this case a set K (of variable size) of attack

uples, defined as above. 

Two network metrics are used as fitness functions: the data

elivery rate, calculated as the percentage of messages originated

nly from honest nodes, and which are delivered successfully (to

e minimized); and the average latency of message deliveries, in

econds (to be maximized). These two metrics are considered in

exicographic order, so that the latency is considered as a tie-

reaker in the rare case the evolutionary algorithm compares two

ifferent attacks with equal DDR. 

We should note here that our purpose is not to implement an

d hoc evolutionary algorithm which may be optimally designed

or our problem (or, to find the best EA for this problem). On

he contrary, we rather ask the question whether (and how) a

eneral-purpose EA, with no specific domain knowledge and pa-

ameter tuning, can be applied to this problem, and how it com-

ares against a well-crafted problem-specific heuristic. For this rea-

on, among the broad family of EAs, we chose an algorithm that

as shown to perform fairly well on a number of real-world appli-

ations, namely the self-adaptive (μ + λ) -Evolution Strategy (ES)

 Hansen, Arnold, & Auger, 2015 ). In particular, we use here the im-

lementation available in the evolutionary toolkit μGP 1 ( Sanchez,

chillaci, & Squillero, 2011 ). 

The ES proceeds as follows ( Algorithm 2 ): first, a population

f μ individuals is randomly initialized and evaluated. At each

eneration, λ new individuals are obtained by applying mutation

nd crossover with self-adaptive parameters: the first operator per-

orms mutations at node level (i.e. changes of attack logic, move-

ent model, or insertion/removal/replacement of POIs); the latter

erforms crossover between two individuals, i.e. swaps of attack

ypes, movement models, or subsets of POIs between them. Then,

ffspring are evaluated and compete with parents, by tournament

election of self-adaptive size τ . This loop goes on until a stop cri-

erion is met, defined in our case as a stagnation condition of §

enerations without improvement. 

The number of parent and offspring individuals ( μ and λ) are

ypically scaled with the problem dimension. However, this is not

irectly applicable to our problem, as we have variable-sized in-

ividuals (since the size k of the attack tuples set will change

rom an individual to another). Since here the maximum value of

 was 20, and since excessively large populations would be slower

http://ugp3.sourceforge.net
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Algorithm 2 Evolutionary algorithm to optimize the attacker team 

composition and movement. EvalDTN( D, K I ) simulates the DTN D 

attacked by the group of attack tuples K i and returns the resulting 

DDR and latency. min () and max () are evaluated on all the attacker 

groups generated by the algorithm. 

1: procedure EA ( L, M, A, n = 

∑ | M| 
i =1 

n i , k min , k max ) 

2: D ← the DTN without attackers L, M, n = 

∑ | M| 
i =1 

n i 
3: for i ∈ [1 , μ] do 

4: Randomly initialize a set K i of attack tuples, | K i | = k, k ∈ 

[ k min , k max ] 

5: (DDR i , latency i ) ← EvalDTN ( D, K i ) 

6: end for 

7: while stagnation condition is not met do 

8: Generate λ attacker groups by mutation and crossover 

9: for i ∈ [1 , λ] do 

10: (DDR i , latency i ) ← EvalDTN ( D, K i ) 

11: end for 

12: Select μ attacker groups by tournament selection on 

μ + λ attacker groups 

13: end while 

14: Return K 

∗ s.t. (DDR ∗, latency ∗) = (min (DDR ) , max (latency )) 

15: end procedure 

Table 1 

DTN routing protocols under test. 

Protocol Configuration 

First Contact messages not replicated 

Epidemic buffer with drop-oldest-messages purge scheme 

Spray and Wait binary spray scheme; 5 copies per message 

MaxProp optimized buffer management with shortest path 

estimation and acknowledgements 
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to converge, we use μ = 30 and λ = 20 as a compromise between

exploration and exploitation in our problem space. 

As for the tournament size τ , the algorithm available in μGP is

able to self-adapt its value; we chose here the range ([1, 4]), i.e., we

allowed the algorithm to adjust dynamically the selection pressure,

by changing τ . For τ = 1 the selection pressure is lower, as all in-

dividuals can reproduce; for τ = 4 , the selection pressure is higher,

since each individual competes with three other randomly chosen

individuals, and thus low-fitness individuals have less chances of

reproducing. 

