224 research outputs found

    Nonequilibrium statistical mechanics of swarms of driven particles

    Full text link
    As a rough model for the collective motions of cells and organisms we develop here the statistical mechanics of swarms of self-propelled particles. Our approach is closely related to the recently developed theory of active Brownian motion and the theory of canonical-dissipative systems. Free motion and motion of a swarms confined in an external field is studied. Briefly the case of particles confined on a ring and interacting by repulsive forces is studied. In more detail we investigate self-confinement by Morse-type attracting forces. We begin with pairs N = 2; the attractors and distribution functions are discussed, then the case N > 2 is discussed. Simulations for several dynamical modes of swarms of active Brownian particles interacting by Morse forces are presented. In particular we study rotations, drift, fluctuations of shape and cluster formation.Comment: 11 pages, 2 figure

    Theory of coherent two-dimensional vibrational spectroscopy

    Get PDF
    Two-dimensional (2D) vibrational spectroscopy has emerged as one of the most important experimental techniques useful to study the molecular structure and dynamics in condensed phases. Theory and computation have also played essential and integral roles in its development through the nonlinear optical response theory and computational methods such as molecular dynamics (MD) simulations and electronic structure calculations. In this article, we present the fundamental theory of coherent 2D vibrational spectroscopy and describe computational approaches to simulate the 2D vibrational spectra. The classical approximation to the quantum mechanical nonlinear response function is invoked from the outset. It is shown that the third-order response function can be evaluated in that classical limit by using equilibrium or non-equilibrium MD simulation trajectories. Another simulation method is based on the assumptions that the molecular vibrations can still be described quantum mechanically and that the relevant molecular response functions are evaluated by the numerical integration of the Schrodinger equation. A few application examples are presented to help the researchers in this and related areas to understand the fundamental principles and to use these methods for their studies with 2D vibrational spectroscopic techniques. In summary, this exposition provides an overview of current theoretical efforts to understand the 2D vibrational spectra and an outlook for future developments. c.Published under license by AIP Publishing

    Making and Breaking of Chemical Bonds: Dynamics of elementary reactions from gas phase to condensed phase

    Get PDF
    The present thesis is concerned with the dynamics of elementary chemical reactions. In particular, the processes of bond formation (association) and of bond cleavage (dissociation) are studied. Both photo-induced and solvent-induced reaction mechanisms are elucidated. By embedding simple diatomic model systems in rare gas clusters and matrices, the transition of the dynamics of making and breaking of chemical bonds from the gas phase to the condensed phase is systematically investigated

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    Astrophysics in 2006

    Get PDF
    The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries.Comment: 244 pages, no figure

    Second International Workshop on Harmonic Oscillators

    Get PDF
    The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda Cocoyoc from March 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited lecturers, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five sessions of this volume. The Organizing Committee was asked by the chairman of several Mexican funding agencies what exactly was meant by harmonic oscillators, and for what purpose the new research could be useful. Harmonic oscillators - as we explained - is a code name for a family of mathematical models based on the theory of Lie algebras and groups, with applications in a growing range of physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum optics and communication theory
    corecore