4 research outputs found

    A systematic literature review on DevOps capabilities and areas

    Get PDF
    Businesses today need to respond to customer needs at an unprecedented speed. Driven by this need for speed, many companies are rushing to the DevOps movement. DevOps, the combination of Development and Operations, is a new way of thinking in the software engineering domain that recently received much attention. Since DevOps has recently been introduced as a new term and novel concept, no common understanding of what it means has yet been achieved. Therefore, the definitions of DevOps often are only partly relevant to the concept. This research presents a systematic literature review to identify the determining factors contributing to the implementation of DevOps, including the main capabilities and areas with which it evolves.info:eu-repo/semantics/acceptedVersio

    A maturity model for DevOps

    Get PDF
    Nowadays, businesses aim to respond to customer needs at unprecedented speed. Thus, many companies are rushing to the DevOps movement. DevOps is the combination of Development and Operations and a new way of thinking in the software engineering domain. However, no common understanding of what it means has yet been achieved. Also, no adoption models or fine-grained maturity models to assist DevOps maturation and implementation were identified. Therefore, this research attempt to fill these gaps. A systematic literature review is performed to identify the determining factors contributing to the implementation of DevOps, including the main capabilities and areas with which it evolves. Then, two sets of interviews with DevOps experts were performed and their experience used to build the DevOps Maturity Model. The DevOps maturity model was then developed grounded on scientific and professional viewpoints. Once developed the Maturity Model was demonstrated in a real organisation.info:eu-repo/semantics/acceptedVersio

    Maturity model for DevOps

    Get PDF
    Businesses today need to respond to customer needs at unprecedented speed. Driven by this need for speed, many companies are rushing to the DevOps movement. DevOps, the combination of Development and Operations, is a new way of thinking in the software engineering domain that recently received much attention. Since DevOps has recently been introduced as a new term and novel concept, no common understanding of what it means has yet been achieved. Therefore, the definitions of DevOps often are only a part relevant to the concept. When further observing DevOps, it could be seen as a movement, but is still young and not yet formally defined. Also, no adoption models or fine-grained maturity models showing what to consider to adopt DevOps and how to mature it were identified. As a consequence, this research attempted to fill these gaps and consequently brought forward a Systematic Literature Review to identify the determining factors contributing to the implementation of DevOps, including the main capabilities and areas with which it evolves. This resulted in a list of practices per area and capability that was used in the interviews with DevOps practitioners that, with their experience, contributed to define the maturity of those DevOps practices. This combination of factors was used to construct a DevOps maturity model showing the areas and capabilities to be taken into account in the adoption and maturation of DevOps.Hoje em dia, as empresas precisam de responder às necessidades dos clientes a uma velocidade sem precedentes. Impulsionadas por esta necessidade de velocidade, muitas empresas apressam-se para o movimento DevOps. O DevOps, a combinação de Desenvolvimento e Operações, é uma nova maneira de pensar no domínio da engenharia de software que recentemente recebeu muita atenção. Desde que o DevOps foi introduzido como um novo termo e um novo conceito, ainda não foi alcançado um entendimento comum do que significa. Portanto, as definições do DevOps geralmente são apenas uma parte relevante para o conceito. Ao