Finally, the number of stagnated generations § was set to 50:

this value is sufficiently large to allow the algorithm to continue

the search while no improvements are found, but not too large to

avoid wasting computational resources. 

5. Experimental settings 

This section presents the experimental configurations for the

three routing protocols under study, the movement models in the

DTN as determined by two urban scenarios, the communication

settings in the network, which determine node connectivity pat-

terns, and the settings for the evaluation of a DTN via simulation.

We also maintain a repository. 2 

The settings of the four routing protocols (First Contact, Epi-

demic, Spray and Wait, and MaxProp, previously described in

Section 2.1 ) are briefly summarized in Table 1 . 
2 https://github.com/doinab/DTN-security . 

s  

s  

s

.1. Two urban scenarios 

We simulate two realistic, large-scale city environments. Fig. 1

hows the basic maps of the two scenarios: two areas of San

rancisco and Venice, each map composed of two map layers for

edestrians and motorized vehicles (cars in the first scenario and

oats in the second). Each line segment is defined by two map

oints, and every intersection of line segments consists of a point.

n Fig. 1 (left), the two map layers are largely overlapping, such

hat the pedestrian layer (in green, grey in print version) is mostly

bscured by the street layer (in black). In Fig. 1 (right), the map

ayers do not overlap, with the exception of a small number of

ommon map points located at bridges. 

These cities differ in terms of map morphology: while the

rea of San Francisco has a regular grid structure of paths for

oth motorized vehicles and pedestrians, with only the occasional

edestrian-only park, the core of Venice has a complex, hierarchi-

al, irregular morphology of main and secondary waterways trav-

lled by boats, with pedestrians confined to inner walkways (some

long waterways) and bridges (note that here we do not model,

or simplicity, the scenario in which a vehicle carries pedestrian

assengers, and thus has multiple communication devices active).

he Venice map has an additional feature for added realism: on

oth map layers, a small number of the map POIs are special: they

ark the touristic centre, and have a higher probability to be cho-

en as the next destination by the honest nodes (30% and 20% for

edestrians and vehicles, respectively). 

In both cities we configured n = 200 mobile agents, divided

n two types: pedestrians (75%) and vehicles. For San Francisco,

he vehicles consist of motorized cars; in Venice, the waterways

erve as routes for motorized or unmotorized boats. For an hon-

st node, the set of POIs is the entire set of map points located

n the node’s relevant map layer. For an attacker, the set of POIs

s computed either by the greedy heuristic or by the evolutionary

lgorithm. We set the parameter p given to the greedy heuristic to

he value p = 100 , i.e., the heuristic calculates the 100 most vis-

ted map points and sets these points as the set of POIs for all

ttackers. On the other hand, the evolutionary algorithm will yield

 variable number of attacker POIs, limited only by the number of

ap points on the map layers in the scenario. 

Table 2 quantifies the maps and map layers in terms of size,

umber of distinct map points, line segments, and number of

odes in the DTN scenario. The configuration for the nodes’ move-

ent models is given in Table 3 . 

.2. Communication and attack settings 

Pedestrians are modelled to carry communication devices with

imited capabilities: a Bluetooth communication interface with a

ange of 15 m and low bandwidth. Vehicles have more commu-

ication capabilities: besides a Bluetooth interface (which allows

ommunication events to take place between any pedestrian and

ny vehicle), a vehicle also has a high-speed, longer-range network

nterface allowing vehicle-to-vehicle communication. The simula-

ion and communication settings are summarized in Table 4 . 

A number k of the 200 nodes is assigned malicious behaviour:

n attacker executes either a black-hole attack or flooding, the two

ttack logics described in Section 2.3 . We experiment with values

f k between 1 and 20, i.e., up to 10% of the network size, in the

ollowing increasing intervals [ k min , k max ] : [1, 1], [2, 2], [1, 5], [6,

0], and [11, 20]. The intervals are relevant for the experimentation

sing the evolutionary algorithm, which will evolve k within one

uch interval. This serves to show whether or not, in some DTN

cenarios, it is strictly necessary to maximize the attacker group

ize, or, on the contrary, whether a smaller k might not have a

imilar effect upon the network as a larger k . 

https://github.com/doinab/DTN-security
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Fig. 1. (left) A 5 km 

2 area of downtown San Francisco, US, with a grid-based map topology of streets and the occasional park. The map has two overlapping layers, 

constraining the movement of vehicles (the black map layer) and pedestrians (the green map layer, grey in print version). (right) A 5 km 

2 area of downtown Venice, Italy, 

with an irregular map topology of pedestrian pathways (the black map layer) and waterways (the blue layer, grey in print version). Marked with stars are special POIs in 

the city’s touristic centre. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Network parameters: city maps. 

