792 research outputs found

    A Framework for Enhancing the Energy Efficiency of IoT Devices in 5G Network

    Get PDF
    A wide range of services, such as improved mobile broadband, extensive machine-type communication, ultra-reliability, and low latency, are anticipated to be delivered via the 5G network. The 5G network has developed as a multi-layer network that uses numerous technological advancements to provide a wide array of wireless services to fulfil such a diversified set of requirements. Several technologies, including software-defined networking, network function virtualization, edge computing, cloud computing, and tiny cells, are being integrated into the 5G networks to meet the needs of various requirements. Due to the higher power consumption that will arise from such a complicated network design, energy efficiency becomes crucial. The network machine learning technique has attracted a lot of interest from the scientific community because it has the potential to play a crucial role in helping to achieve energy efficiency. Utilization factor, access latency, arrival rate, and other metrics are used to study the proposed scheme. It is determined that our system outperforms the present scheme after comparing the suggested scheme to these parameters

    Enabling Hardware Green Internet of Things: A review of Substantial Issues

    Get PDF
    Between now and the near future, the Internet of Things (IoT) will redesign the socio-ecological morphology of the human terrain. The IoT ecosystem deploys diverse sensor platforms connecting millions of heterogeneous objects through the Internet. Irrespective of sensor functionality, most sensors are low energy consumption devices and are designed to transmit sporadically or continuously. However, when we consider the millions of connected sensors powering various user applications, their energy efficiency (EE) becomes a critical issue. Therefore, the importance of EE in IoT technology, as well as the development of EE solutions for sustainable IoT technology, cannot be overemphasised. Propelled by this need, EE proposals are expected to address the EE issues in the IoT context. Consequently, many developments continue to emerge, and the need to highlight them to provide clear insights to researchers on eco-sustainable and green IoT technologies becomes a crucial task. To pursue a clear vision of green IoT, this study aims to present the current state-of-the art insights into energy saving practices and strategies on green IoT. The major contribution of this study includes reviews and discussions of substantial issues in the enabling of hardware green IoT, such as green machine to machine, green wireless sensor networks, green radio frequency identification, green microcontroller units, integrated circuits and processors. This review will contribute significantly towards the future implementation of green and eco-sustainable IoT

    Insights on Significant Implication on Research Approach for Enhancing 5G Network System

    Get PDF
    With the exponential growth of mobile users, there is a massive growth of data as well as novel services to support such data management. However, the existing 4G network is absolutely not meant for catering up such higher demands of bandwidth utilization as well as servicing massive users with similar Quality of service. Such problems are claimed to be effectively addressed by the adoption of 5G networking system. Although the characteristics of 5G networking are theoretically sound, still it is under the roof of the research. Therefore, this paper presents a discussion about the conventional approach as well as an approach using cognitive radio network towards addressing the frequently identified problems of energy, resource allocation, and spectral efficiency. The study collects the existing, recent researches in the domain of 5G communications from various publications. Different from existing review work, the paper also contributes towards identifying the core research findings as well as a significant research gap towards improving the communication in the 5G network system

    Simultaneous wireless information and power transfer in modern communication systems

    Get PDF
    Energy harvesting for wireless communication networks is a new paradigm that allows terminals to recharge their batteries from external energy sources in the surrounding environment. A promising energy harvesting technology is wireless power transfer where terminals harvest energy from electromagnetic radiation. Thereby, the energy may be harvested opportunistically from ambient electromagnetic sources or from sources that intentionally transmit electromagnetic energy for energy harvesting purposes. A particularly interesting and challenging scenario arises when sources perform simultaneous wireless information and power transfer (SWIPT), as strong signals not only increase power transfer but also interference. This article provides an overview of SWIPT systems with a particular focus on the hardware realization of rectenna circuits and practical techniques that achieve SWIPT in the domains of time, power, antennas, and space. The article also discusses the benefits of a potential integration of SWIPT technologies in modern communication networks in the context of resource allocation and cooperative cognitive radio networks

    A survey of symbiotic radio: Methodologies, applications, and future directions

    Get PDF
    The sixth generation (6G) wireless technology aims to achieve global connectivity with environmentally sustainable networks to improve the overall quality of life. The driving force behind these networks is the rapid evolution of the Internet of Things (IoT), which has led to a proliferation of wireless applications across various domains through the massive deployment of IoT devices. The major challenge is to support these devices with limited radio spectrum and energy-efficient communication. Symbiotic radio (SRad) technology is a promising solution that enables cooperative resource-sharing among radio systems through symbiotic relationships. By fostering mutualistic and competitive resource sharing, SRad technology enables the achievement of both common and individual objectives among the different systems. It is a cutting-edge approach that allows for the creation of new paradigms and efficient resource sharing and management. In this article, we present a detailed survey of SRad with the goal of offering valuable insights for future research and applications. To achieve this, we delve into the fundamental concepts of SRad technology, including radio symbiosis and its symbiotic relationships for coexistence and resource sharing among radio systems. We then review the state-of-the-art methodologies in-depth and introduce potential applications. Finally, we identify and discuss the open challenges and future research directions in this field

    Security for 5G Mobile Wireless Networks

    Get PDF
    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use cases in 5G wireless networks are then summarized. The recent development and the existing schemes for the 5G wireless security are presented based on the corresponding security services including authentication, availability, data confidentiality, key management and privacy. The paper further discusses the new security features involving different technologies applied to 5G such as heterogeneous networks, device-to-device communications, massive multiple-input multiple-output, software defined networks and Internet of Things. Motivated by these security research and development activities, we propose a new 5G wireless security architecture, based on which the analysis of identity management and flexible authentication is provided. As a case study, we explore a handover procedure as well as a signaling load scheme to show the advantage of the proposed security architecture. The challenges and future directions of 5G wireless security are finally summarized
    corecore