observar o DevOps, o fenómeno aborda questões culturais e técnicas para obter uma produção mais rápida de software, tem um âmbito amplo e pode ser visto como um movimento, mas ainda é jovem e ainda não está formalmente definido. Além disso, não foram identificados modelos de adoção ou modelos de maturidade refinados que mostrem o que considerar para adotar o DevOps e como fazê-lo crescer. Como consequência, esta pesquisa tentou preencher essas lacunas e, consequentemente, apresentou uma Revisão sistemática da literatura para identificar os fatores determinantes que contribuem para a implementação de DevOps, incluindo os principais recursos e áreas com os quais ele evolui. Isto resultou numa lista de práticas por área e por capacidade, que foi utilizado como base nas entrevistas realizadas com peritos em DevOps que, com a sua experiência, ajudaram a atribuir níveis de maturidade a cada prática. Esta combinação de fatores foi usada para construir um modelo de maturidade de DevOps mostrando as áreas e as capacidades a serem levados em consideração na sua adoção e maturação

    Orchestrating Complex Application Architectures in Heterogeneous Clouds

    Full text link
    [EN] Private cloud infrastructures are now widely deployed and adopted across technology industries and research institutions. Although cloud computing has emerged as a reality, it is now known that a single cloud provider cannot fully satisfy complex user requirements. This has resulted in a growing interest in developing hybrid cloud solutions that bind together distinct and heterogeneous cloud infrastructures. In this paper we describe the orchestration approach for heterogeneous clouds that has been implemented and used within the INDIGO-DataCloud project. This orchestration model uses existing open-source software like OpenStack and leverages the OASIS Topology and Specification for Cloud Applications (TOSCA) open standard as the modeling language. Our approach uses virtual machines and Docker containers in an homogeneous and transparent way providing consistent application deployment for the users. This approach is illustrated by means of two different use cases in different scientific communities, implemented using the INDIGO-DataCloud solutions.The authors want to acknowledge the support of the INDIGO-Datacloud (grant number 653549) project, funded by the European Commission's Horizon 2020 Framework Program.Caballer Fernández, M.; Zala, S.; López, Á.; Moltó, G.; Orviz, P.; Velten, M. (2018). Orchestrating Complex Application Architectures in Heterogeneous Clouds. Journal of Grid Computing. 16(1):3-18. https://doi.org/10.1007/s10723-017-9418-yS318161Aguilar Gómez, F., de Lucas, J.M., García, D., Monteoliva, A.: Hydrodynamics and water quality forecasting over a cloud computing environment: indigo-datacloud. In: EGU General Assembly Conference Abstracts, vol. 19, p 9684 (2017)de Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy management system for cluster infrastructures. Comput. Electr. Eng. 39(8), 2579–2590 (2013). http://www.sciencedirect.com/science/article/pii/S0045790613001365Amazon Web Services (AWS): Amazon Web Services (AWS). https://aws.amazon.com/ (2017)Amazon Web Services (AWS): CloudFormation. https://aws.amazon.com/cloudformation/ (2017)Apache Software Foundation: Apache Mesos. http://mesos.apache.org/ (2017)ARIA, ARIA. http://ariatosca.incubator.apache.org/ (2017)Bumpus, W.: NIST Cloud Computing Standards Roadmap. Tech. rep., National Institute of Standards and Technology (NIST). https://doi.org/10.6028/NIST.SP.500-291r2 (2013)Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. J Grid Comput. 