2,786 research outputs found

    A novel mobile communication system using Pulse Position based Chirp Spread Spectrum modulation

    Get PDF
    The paper presents a new mobile communication system based on Chirp Spread Spectrum (CSS) transmission. The downlink modulation scheme is extended with Pulse Position Modulation (PPM) to carry data for multiple mobile terminals simultaneously. The described novel mechanism ensures reliable and robust communication between the parties, especially for terminals moving with high speeds or at long range. Furthermore, the proposed system take care of the uplink communication as well, where Closed-Loop Power Control (CLPC) is applied to handle the near-far problem and improve the performance of the system. Based on the attributes of the proposed system the application area covers sensor networks, IoT applications and Industry 4.0 as general field of LPWAN, however, mobility of terminals also considered.Analytical investigations for downlink communication are described focusing on the instantaneous symbol-error rate and average SER in Rayleigh fading channel. The results show that the proposed Pulse Position based Chirp Spread Spectrum technique for Multiple Access (shortly PP-CSS-MA) allows higher data rates that is used for the multiple access feature. In addition, numerical results are presented as well, and they point out the benefits of the applied CLPC mechanism. Finally, considerations regarding to the implementation of the proposed communication system are described

    Interference Characterization in Multiple Access Wireless Networks

    Get PDF
    Contrarily to the point to point wireless link approach adopted in several wireless networks, where a dedicated channel is usually supporting an exclusive-use wireless link, in the last years several wireless communication systems have followed a different approach. In the so called “multiple access wireless networks”, multiple transmitters share the same communication channel in a simultaneous way, supporting a shared-use of the wireless link. The deployment of multiple access networks has also originated the emergence of various communication networks operating in the same geographical area and spectrum space, which is usually referred to as wireless coexistence. As a consequence of the presence of multiple networks with different technologies that share the same spectral bands, robust methods of interference management are needed. At the same time, the adoption of in-band Full-duplex (IBFDX) communication schemes, in which a given node transmit and receive simultaneously over the same frequency band, is seen as a disruptive topic in multiple access networks, capable of doubling the network’s capacity. Motivated by the importance of the interference in multiple access networks, this thesis addresses new approaches to characterize the interference in multiple access networks. A special focus is given to the assumption of mobility for the multiple transmitters. The problem of coexistence interference caused by multiple networks operating in the same band is also considered. Moreover, given the importance of the residual self-interference (SI) in practical IBFDX multiple access networks, we study the distribution of the residual SI power in a wireless IBFDX communication system. In addition, different applications of the proposed interference models are presented, including the definition of a new sensing capacity metric for cognitive radio networks, the performance evaluation of wireless-powered coexisting networks, the computation of an optimal carrier-sensing range in coexisting CSMA networks, and the estimation of residual self-interference in IBFDX communication systems

    Resource allocation in realistic wireless cognitive radios networks

    Get PDF
    Cognitive radio networks provide an effective solution for improving spectrum usage for wireless users. In particular, secondary users can now compete with each other to access idle, unused spectrum from licensed primary users in an opportunistic fashion. This is typically done by using cognitive radios to sense the presence of primary users and tuning to unused spectrum bands to boost efficiency. Expectedly, resource allocation is a very crucial concern in such settings, i.e., power and rate control, and various studies have looked at this problem area. However, the existing body of work has mostly considered the interactions between secondary users and has ignored the impact of primary user behaviors. Along these lines, this dissertation addresses this crucial concern and proposes a novel primary-secondary game-theoretic solution which rewards primary users for sharing their spectrum with secondary users. In particular, a key focus is on precisely modeling the performance of realistic channel models with fading. This is of key importance as simple additive white Gaussian noise channels are generally not very realistic and tend to yield overly optimistic results. Hence the proposed solution develops a realistic non-cooperative power control game to optimize transmit power in wireless cognitive radios networks running code division multiple access up-links. This model is then analyzed for fast and slow flat fading channels. Namely, the fading coefficients are modeled using Rayleigh and Rician distributions, and closed-form expressions are derived for the average utility functions. Furthermore, it is also shown that the strategy spaces of the users under realistic conditions must be modified to guarantee the existence of a unique Nash Equilibrium point. Finally, linear pricing is introduced into the average utility functions for both Rayleigh and Rician fast-flat fading channels, i.e., to further improve the proposed models and minimize transmission power for all users. Detailed simulations are then presented to verify the performance of the schemes under the proposed realistic channel models. The results are also compared to those with more basic additive white Gaussian noise channels

