1,227 research outputs found

    Near field shielding of a wireless power transfer (WPT) current coil

    Get PDF
    The configuration of an infinite planar conductive shield is examined when it is excited by an electromagnetic near field generated by a coil current source as that of a wireless power transfer (WPT) system. The analytical expressions of the electromagnetic field based on the transmission theory of shielding are given for different frequencies and different incidence angles of the near field generated by the coil current, assuming the conductive planar shield placed in the close proximity of the coil. The obtained results are discussed and compared with other traditional analytical and numerical solutions

    A High Frequency Wireless Power Transfer System for Electric Vehicle Charging Using Multi-layer Non-uniform Self-resonant Coil

    Get PDF
    Wireless EV (Electric Vehicle) charging is an emerging technology with rapid development in the past decade. Compared to wired EV chargers, wireless power transfer (WPT) enables safe and unobtrusive charging for EVs. This work proposes high frequency wireless charging using a self-resonant (SR) coil at several megahertz. A multi-layer self-resonant coil structure is proposed, allowing high quality factor coils to be fabricated from layers of inexpensive copper foil and dielectric film. Additionally, the self-resonant coil utilizes its interlayer capacitance for resonance, eliminating the external compensation capacitor and shrinking the overall volume of passive component to increase the power density. Comparing to other self-resonant coils in the literature, it exhibits the characteristics of achieving high quality factor and high inductance simultaneously. Prototype coils with 200 mm radius are fabricated and tested, achieving quality factor over 450 at 3 MHz. The fabricated air-core coil structure is low-cost and lightweight, with 200 mm radius, 3 mm thickness and only 2 oz copper traces. The power stages, including GaN (Gallium Nitride) transistor based inverter and SiC (Silicon Carbide) diode based rectifier, are designed with emphasis on reduction of PCB (Printed Circuit Board) layout parasitics. Experimental tests show 95.2% dc-dc efficiency with 6.6 kW power transferred across a 100 mm coil-to-coil distance. The power density is 52.5 kW/m2, without need for any external compensation components. This work validates the concept of high frequency compact WPT system for EV. Practical shielding design is proposed for the WPT system with self-resonant coils, considering the high frequency parallel resonance effect. Complete coil pads are fabricated and assembled, incorporating the ferrite cores, PTFE (Polytetrafluoroethylene) spacer, and aluminum plate. The system is validated with shielded SR coils, achieving 92.3% DC-DC efficiency and 7.1 kW/dm3 volumetric power density. This work demonstrates the first 6.6-kW WPT system using compact self-resonant coils with practical shielding implementation. The concept of proposed multi-layer self-resonant coil is extended to other possible structures. Different multi-layer self-resonant coil structures are compared and analyzed, giving design guidelines for their capabilities at different system operating frequencies

    A novel coupler design and analysis with shielding material tests for a CPT system of electric vehicles based on electromagnetic resonant coupling

    Get PDF
    In this paper, a contactless power transfer (CPT) system using a novel geometrically enhanced energy transfer coupler with three different shielding materials has been built and analysed, along with the evaluations from aspects of electromagnetics and RMS power transmitting based on electromagnetic resonant coupling. A CPT system design improvement with the proposed H-shape ferromagnetic cores and the combined semi-enclosed passive electromagnetic shielding methods have been investigated in terms of generated electromagnetic field characteristics, system power transfer ratings, system efficiency optimization and performances of shielding materials. The results have shown that, across the range of operating frequency of the CPT system, aluminium shielding as a metallic material method could deliver better overall CPT system performance than other two ferromagnetic materials, steel 1010 and ferrite. In addition, the coupler prototype design limitations, misalignment tolerance and the passive shielding design considerations including distance between windings and inner surfaces of shielding shells have been discussed

    Inductive Wireless Power Transfer Charging for Electric vehicles - A Review

    Get PDF
    Considering a future scenario in which a driverless Electric Vehicle (EV) needs an automatic charging system without human intervention. In this regard, there is a requirement for a fully automatable, fast, safe, cost-effective, and reliable charging infrastructure that provides a profitable business model and fast adoption in the electrified transportation systems. These qualities can be comprehended through wireless charging systems. Wireless Power Transfer (WPT) is a futuristic technology with the advantage of flexibility, convenience, safety, and the capability of becoming fully automated. In WPT methods resonant inductive wireless charging has to gain more attention compared to other wireless power transfer methods due to high efficiency and easy maintenance. This literature presents a review of the status of Resonant Inductive Wireless Power Transfer Charging technology also highlighting the present status and its future of the wireless EV market. First, the paper delivers a brief history throw lights on wireless charging methods, highlighting the pros and cons. Then, the paper aids a comparative review of different type’s inductive pads, rails, and compensations technologies done so far. The static and dynamic charging techniques and their characteristics are also illustrated. The role and importance of power electronics and converter types used in various applications are discussed. The batteries and their management systems as well as various problems involved in WPT are also addressed. Different trades like cyber security economic effects, health and safety, foreign object detection, and the effect and impact on the distribution grid are explored. Prospects and challenges involved in wireless charging systems are also highlighting in this work. We believe that this work could help further the research and development of WPT systems.publishedVersio

    Dynamic Wireless Charging System for an Autonomous Electric Hauler

    Get PDF

    Wireless Power Transfer

    Get PDF
    Wireless power transfer techniques have been gaining researchers' and industry attention due to the increasing number of battery-powered devices, such as mobile computers, mobile phones, smart devices, intelligent sensors, mainly as a way to replace the standard cable charging, but also for powering battery-less equipment. The storage capacity of batteries is an extremely important element of how a device can be used. If we talk about battery-powered electronic equipment, the autonomy is one factor that may be essential in choosing a device or another, making the solution of remote powering very attractive. A distinction has to be made between the two forms of wireless power transmission, as seen in terms of how the transmitted energy is used at the receiving point: - Transmission of information or data, when it is essential for an amount of energy to reach the receiver to restore the transmitted information; - Transmission of electric energy in the form of electromagnetic field, when the energy transfer efficiency is essential, the power being used to energize the receiving equipment. The second form of energy transfer is the subject of this book

