41,630 research outputs found

    Healthcare Robotics

    Full text link
    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key stakeholders, care settings, and tasks; reviewing recent advances in healthcare robotics; and outlining major challenges and opportunities to their adoption.Comment: 8 pages, Communications of the ACM, 201

    Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym

    Get PDF
    Background Stroke rehabilitation in low- and middle-income countries, such as Mexico, is often hampered by lack of clinical resources and funding. To provide a cost-effective solution for comprehensive post-stroke rehabilitation that can alleviate the need for one-on-one physical or occupational therapy, in lower and upper extremities, we proposed and implemented a technology-assisted rehabilitation gymnasium in Chihuahua, Mexico. The Gymnasium for Robotic Rehabilitation (Robot Gym) consisted of low- and high-tech systems for upper and lower limb rehabilitation. Our hypothesis is that the Robot Gym can provide a cost- and labor-efficient alternative for post-stroke rehabilitation, while being more or as effective as traditional physical and occupational therapy approaches. Methods A typical group of stroke patients was randomly allocated to an intervention (n = 10) or a control group (n = 10). The intervention group received rehabilitation using the devices in the Robot Gym, whereas the control group (n = 10) received time-matched standard care. All of the study subjects were subjected to 24 two-hour therapy sessions over a period of 6 to 8 weeks. Several clinical assessments tests for upper and lower extremities were used to evaluate motor function pre- and post-intervention. A cost analysis was done to compare the cost effectiveness for both therapies. Results No significant differences were observed when comparing the results of the pre-intervention Mini-mental, Brunnstrom Test, and Geriatric Depression Scale Test, showing that both groups were functionally similar prior to the intervention. Although, both training groups were functionally equivalent, they had a significant age difference. The results of all of the upper extremity tests showed an improvement in function in both groups with no statistically significant differences between the groups. The Fugl-Meyer and the 10 Meters Walk lower extremity tests showed greater improvement in the intervention group compared to the control group. On the Time Up and Go Test, no statistically significant differences were observed pre- and post-intervention when comparing the control and the intervention groups. For the 6 Minute Walk Test, both groups presented a statistically significant difference pre- and post-intervention, showing progress in their performance. The robot gym therapy was more cost-effective than the traditional one-to-one therapy used during this study in that it enabled therapist to train up to 1.5 to 6 times more patients for the approximately same cost in the long term. Conclusions The results of this study showed that the patients that received therapy using the Robot Gym had enhanced functionality in the upper extremity tests similar to patients in the control group. In the lower extremity tests, the intervention patients showed more improvement than those subjected to traditional therapy. These results support that the Robot Gym can be as effective as traditional therapy for stroke patients, presenting a more cost- and labor-efficient option for countries with scarce clinical resources and funding. Trial registration ISRCTN98578807

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    Rehabilitation: The health strategy of the 21st century.

    Get PDF
    There is strong evidence that population ageing and the epidemiological transition to a higher incidence of chronic, non-communicable diseases will continue to profoundly impact societies worldwide, putting more pressure on healthcare systems to respond to the needs of the people they serve. These trends argue for the need to address what matters to people about their health: limitations in their functioning that affect their day-to-day actions and goals in life. From its inception, rehabilitation, 1 of the 4 health strategies identified in the Declaration of Alma Ata in 1978, has had functioning as its outcome of interest. Its practitioners are from fields that include physical and rehabilitation medicine, occupational therapy, physiotherapy, speech and language therapy, orthotics and prosthetics, psychology, and evaluators of functioning interventions, including assistive technologies. Demographic and epidemiological trends suggest that the key indicators of the health of populations will be not merely mortality and morbidity, but functioning as well. This, in turn, suggests that the primary focus of healthcare will need to respond to actual healthcare demands generated by the need for long-term management of chronic conditions, including, in particular, the scaling up and strengthening of rehabilitation. This is the case for thinking that rehabilitation will become the key health strategy of the 21st century

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Surveying Persons with Disabilities: A Source Guide (Version 1)

    Get PDF
    As a collaborator with the Cornell Rehabilitation Research and Training Center on Disability Demographics and Statistics, Mathematica Policy Research, Inc. has been working on a project that identifies the strengths and limitations in existing disability data collection in both content and data collection methodology. The intended outcomes of this project include expanding and synthesizing knowledge of best practices and the extent existing data use those practices, informing the development of data enhancement options, and contributing to a more informed use of existing data. In an effort to provide the public with an up-to-date and easily accessible source of research on the methodological issues associated with surveying persons with disabilities, MPR has prepared a Source Guide of material related to this topic. The Source Guide contains 150 abstracts, summaries, and references, followed by a Subject Index, which cross references the sources from the Reference List under various subjects. The Source Guide is viewed as a “living document,” and will be periodically updated

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    An ideal model of an assistive technology assessment and delivery process

    Get PDF
    The purpose of the present work is to present some aspects of the Assistive Technology Assessment (ATA) process model compatible with the Position Paper 2012 by AAATE/EASTIN. Three aspects of the ATA process will be discussed in light of three topics of the Position Paper 2012: (i) The dimensions and the measures of the User eXperience (UX) evaluation modelled in the ATA process as a way to verify the efficient and the evidence-based practices of an AT service delivery centre; (ii) The relevance of the presence of the psychologist in the multidisciplinary team of an AT service delivery centre as necessary for a complete person-centred assistive solution empowering users to make their own choices; (iii) The new profession of the psychotechnologist, who explores users needs by seeking a proper assistive solution, leading the multidisciplinary team to observe critical issues and problems. Through the foundation of the Position Paper 2012, the 1995 HEART study, the Matching Person and Technology model, the ICF framework, and the pillars of the ATA process, this paper sets forth a concept and approach that emphasise the personal factors of the individual consumer and UX as key to positively impacting a successful outcome and AT solution

    The Glass Ceiling and Persons With Disabilities

    Get PDF
    Glass Ceiling ReportGlassCeilingBackground2PersonsWithDisabilities.pdf: 8336 downloads, before Oct. 1, 2020

    Expect the unexpected: the co-construction of assistive artifacts

    Get PDF
    This paper aims to explain emerging design activities within community-based rehabilitation contexts through the science of self-organization and adaptivity. It applies an evolutionary systematic worldview (Heylighen, 2011) to frame spontaneous collaboration between different local agents which produce self-made assistive artifacts. Through a process of distinction creation and distinction destruction occupational therapist, professional non-designers, caregivers and disabled people co-evolve simultaneously towards novel possibilities which embody a contemporary state of fitness. The conversation language is build on the principles of emotional seeding through stigmergic prototyping and have been practically applied as a form of design hacking which blends design time and use time. Within this process of co-construction the thought experiment of Maxwell’s Demon is used to map perceived behavior and steer the selecting process of following user-product adaptation strategies. This practice-based approach is illustrated through a case study and tries to integrate both rationality and intuition within emerging participatory design activities
    • …
    corecore