13(1), 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5Campos Plasencia, I., Fernández-del Castillo, E., Heinemeyer, S., López García, Á., Pahlen, F., Borges, G.: Phenomenology tools on cloud infrastructures using OpenStack. Eur. Phys. J. C 73(4), 2375 (2013). https://doi.org/10.1140/epjc/s10052-013-2375-0Celar: Celar. http://www.cloudwatchhub.eu/celar (2017)Chen, Y., de Lucas, J.M., Aguilar, F., Fiore, S., Rossi, M., Ferrari, T.: Indigo: building a datacloud framework to support open science. In: EGU General Assembly Conference Abstracts, vol. 18, p 16610 (2016)Chronos: Chronos. https://mesos.github.io/chronos/ (2017)Cloudify: Cloudify. http://getcloudify.org (2017)Davidović, D., Cetinić, E., Skala, K.: European research area and digital humanitiesDistefano, S., Serazzi, G.: Performance driven WS orchestration and deployment in service oriented infrastructure. J Grid Comput. 12(2), 347–369 (2014). https://doi.org/10.1007/s10723-014-9293-8EGI FedCloud: EGI FedCloud. https://www.egi.eu/federation/egi-federated-cloud/ (2017)Eucalyptus: Eucalyptus. https://www.eucalyptus.com/ (2017)Fiore, S., D’Anca, A., Palazzo, C., Foster, I., Williams, D.N., Aloisio, G.: Ophidia: toward big data analytics for eScience. Procedia Comput. Sci. 18, 2376–2385 (2013). https://doi.org/10.1016/j.procs.2013.05.409Fiore, S., Palazzo, C., D’Anca, A., Elia, D., Londero, E., Knapic, C., Monna, S., Marcucci, N.M., Aguilar, F., Płóciennik, M., et al.: Big data analytics on large-scale scientific datasets in the indigo-datacloud project. In: Proceedings of the Computing Frontiers Conference, pp 343–348. ACM (2017)Fiore, S., Płóciennik, M., Doutriaux, C., Palazzo, C., Boutte, J., żok, T., Elia, D., Owsiak, M., D’Anca, A., Shaheen, Z., et al.: Distributed and cloud-based multi-model analytics experiments on large volumes of climate change data in the earth system grid federation eco-system. In: 2016 IEEE International Conference on Big Data (Big Data), pp 2911–2918. IEEE (2016)Galante, G., Erpen de Bona, L.C., Mury, A.R., Schulze, B., da Rosa Righi, R.: An analysis of public clouds elasticity in the execution of scientific applications: a survey. J Grid Comput.,1–24. https://doi.org/10.1007/s10723-016-9361-3 (2016)Google Cloud Platform (GCP): Google Cloud Platform (GCP). https://cloud.google.com/ (2017)Hochstein, L. (ed.): Ansible: Up and Running, Automating Configuration Management and Deployment the Easy Way. O’Reilly Media (2014)Idabc: European Interoperability Framework for pan-European eGovernment Services. European Commission version 1, 1–25. https://doi.org/10.1109/HICSS.2007.68 (2004)IM: IM. http://www.grycap.upv.es/im (2017)INDIGO-DataCloud: D1.8 - General Architecture. Tech. rep., INDIGO-DataCloud Consortium (2015)INDIGO-DataCloud: Ansible Galaxy repository for INDIGO-DataCloud. https://galaxy.ansible.com/indigo-dc/ (2017)INDIGO-DataCloud: Disvis/Powerfit Ansible Role in Ansible Galaxy. https://galaxy.ansible.com/indigo-dc/disvis-powerfit/ (2017)INDIGO-DataCloud: INDIGO-DataCloud. https://www.indigo-datacloud.eu/ (2017)INDIGO-DataCloud: INDIGO-DataCloud DockerHub application repository. https://hub.docker.com/u/indigodatacloudapps/ (2017)INDIGO-DataCloud: INDIGO-DataCloud PaaS Orchestrator. https://github.com/indigo-dc/orchestrator (2017)INDIGO-DataCloud: INDIGO-DataCloud RepoSync. https://github.com/indigo-dc/java-reposync (2017)INDIGO-DataCloud: INDIGO-DataCloud TOSCA templates. https://github.com/indigo-dc/tosca-templates (2017)INDIGO-DataCloud: TOSCA Across Clouds. https://github.com/indigo-dc/tosca-types/blob/master/examples/web_mysql_tosca_across_clouds.yaml (2017)INDIGO-DataCloud: TOSCA template for deploying an Elastic Mesos Cluster. http://github.com/indigo-dc/tosca-types/blob/master/examples/mesos_elastic_cluster.yaml (2017)INDIGO-DataCloud: TOSCA template for Powerfit application. https://github.com/indigo-dc/tosca-types/blob/master/examples/powerfit.yaml (2017)Kacsuk, P., Kecskemeti, G., Kertesz, A., Nemeth, Z., Kovȧcs, J., Farkas, Z.: Infrastructure aware scientific workflows and infrastructure aware workflow managers in science gateways. J Grid Comput., 641–654. https://doi.org/10.1007/s10723-016-9380-0 (2016)Korambath, P., Wang, J., Kumar, A., Hochstein, L., Schott, B., Graybill, R., Baldea, M., Davis, J.: Deploying kepler workflows as services on a cloud infrastructure for smart manufacturing. Procedia Comput. Sci. 29, 2254–2259 (2014)Koski, K., Hormia-Poutanen, K., Chatzopoulos, M., Legrė, Y., Day, B.: Position Paper: European Open Science Cloud for Research. Tech. Rep. october, EUDAT, LIBER, OpenAIRE, EGI, GĖANT Bari (2015)Krieger, M.T., Torreno, O., Trelles, O., Kranzlmüller, D.: Building an open source cloud environment with auto-scaling resources for executing bioinformatics and biomedical workflows. Futur. Gener. Comput. Syst. 67, 329–340 (2017). https://doi.org/10.1016/j.future.2016.02.008Kurkcuoglu Soner, Z., Bonvin, A.: Science in the clouds: virtualizing haddock powerfit and disvis using indigo-datacloud solutions (2016)Lipton, P.C.T., Moser, S.I., Palma, D.V., Spatzier, T.I.: Topology and Orchestration Specification for Cloud Applications. Tech. rep., OASIS Standard (2013)Liu, C., Mao, Y., Van der Merwe, J., Fernandez, M.: Cloud Resource Orchestration: a Data-Centric Approach. In: Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR), pp 1–8. Citeseer (2011)López García, Á., Fernández-del Castillo, E.: Analysis of scientific cloud computing requirements. In: Proceedings of the IBERGRID 2013 Conference, p 147 158 (2013)López García, Á., Fernández-del Castillo, E., Orviz Fernández, P.: Standards for enabling heterogeneous IaaS cloud federations. Comput. Standard Inter. 47, 19–23 (2016). https://doi.org/10.1016/j.csi.2016.02.002López García, Á., Zangrando, L., Sgaravatto, M., Llorens, V., Vallero, S., Zaccolo, V., Bagnasco, S., Taneja, S., Pra, S.D., Salomoni, D., Donvito G.: Improved cloud resource allocation: how INDIGO-datacloud is overcoming the current limitations in cloud schedulers. arXiv: 1707.06403 (2017)Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for elastic applications in cloud environments. J Grid Comput. 12(4), 559–592 (2014). https://doi.org/10.1007/s10723-014-9314-7Marathon: Marathon. https://mesosphere.github.io/marathon/ (2017)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-Infrastructure. Tech. rep., Open Grid Forum (2010)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-RESTful HTTP Rendering. Tech. rep., Open Grid Forum (2011)Microsoft Azure: Microsoft Azure. https://azure.microsoft.com/ (2017)Moltó, G., Caballer, M., Pérez, A., Alfonso, D.C., Blanquer, I.: Coherent application delivery on hybrid distributed computing infrastructures of virtual machines and docker containers. In: 2017 25Th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). https://doi.org/10.1109/PDP.2017.29 , pp 486–490 (2017)Monna, S., Marcucci, N.M., Marinaro, G., Fiore, S., D’Anca, A., Antonacci, M., Beranzoli, L., Favali, P.: An Emso data case study within the indigo-Dc project. In: EGU General Assembly Conference Abstracts, vol. 19, p 12493 (2017)Nyrén, R., Metsch, T., Edmonds, A., Papaspyrou, A.: Open Cloud Computing Interface–Core. Tech. rep., Open Grid Forum (2010)OASIS: Organization for the Advancement of Structured Information Standards (OASIS). https://www.oasis-open.org (2015)Open Telekom Cloud (OTC): Open Telekom Cloud (OTC). https://cloud.telekom.de/en/ (2017)OpenNebula: OneFlow. http://docs.opennebula.org/5.2/advanced_components/application_flow_and_auto-scaling/index.html (2017)OpenNebula Project: OpenNebula. https://www.opennebula.org (2017)OpenStack Foundation: Heat Orchestration Template (HOT) Guide. https://docs.openstack.org/heat/latest/template_guide/hot_guide.html (2017)OpenStack Foundation: OpenStack. https://www.openstack.org (2017)OpenStack Foundation: Openstack Heat. http://wiki.openstack.org/wiki/Heat (2017)OpenStack Foundation: OpenStack Heat Translator. https://github.com/openstack/heat-translator (2017)OpenStack Foundation: OpenStack heat-translator project contribution statistics. http://stackalytics.com/?release=all&metric=commits&module=heat-translator (2017)OpenStack Foundation: OpenStack Tacker. https://wiki.openstack.org/wiki/Tacker (2017)OpenStack Foundation: OpenStack tosca-parser project contribution statistics. http://stackalytics.com/?release=all&metric=commits&module=tosca-parser (2017)OpenStack Foundation: TOSCA Parser. https://github.com/openstack/tosca-parser (2017)OpenTOSCA: OpenTOSCA. http://www.opentosca.org/ (2017)Owsiak, M., Plociennik, M., Palak, B., Zok, T., Reux, C., Di Gallo, L., Kalupin, D., Johnson, T., Schneider, M.: Running simultaneous kepler sessions for the parallelization of parametric scans and optimization studies applied to complex workflows. J Comput. Sci. 20, 103–111 (2017)Palma, D., Rutkowski, M., Spatzier T.: TOSCA Simple Profile in YAML Version 1.1. Tech. rep., OASIS Standard. http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html (2016)Petcu, D.: Consuming resources and services from multiple clouds: from terminology to cloudware support. J Grid Comput. 12(2), 321–345 (2014). https://doi.org/10.1007/s10723-013-9290-3Plóciennik, M., Fiore, S., Donvito, G., Owsiak, M., Fargetta, M., Barbera, R., Bruno, R., Giorgio, E., Williams, D.N., Aloisio, G.: Two-level dynamic workflow orchestration in the INDIGO DataCloud for large-scale, climate change data analytics experiments. Procedia Comput. Sci. 80, 722–733 (2016). https://doi.org/10.1016/j.procs.2016.05.359Płóciennik, M., Fiore, S., Donvito, G., Owsiak, M., Fargetta, M., Barbera, R., Bruno, R., Giorgio, E., Williams, D.N., Aloisio, G.: Two-level dynamic workflow orchestration in the indigo datacloud for large-scale, climate change data analytics experiments. Procedia Comput. Sci. 80, 722–733 (2016)Python: Python Package Index (PyPI). https://pypi.python.org/pypi (2017)Ramakrishnan, L., Jackson, K.R., Canon, S., Cholia, S., Shalf, J.: Defining future platform requirements for e-Science clouds. In: Proceedings of the 1st ACM Symposium on Cloud Computing - SoCC ’10. https://doi.org/10.1145/1807128.1807145 , p 101 (2010)Ramakrishnan, L., Zbiegel, P.T.T.T.: Magellan: experiences from a science cloud. In: Proceedings of the 2Nd International Workshop on Scientific Cloud Computing. http://dl.acm.org/citation.cfm?id=1996119 , pp 49–58 (2011)Salomoni, D., Campos, I., Gaido, L., Donvito, G., Antonacci, M., Fuhrman, P., Marco, J., Lopez-Garcia, A., Orviz, P., Blanquer, I., et al.: Indigo-datacloud: foundations and architectural description of a platform as a service oriented to scientific computing. arXiv: http://arXiv.org/abs/1603.09536 (2016)Sánchez-Expósito, S., Martín, P., Ruiz, J.E., Verdes-Montenegro, L., Garrido, J., Sirvent, R., Falcó, A.R., Badia, R.M., Lezzi, D.: Web services as building blocks for science gateways in astrophysics. J Grid Comput. 14(4), 673–685 (2016). https://doi.org/10.1007/s10723-016-9382-ySlipStream: SlipStream. http://sixsq.com/products/slipstream/ (2017)Stockton, D.B., Santamaria, F.: Automating NEURON simulation deployment in cloud resources. Neuroinformatics 15(1), 51–70 (2017). https://doi.org/10.1007/s12021-016-9315-8Teckelmann, R., Reich, C., Sulistio, A.: Mapping of Cloud Standards to the Taxonomy of Interoperability in Iaas. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (Cloudcom), pp 522–526. IEEE (2011)Toor, S., Osmani, L., Eerola, P., Kraemer, O., Lindén, T., Tarkoma, S., White, J.: A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system. J Phys.: Conf. Ser. 513(6), 062,047 (2014). https://doi.org/10.1088/1742-6596/513/6/062047 . http://stacks.iop.org/1742-6596/513/i=6/a=062047?key=crossref.84033a04265ce343371c7f38064e7143UK Government Cabinet Office: Open Standards Principles. https://www.gov.uk/government/publications/open-standards-principles/open-standards-principles (2015)Yangui, S., Marshall, I.J., Laisne, J.P., Tata, S.: Compatibleone: the open source cloud broker. J Grid Comput. 12(1), 93–109 (2014)Zhao, Y., Li, Y., Raicu, I., Lu, S., Tian, W., Liu, H.: Enabling scalable scientific workflow management in the cloud. Futur. Gener. Comput. Syst. 46, 3–16 (2015). https://doi.org/10.1016/j.future.2014.10.023van Zundert, G., Trellet, M., Schaarschmidt, J., Kurkcuoglu, Z., David, M., Verlato, M., Rosato, A., Bonvin, A.: The DisVis and PowerFit web servers: explorative and integrative modeling of biomolecular complexes. J. Mol. Biol. 429(3), 399–407 (2013). http://www.sciencedirect.com/science/article/pii/S002228361630527
    corecore