    Finite Element Modeling and Analysis of High Power, Low-loss Flux-Pipe Resonant Coils for Static Bidirectional Wireless Power Transfer

    Get PDF
    This paper presents the optimal modeling and finite element analysis of strong-coupled, high-power and low-loss flux-pipe resonant coils for bidirectional wireless power transfer (WPT), applicable to electric vehicles (EVs) using series-series compensation topology. The initial design involves the modeling of strong-coupled flux-pipe coils with a fixed number of wire-turns. The ohmic and core loss reduction for the optimized coil model was implemented by creating two separate coils that are electrically parallel but magnetically coupled in order to achieve maximum flux linkage between the secondary and primary coils. Reduction in the magnitude of eddy current losses was realized by design modification of the ferrite core geometry and optimized selection of shielding material. The ferrite core geometry was modified to create a C-shape that enabled the boosting and linkage of useful magnetic flux. In addition, an alternative copper shielding methodology was selected with the advantage of having fewer eddy current power losses per unit mass when compared with aluminum of the same physical dimension. From the simulation results obtained, the proposed flux-pipe model offers higher coil-to-coil efficiency and a significant increase in power level when compared with equivalent circular, rectangular and traditional flux-pipe models over a range of load resistance. The proposed model design is capable of transferring over 11 kW of power across an airgap of 200 mm with a coil-to-coil efficiency of over 99% at a load resistance of 60 Ω

    Optimum Modelling Of Flux-pipe Resonant Coils For Static And Dynamic Bidirectional Wireless Power Transfer System Applicable To Electric Vehicles

    Get PDF
    Wireless power transfer (WPT) technology enables the transfer of electrical power from the electric grid to the electric vehicles across an airgap using electromagnetic fields with the help of wireless battery chargers. WPT technology addresses most problems associated with the “plug-in” method of charging EVs like vandalization, system power losses, and safety problems due to hanging cables and opened electrical contact in addition to the flexibility of charging electric vehicles while in a static or dynamic mode of operation. Significant research has been undertaken over the years in the development of efficient WPT topologies applicable to electric vehicles. A preliminary review of these revealed that the ferrite core WPT is a promising and efficient method of charging electric vehicles. The charging method is suitable for wireless charging of electric vehicles because of its low cost, high efficiency and high power output. This research proposed the use of the flux-pipe model as a suitable ferrite core, magnetic resonance coupled-based WPT system for the charging of the electric vehicle. The traditional flux-pipe model has some specific benefits which include high coupling coefficient, high misalignment tolerance and high efficiencies under misalignment conditions. However, it has a major drawback of low power output due to the generation of an equal amount of useful and non-useful fluxes. A set of governing equations guiding the performance output of a WPT system was presented. It was identified that the losses in the WPT system can be minimized by reducing the value of the maximum magnetic flux density while the power output and efficiency can be increased by increasing the value of the coupling factor and quality factor. Based on these findings, 3-D finite element modelling was employed for the optimal design and analysis of a typical flux-pipe model for higher coupling strength, high power output and low losses. The magnetic coupling performance of flux-pipe resonant coils was enhanced with an increased number of turns along the core length relative to increasing the width of each coil turns along the coil width. The high power transfer and efficiency was attained by splitting of the coil windings into two in order to reduce intrinsic coil resistances; copper sheet was employed as a shielding material in order to reduce the eddy current losses and finally, an air gap was introduced in the ferrite core in order to reduce the core losses and invariably increased the amount of excitation current required to drive the core into saturation. The proposed optimization methodology results in the creation of two models for application in static and dynamic charging operations respectively. From the simulation results presented, the model designed for static charging operations can transfer up to 11 kW of power across the airgap at a coil-to-coil efficiency of 99.12% while the model design for dynamic charging of electric vehicles can transfer up to 13 kW of power across the airgap at a coil-to-coil efficiency of 98.64% without exceeding the average limit specified for the exposure of human body to electromagnetic fields

    A Review on UAV Wireless Charging: Fundamentals, Applications, Charging Techniques and Standards

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are becoming increasingly popular for applications such as inspections, delivery, agriculture, surveillance, and many more. It is estimated that, by 2040, UAVs/drones will become a mainstream delivery channel to satisfy the growing demand for parcel delivery. Though the UAVs are gaining interest in civil applications, the future of UAV charging is facing a set of vital concerns and open research challenges. Considering the case of parcel delivery, handling countless drones and their charging will become complex and laborious. The need for non-contact based multi-device charging techniques will be crucial in saving time and human resources. To efficiently address this issue, Wireless Power Transmission (WPT) for UAVs is a promising technology for multi-drone charging and autonomous handling of multiple devices. In the literature of the past five years, limited surveys were conducted for wireless UAV charging. Moreover, vital problems such as coil weight constraints, comparison between existing charging techniques, shielding methods and many other key issues are not addressed. This motivates the author in conducting this review for addressing the crucial aspects of wireless UAV charging. Furthermore, this review provides a comprehensive comparative study on wireless charging's technical aspects conducted by prominent research laboratories, universities, and industries. The paper also discusses UAVs' history, UAVs structure, categories of UAVs, mathematical formulation of coil and WPT standards for safer operation.publishedVersio
    corecore