San Francisco: size: 2416 m × 2253 m 

map layers: L P (pedestrian walkways), L S (streets) 

no. of route segments: 1728 in L P , 1305 in L S 
no. of map points: 1210 in L P , 883 in L S 
network size n : n 1 = 150 pedestrians (constrained to L P ), n 2 = 50 cars (constrained to L S ) 

Venice: size: 2210 m × 2340 m 

map layers: L P (pedestrian walkways), L W (waterways) 

no. of line segments: 7983 in L P , 1497 in L W 
no. of map points: 6910 in L P , 1354 in L W 
network size: n 1 = 150 pedestrians (constrained to L P ), n 2 = 50 boats (constrained to L W ) 

Table 3 

Network parameters: movement models. 

Movement model for nodes in both cities next point: chosen randomly from a set of POIs 

path choice: shortest path on the map layer to the next point 

pedestrian speed: [0 . 5 . . . 1 . 5] m/s 

boat speed: [1 . 0 . . . 5 . 0] m/s 

car speed: [2 . 7 . . . 13 . 9] m/s 

pause interval for all: [0 . . . 120] s at each destination point 
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Honest nodes periodically inject new messages to be routed by

he network; the rate of message injection among all honest nodes

s set at one message every 30 s, such that the network routes 120

onest messages per hour, regardless of the number of attackers in

he network. The next honest node to inject the next message in

he network is chosen randomly, as is the destination node for the

essage. 

A black-hole attacker does not inject any additional messages

n the network. On the other hand, when an attacker executes a

ood, the parameters are chosen to obtain a “heavy” flood of mes-

ages: (1) a flooding node injects messages in the network at 10

imes the frequency of message injection from an honest node,

nd (2) the messages injected by a flooder are 10 times as large

s regular messages. Table 4 also summarizes these communica-

ion parameters, together with the settings regarding the sizes of

he nodes’ message buffers, and the Time To Leave (TTL) for all

essages. 
.3. Experimental campaigns 

Each simulation of a DTN in The ONE simulator is stochastic

 Keränen et al., 2009 ). The nodes are initially placed randomly

n their map layer, and a 10 0 0-s warm-up simulation period is

llowed before the experiment starts, for the nodes to settle on

he emerging pattern of preferred routes in the city. Every next

aypoint is also chosen randomly from the relevant set of map

oints, as per the general random-waypoint with shortest paths

ode movement model. 

Due to this, we evaluate each network scenario via 10 simu-

ation repetitions with different random seeds, and report the av-

rage data delivery ratio for the network (and message latency,

f relevant). This number of repetitions was chosen as a trade-

ff between computational costs and the width of the 95% con-

dence interval around the mean; as will be seen in Section 6 ,

his width of the confidence interval with 10 repetitions is low,
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Table 4 

Network parameters: simulation and node communication settings. 

Simulation settings simulation time: 5 h 

DTN simulator: The ONE ( Keränen et al., 2009 ) 

Message settings message issued: every 30 s (by an honest node), every 3 s (by a flooder) 

message size: 10 kB (issued by an honest node), 100 kB (issued by a flooder) 

message buffer: 5 MB (for pedestrian nodes), 50 MB (for car and boat nodes) 

message TTL: 5 h 

Node communication interfaces Bluetooth: range 15 m, speed 250 kBps 

High-speed: range 100 m, speed 10 MBps 

pedestrians use: Bluetooth 

cars and boats use: Bluetooth and High-speed 
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on the order of 1% of the mean. This number of simulation rep-

etitions is used uniformly for all computational methods in this

study, i.e., when evaluating any given DTN D (either without at-

tackers, or attacked by the group of attack tuples K ). Thus, a greedy

experiment ( Algorithm 1 described in Section 4.1 ) will evaluate

the network configuration D without attackers via 10 simulation

repetitions, and use the aggregated simulation logs to compute

the p most visited map points. Also, any evolutionary experiment

( Algorithm 2, Section 4.2 ) implements the function which evalu-

ates a DTN, EvalDTN ( D, K ), via 10 simulations. 