    A Mobile Wireless Channel State Recognition Algorihm: Introduction, Definition, and Verification - Sensing for Cognitive Environmental Awareness

    Get PDF
    This research includes mobile wireless systems limited by time and frequency dispersive channels. A blind mobile wireless channel (MWC) state recognition (CSR) algorithm that detects hidden coherent nonselective and noncoherent selective processes is verified. Because the algorithm is blind, it releases capacity based on current channel state that traditionally is fixed and reserved for channel gain estimation and distortion mitigation. The CSR algorithm enables cognitive communication system control including signal processing, resource allocation/deallocation, or distortion mitigation selections based on channel coherence states. MWC coherent and noncoherent states, ergodicity, stationarity, uncorrelated scattering, and Markov processes are assumed for each time block. Furthermore, a hidden Markov model (HMM) is utilized to represent the statistical relationships between hidden dispersive processes and observed receive waveform processes. First-order and second-order statistical extracted features support state hard decisions which are combined in order to increase the accuracy of channel state estimates. This research effort has architected, designed, and verified a blind statistical feature recognition algorithm capable of detecting coherent nonselective, single time selective, single frequency selective, or dual selective noncoherent states. A MWC coherence state model (CSM) was designed to represent these hidden dispersive processes. Extracted statistical features are input into a parallel set of trained HMMs that compute state sequence conditional likelihoods. Hard state decisions are combined to produce a single most likely channel state estimate for each time block. To verify the CSR algorithm performance, combinations of hidden state sequences are applied to the CSR algorithm and verified against input hidden state sequences. State sequence recognition accuracy sensitivity was found to be above 99% while specificity was determined to be above 98% averaged across all features, states, and sequences. While these results establish the feasibility of a MWC blind CSR algorithm, optimal configuration requires future research to further improve performance including: 1) characterizing the range of input signal configurations, 2) waveform feature block size reduction, 3) HMM parameter tracking, 4) HMM computational complexity and latency reduction, 5) feature soft decision combining, 6) recursive implementation, 7) interfacing with state based mobile wireless communication control processes, and 8) extension to wired or wireless waveform recognition

    GSM-RF Channel Characterization Using a Wideband Subspace Sensing Mechanism for Cognitive Radio Networks

    Get PDF
    In this paper, we examine a spectrum sharing opportunities over the existing Global System of Mobile Communication (GSM) networks, by identifying the unused channels at a specific time and location. For this purpose, we propose a wideband spectrum sensing mechanism to analyze the status of 51 channels at once, belonging to the 10  MHz bandwidth centered at the frequency 945  MHz, in four different areas. We propose a subspace based spectral estimation mechanism, adapted to deal with real measurements. The process begins with data collection using Secondary User (SU) device enabled with Software Defined Radio (SDR) technology, configured to operate in the GSM band. Obtained samples are used then to feed the sensing mechanism. Spectral analysis is delivered to estimate power density peaks and corresponding frequencies. Decision making phase brings together power thresholding technique and GSM control channel decoding to identify idle and busy channels. Experiments are evaluated using detection and false alarm probabilities emulated via Receiver Operating Characteristic (ROC) curves. Obtained performances show better detection accuracy and robustness against variant noise/fading effects, when using our mechanism compared to Energy Detection (ED) based ones as Welch method, and Beamforming based ones as Minimum Variance Distortionless Response (MVDR) method. Occupancy results exhibit considerable potential of secondary use in GSM based primary network
    • …
    corecore