4,375 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Classification of Pre-Filtered Multichannel Remote Sensing Images

    Get PDF
    Open acces: http://www.intechopen.com/books/remote-sensing-advanced-techniques-and-platforms/classification-of-pre-filtered-multichanel-rs-imagesInternational audienc

    Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    Full text link
    Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring

    Efficiency of texture image enhancement by DCT-based filtering

    Get PDF
    International audienceTextures or high-detailed structures as well as image object shapes contain information that is widely exploited in pattern recognition and image classification. Noise can deteriorate these features and has to be removed. In this paper, we consider the influence of textural properties on efficiency of image enhancement by noise suppression for the posterior treatment. Among possible variants of denoising, filters based on discrete cosine transform known to be effective in removing additive white Gaussian noise are considered. It is shown that noise removal in texture images using the considered techniques can distort fine texture details. To detect such situations and to avoid texture degradation due to filtering, filtering efficiency predictors, including neural network based predictor, applicable to a wide class of images are proposed. These predictors use simple statistical parameters to estimate performance of the considered filters. Image enhancement is analysed in terms of both standard criteria and metrics of image visual quality for various scenarios of texture roughness and noise characteristics. The discrete cosine transform based filters are compared to several counterparts. Problems of noise removal in texture images are demonstrated for all of them. A special case of spatially correlated noise is considered as well. Potential efficiency of filtering is analysed for both studied noise models. It is shown that studied filters are close to the potential limits

    Machine learning to generate soil information

    Get PDF
    This thesis is concerned with the novel use of machine learning (ML) methods in soil science research. ML adoption in soil science has increased considerably, especially in pedometrics (the use of quantitative methods to study the variation of soils). In parallel, the size of the soil datasets has also increased thanks to projects of global impact that aim to rescue legacy data or new large extent surveys to collect new information. While we have big datasets and global projects, currently, modelling is mostly based on "traditional" ML approaches which do not take full advantage of these large data compilations. This compilation of these global datasets is severely limited by privacy concerns and, currently, no solution has been implemented to facilitate the process. If we consider the performance differences derived from the generality of global models versus the specificity of local models, there is still a debate on which approach is better. Either in global or local DSM, most applications are static. Even with the large soil datasets available to date, there is not enough soil data to perform a fully-empirical, space-time modelling. Considering these knowledge gaps, this thesis aims to introduce advanced ML algorithms and training techniques, specifically deep neural networks, for modelling large datasets at a global scale and provide new soil information. The research presented here has been successful at applying the latest advances in ML to improve upon some of the current approaches for soil modelling with large datasets. It has also created opportunities to utilise information, such as descriptive data, that has been generally disregarded. ML methods have been embraced by the soil community and their adoption is increasing. In the particular case of neural networks, their flexibility in terms of structure and training makes them a good candidate to improve on current soil modelling approaches

    AI Security for Geoscience and Remote Sensing: Challenges and Future Trends

    Full text link
    Recent advances in artificial intelligence (AI) have significantly intensified research in the geoscience and remote sensing (RS) field. AI algorithms, especially deep learning-based ones, have been developed and applied widely to RS data analysis. The successful application of AI covers almost all aspects of Earth observation (EO) missions, from low-level vision tasks like super-resolution, denoising and inpainting, to high-level vision tasks like scene classification, object detection and semantic segmentation. While AI techniques enable researchers to observe and understand the Earth more accurately, the vulnerability and uncertainty of AI models deserve further attention, considering that many geoscience and RS tasks are highly safety-critical. This paper reviews the current development of AI security in the geoscience and RS field, covering the following five important aspects: adversarial attack, backdoor attack, federated learning, uncertainty and explainability. Moreover, the potential opportunities and trends are discussed to provide insights for future research. To the best of the authors' knowledge, this paper is the first attempt to provide a systematic review of AI security-related research in the geoscience and RS community. Available code and datasets are also listed in the paper to move this vibrant field of research forward
    • …
    corecore