Finally, each of the three DTN protocols under study ( Table 1 )

is executed in each of the two urban scenarios (defining the map

layers L , node movement models M , and fixed network size n =
200 ), while setting the number k of strong attackers to within each

of the intervals in the set {[1, 1], [2, 2], [1, 5], [6, 10], [11, 20]}, and

fixing the set of attack logics A to black-hole and flooding attacks.

For each combination of a DTN protocol with an urban scenario

and an interval of attacker group size, attacks are computed in the

following four experimental campaigns: 

• (no attack) As a baseline for comparison of DTN resilience to

attacks, we first evaluate the DTN D in which all the nodes are

honest. 
• (random sampling) As a baseline for comparison among

attack-computation algorithms, we also evaluate the effect of

150 randomly generated sets of attack tuples K , where: 
• for a fair comparison, | K | is set to k max , and 

• any attack tuple from K uses a valid map layer and move-

ment model from the DTN scenario. 
• (greedy heuristic) Algorithm 1 , with p set to 100, outputs 4

sets of attacker tuples, one per combination from the set A ×
M , as all scenarios have exactly two possible attack logics and

two map layers and movement models ({black-hole, flooder} ×
{pedestrian, vehicle}). We evaluate all four attacks, which we

refer to as: BP, BV, FP, FV , i.e., respectively, black-hole pedestrian,

black-hole vehicle, flooder pedestrian , and flooder vehicle . 
• (evolutionary algorithm) Algorithm 2 is run 5 times, with a

different initial random seed. We report the best attack found

among all runs. 

6. Analysis of results 

This section presents the numerical results of maximizing the

effectiveness of malicious behaviour over the four DTN protocols

and two maps, comparatively for the greedy heuristic, the evo-

lutionary algorithm, the random attacks, and the baseline perfor-

mance of the network without attacks. We discuss the fact that

we observed great differences in the resilience of these protocols

to strong attacks, and also in the type of strong attackers which

are most effective over these protocols. We see that the effect of

the underlying map (and thus, urban scenario) upon the effective-

ness of an attack is minor in comparison with the attack logic and

attacker’s route. We see that both the greedy heuristic and the evo-

lutionary algorithm have their own strengths when used to com-
ute solutions for this problem. Finally, we quantify the runtime of

he evolutionary algorithm; the runtime of the greedy heuristic is

elatively negligible. 

.1. Protocol performance: First Contact 

In Fig. 2 (Left) we compare the attack effectiveness on the First

ontact protocol using the four experimental campaigns described

n Section 5.3 . Out of the four greedy heuristics, we present only

he most successful among them: that which generated groups of

ehicle attackers executing a black-hole attack logic (BV); in the

wo urban scenarios, these greedy vehicle attackers are cars and

oats, respectively. We draw the following conclusions: 

Protocol resilience. While First Contact has low data delivery

ven without injecting attacks into the network (a delivery ratio

nder 40% in both urban scenarios), our algorithms could produce

ingle strong-attack strategies which lowered data delivery under

0%, and also multi-attacker strategies which further lowered DDR

nder 5%. This shows that there exist strong attacks which over-

ome the routing logic of First Contact. While non-replicative pro-

ocols are known to be weaker than replicative ones, we show the

xtent of this weakness better than the related work, as follows. In

Burgess et al. 2007) it was found that a non-replicative protocol

owers its data delivery ratio by 50% (under the baseline without

ttacks) only when 50% of the number of honest nodes in the net-

ork are corrupted by either black-hole or flooding attackers (with

he important note that these attackers do not have free range over

he urban map). Here, we see that giving the attackers free range

chieves the same 50% drop in performance, but already by intro-

ucing in the network a single attacker rather than a large number.

Attack group composition. We look at which attack group

omposition is most effective. In what regards the greedy heuristic,

ig. 2 already shows that it is attackers of the black-hole vehicle

BV) type which are single-handedly most effective. However, by

onstruction the greedy heuristic only tests homogeneous groups

f attackers. Instead, the evolutionary algorithm is free to inde-

endently optimize the type of each attacker in the group, as well

s the group size; we hypothesize that this optimization strategy

an be more effective than the greedy heuristic, particularly in ur-

an scenarios where the city map is irregular. We thus look at all

he attack tuples generated in the process of repeatedly executing

lgorithm 2 ; we then select all the attack tuples which lower the

etwork’s data delivery to a value within 2% of the best one ob-

ained overall, and perform statistics on this sample set of attack

uples. The sample size obtained is always on the order of magni-

ude of 10 2 to 10 3 attack tuples, across all scenarios. 

In Fig. 2 (Right), we show the average attacker group size and

omposition among the top groups, for First Contact, as obtained

y the evolutionary algorithm. The algorithm found that a group

an be equally as effective even when its size is not maximized:

or 6 to 10 attackers in the group, the average size of a top group

s 9.18 in the San Francisco scenario, from a sample of nearly 80 0 0

op groups. The majority of attackers in all top groups are black-
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Fig. 2. (Left) Attack effectiveness on First Contact: data delivery ratio (DDR) with (1) no attack, (2) randomly computed attacks, the best attacks computed by (3) the greedy 

heuristic and (4) the evolutionary algorithm. Cases (1), (3) and (4) reflect a single DTN, and are shown as the DDR mean and 95% confidence interval; case (2) is shown via 

the DDR mean and standard deviation among 150 DTNs. “BV” denotes the greedy heuristic which generates groups of black-hole vehicle attackers, in both scenarios. (Right) 

The average composition of the top attacker groups found by the evolutionary algorithm for First Contact. 
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g  
ole vehicles in the San Francisco scenario; for Venice, the group

omposition is a more balanced mix, with a fair percentage of

lack-hole pedestrians, which reflects the nature of that city map.

verall, black-hole attacks lower the data delivery of First Contact

ost effectively, and faster (i.e., vehicle rather than pedestrian)

lack-hole attackers are advantageous. 

Although the city maps have different route morphology,

ig. 2 shows that attacks could be computed such that the data de-

ivery was lowered to roughly the same extent in the two scenar-

os. We give an example of attack route in Fig. 3 , which presents

he POIs of the top single attackers for First Contact. The attacker’s

oute consists of all shortest paths between any pair of POIs from

he set (as per the movement model in Section 2.2 ). The attack on

he grid-like map shows that the attacker covers the city streets

niformly; on the Venice map, the attacker navigates among only

our POIs, travelling only via those canals which naturally form the

ackbone of the city. 

.2. Protocol performance: Epidemic 

In Fig. 4 (Left) we compare the attack effectiveness on the Epi-

emic protocol using the four experimental campaigns. Out of the

our greedy heuristics, we present the best two, which are rela-

ively equally successful over this protocol: they both generated

roups of attackers executing a flooding attack logic. 

Protocol resilience. Without attackers, the Epidemic routing

rotocol maintains a data delivery ratio over 90% in both scenar-

os. Replicative protocols are expected to also be resilient to attacks

see Section 3 ): a number of attackers at least equal to 50% of the

etwork size is needed to lower the DDR to under 20%, in the re-

ated work studying attackers without free range ( Burgess et al.,

007 ). Our heuristics found that a single , free-range, strong attacker

an already lower the network delivery rate to 30% regardless of

he city map, and also that, counter-intuitively, teams of attackers

re not significantly more advantageous over the Epidemic proto-

ol than a single attacker. 
Attack group composition. Two of the greedy heuristics are

ore successful than the evolutionary algorithm, on both maps (as

hown in Fig. 4 (Left)). In both scenarios, the greedy heuristics gen-

rate homogeneous groups of flooding attackers, of which the most

uccessful attacks consist of flooding vehicles; similarly, the aver-

ge group composition among the top groups found by the evo-

utionary algorithm is largely made up by flooding vehicles ( Fig. 4

Right)), especially for small attacker group sizes. 

.3. Protocol performance: Spray and Wait 

In Fig. 5 (Left) we compare the attack effectiveness on the Spray

nd Wait protocol using the four experimental campaigns. Out of

he four greedy heuristics, we present the best two per scenario,

hich either outdo or have relatively similar performance to the

volutionary algorithm. For Spray and Wait, the two best greedy

euristics differ between the two scenarios. 

Protocol resilience. Spray and Wait, configured with the more

ophisticated binary spray scheme, is a relatively smart and eco-

omical message-replication method. Among the DTN routing pro-

ocols studied here, Spray and Wait was the second-most difficult

o optimize attacks for: with up to 20 attackers in the group, our

lgorithms were able to optimize attacker groups so that the data

elivery ratio dropped by up to 20% under the baseline without at-

acks (as shown in Fig. 5 (Left)). However, unlike the cases of both

irst Contact and Epidemic, the drop in delivery ratio does not ta-

er off with an increasing number of attackers, which gives that

 larger attack group is significantly more advantageous over this

rotocol. 

Attack group composition. Also unlike the other protocols

e study, none of our optimization algorithms outdid the oth-

rs across all the experimental settings. Instead, for Spray and

ait, the evolutionary algorithm and at least one greedy heuristic

hared the best attack optimizations across group sizes. The ho-

ogeneous groups obtained by the greedy heuristics are advanta-

eous for small group sizes; these are groups made up by flood-
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Fig. 3. The set of POIs (red dots, grey in print version) of the best single attacker in the San Francisco (left) and Venice scenarios, for First Contact. Both attackers are 

black-hole vehicles (a car and boat, respectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60
 64
 68
 72
 76
 80
 84
 88
 92
 96

012 [1-5] [6-10] [11-20]     

D
at

a 
de

liv
er

y 
ra

tio
 (

%
)

No. of attackers in group

Protocol: Epidemic
 Map: San Francisco

no attack
random sampling

greedy heuristic (FP)
greedy heuristic (FV)

evolutionary alg.

 20
 24
 28
 32
 36
 40
 44
 48
 52
 56
 60
 64
 68
 72
 76
 80
 84
 88
 92

012 [1-5] [6-10] [11-20]     

D
at

a 
de

liv
er

y 
ra

tio
 (

%
)

No. of attackers in group

Protocol: Epidemic
 Map: Venice

no attack
random sampling

greedy heuristic (FP)
greedy heuristic (FV)

evolutionary alg.  0

 20

 40

 60

 80

 100

1 2 [1-5] [6-10] [11-20]A
ve

ra
ge

 g
ro

up
 c

om
po

si
tio

n
 (

%
 o

ut
 o

f m
ax

im
um

 g
ro

up
 s

iz
e)

Group size

Protocol: Epidemic
Map: San Francisco

BP
BV
FP
FV

 0

 20

 40

 60

 80

 100

1 2 [1-5] [6-10] [11-20]A
ve

ra
ge

 g
ro

up
 c

om
po

si
tio

n
 (

%
 o

ut
 o

f m
ax

im
um

 g
ro

up
 s

iz
e)

Group size

Protocol: Epidemic
Map: Venice

BP
BV
FP
FV

Fig. 4. (Left) Attack effectiveness on Epidemic: data delivery ratio (DDR) with (1) no attack, (2) randomly computed attacks, the best attacks computed by (3) the greedy 

heuristic and (4) the evolutionary algorithm. Cases (1), (3) and (4) reflect a single DTN, and are shown as the DDR mean and 95% confidence interval; case (2) is shown via 

the DDR mean and standard deviation among 150 DTNs. FP denotes the greedy heuristic which generates groups of flooding pedestrian attackers, and FV that of flooding 

vehicle attackers. (Right) The average composition of the top attacker groups found by the evolutionary algorithm for Epidemic. 
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ing attackers, either vehicles or pedestrians. On the other hand,

the mixed groups obtained by the evolutionary algorithm for larger

group sizes are more efficient, and the group composition among

the top attack groups shows a mix of black-hole vehicles and flood-

ing pedestrians ( Fig. 5 (Right)). 

6.4. Protocol performance: MaxProp 

In Fig. 6 , we compare the attack effectiveness on the MaxProp

protocol using the four experimental campaigns. Out of the four
reedy heuristics, we present the best two per scenario, both em-

loying a flooding attack logic. 

Protocol resilience. MaxProp is the most resilient of this set of

our protocols: for both maps, the drop in performance by intro-

ucing up to 20 attackers in the network is approximately 8% un-

er the baseline without attacks, compared to approximately 20%

nder the baseline for Spray and Wait, and 70% under the baseline

or Epidemic. Similarly to the case of Spray and Wait, the drop un-

er the baseline increases slowly and linearly with the size of the
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Fig. 5. (Left) Attack effectiveness on Spray and Wait: data delivery ratio (DDR) with (1) no attack, (2) randomly computed attacks, the best attacks computed by (3) the 

greedy heuristic and (4) the evolutionary algorithm. Cases (1), (3) and (4) reflect a single DTN, and are shown as the DDR mean and 95% confidence interval; case (2) 

is shown via the DDR mean and standard deviation among 150 DTNs. BV denotes the greedy heuristic which generates groups of black-hole vehicle attackers, FV that of 

flooding vehicle attackers, and FP that of flooding pedestrian attackers. (Right) The average composition of the top attacker groups found by the evolutionary algorithm for 

Spray and Wait. 

Fig. 6. Attack effectiveness on MaxProp: data delivery ratio (DDR) with (1) no at- 

tack, (2) randomly computed attacks, the best attacks computed by (3) the greedy 

heuristic and (4) the evolutionary algorithm. Cases (1), (3) and (4) reflect a sin- 

gle DTN, and are shown as the DDR mean and 95% confidence interval; case (2) is 

shown via the DDR mean and standard deviation among 150 DTNs. FV denotes the 

greedy heuristic which generates groups of flooding vehicle attackers, and FP that 

of flooding pedestrian attackers. 
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ttack group, which gives that adding further attackers may con-

inue to affect the ratio of delivered messages proportionally. 

Attack group composition. As is the case for the simpler Epi-

emic protocol, fast flooding attackers are single-handedly success-

ul, and, on the grid map of San Francisco, by a relatively large

argin compared to the next best single attack logic. Thus, for this

rotocol, we found that the composition of the attack groups is

nusually homogeneous, with no black-hole attackers in the top
roups, and uniformly only flooding vehicles in the most effective

arge attacker groups over the grid map. As for the previous proto-

ols, in the more morphologically complex Venice map with bet-

er focus on pedestrian-only routes, the effectiveness of pedestrian

ood attacks is relatively close to that of vehicle flood attacks. 

.5. Runtimes of the experimentation 

We conclude this section with a brief analysis of the runtimes

f the evolutionary algorithm. A summary of the average num-

er of core-hours and the number of generations until convergence

 § = 50 generations without improvement) is reported in Fig. 7 , for

ach experiment (protocol/city/attacker group size). 

The main observation here is that, with a few exceptions, in

ll cases the average number of core-hours to reach the stagna-

ion condition increases (almost linearly) with the attacker group

ize. This increase can be intuitively explained because the size

f the search space (i.e. the number of parameters describing the

ttacker group) increases with the maximum number of attackers

llowed to the algorithm, thus requiring a larger number of eval-

ations to stagnate. On the other hand, the exceptions (e.g., the

pidemic/Venice scenario) suggests that the search space of this

roblem is characterized, even for a single attacker, by a fitness

andscape that allows the EA to refine the search for several gen-

rations without stagnating, thus requiring a longer runtime: how-

ver, as the number of attackers increases, the landscape proba-

ly shows more plateaus where the EA is more likely to stagnate

arlier, hence the shorter runtimes. The number of generations re-

uired is fairly consistent and small. The computation load is not

n the algorithmic engine behind the metaheuristic, but in the time

eeded to evaluate the behaviour of the protocol via repeated sim-

lations, which is the reason why MaxProp (with its more sophis-

icated buffer and path optimization) is computationally expensive

o test. 
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Fig. 7. Runtimes of the evolutionary algorithm until convergence ( § = 50 generations without improvement) for all the experiments: average number of core-hours (left); 

average number of generations (right). 
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7. Conclusions 

We presented a comparison of alternative search algorithms for

computing strong colluding attacks for Delay-Tolerant Networks,

and thus uncover the particular weaknesses of DTN protocols: an

improved greedy heuristic and a stochastic search algorithm that

applies evolutionary principles to generate populations of attack

groups in order to minimize the data delivery ratio of the network.

One of the main results is that some replicative protocols, gener-

ally deemed resilient against possible malicious nodes (due to the

implicit redundancy of the messages in the network) can be com-

promised by a well-crafted attack carried out by a small number of

nodes; the most resilient protocol uses end-to-end acknowledge-

ments and contextual shortest-path estimations to optimize mes-

sage forwarding. These results were obtained on two large-scale

urban scenarios characterized by different morphological features.

The large experimental campaign presented here shows then that:

(a) the two methods are robust enough to be applied to different

scenarios, and (b) the conclusions we draw depend only partially

on the specific urban map, while some general trends are specific

of each routing protocol. 

Overall, this work attempts to uncover critical issues of the DTN

routing for which, so far, limited, small-scale knowledge was avail-

able in the literature. Importantly, our experimental observations

shed some light on possible attack scenarios from which DTN rout-

ing protocols should be protected at runtime, and can inform fur-

ther research on the design of proper watchdogs and countermea-

sures for these attacks, such as mechanisms to detect and cope

with black-holes and flooders at the level of new DTN routing pro-

tocols. 
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