4 research outputs found

    Design of Systems and Optimizations for Autonomous Agents using passive RFID Localization Techniques - Recycling Collaborative Robots

    Get PDF
    This paper aims to describe the work done towards designing and implementing systems and optimizations for a set of autonomous robots that intend to collaborate towards accomplishing the specific common goal of transporting recycled objects. At first the paper dives into the aspects of autonomous behavior and describes what exactly constitutes autonomous behavior and then proceeds to explain the specifics of the research work in our lab at Georgia Tech and also mentions the importance and reasons behind performing such research. The paper then goes into an extensive literature review of autonomous collaborative topics and puts emphasis on RFID localization techniques. And finally describes the results and discusses the outcomes of the project. Having the research abruptly paused due to the COVID-19 pandemic in Spring of 2020, prevented us from getting to implement the collaborative medium for the robots and putting into a software service box for shipment, however we were able to discover many new findings in the fields of autonomous behavior development and implement a successful and consistent RFID reader-tag duo for our robots to be next used in implementing a collaborative medium for the robots. Special thanks and gratitude towards professors, advisors, UROP representatives and instructors, and graduate students who helped me and our research group in conducting this great research.Undergraduat

    Using social robots for language learning: are we there yet?

    Get PDF
    Along with the development of speech and language technologies and growing market interest, social robots have attracted more academic and commercial attention in recent decades. Their multimodal embodiment offers a broad range of possibilities, which have gained importance in the education sector. It has also led to a new technology-based field of language education: robot-assisted language learning (RALL). RALL has developed rapidly in second language learning, especially driven by the need to compensate for the shortage of first-language tutors. There are many implementation cases and studies of social robots, from early government-led attempts in Japan and South Korea to increasing research interests in Europe and worldwide. Compared with RALL used for English as a foreign language (EFL), however, there are fewer studies on applying RALL for teaching Chinese as a foreign language (CFL). One potential reason is that RALL is not well-known in the CFL field. This scope review paper attempts to fill this gap by addressing the balance between classroom implementation and research frontiers of social robots. The review first introduces the technical tool used in RALL, namely the social robot, at a high level. It then presents a historical overview of the real-life implementation of social robots in language classrooms in East Asia and Europe. It then provides a summary of the evaluation of RALL from the perspectives of L2 learners, teachers and technology developers. The overall goal of this paper is to gain insights into RALL’s potential and challenges and identify a rich set of open research questions for applying RALL to CFL. It is hoped that the review may inform interdisciplinary analysis and practice for scientific research and front-line teaching in future

    Human-robot interaction using a behavioural control strategy

    Get PDF
    PhD ThesisA topical and important aspect of robotics research is in the area of human-robot interaction (HRI), which addresses the issue of cooperation between a human and a robot to allow tasks to be shared in a safe and reliable manner. This thesis focuses on the design and development of an appropriate set of behaviour strategies for human-robot interactive control by first understanding how an equivalent human-human interaction (HHI) can be used to establish a framework for a robotic behaviour-based approach. To achieve the above goal, two preliminary HHI experimental investigations were initiated in this study. The first of which was designed to evaluate the human dynamic response using a one degree-of-freedom (DOF) HHI rectilinear test where the handler passes a compliant object to the receiver along a constrained horizontal path. The human dynamic response while executing the HHI rectilinear task has been investigated using a Box-Behnken design of experiments [Box and Hunter, 1957] and was based on the McRuer crossover model [McRuer et al. 1995]. To mimic a real-world human-human object handover task where the handler is able to pass an object to the receiver in a 3D workspace, a second more substantive one DOF HHI baton handover task has been developed. The HHI object handover tests were designed to understand the dynamic behavioural characteristics of the human participants, in which the handler was required to dexterously pass an object to the receiver in a timely and natural manner. The profiles of interactive forces between the handler and receiver were measured as a function of time, and how they are modulated whilst performing the tasks, was evaluated. Three key parameters were used to identify the physical characteristics of the human participants, including: peak interactive force (fmax), transfer time (Ttrf), and work done (W). These variables were subsequently used to design and develop an appropriate set of force and velocity control strategies for a six DOF Stäubli robot manipulator arm (TX60) working in a human-robot interactive environment. The optimal design of the software and hardware controller implementation for the robot system has been successfully established in keeping with a behaviour-based approach. External force control based on proportional plus integral (PI) and fuzzy logic control (FLC) algorithms were adopted to control the robot end effector velocity and interactive force in real-time. ii The results of interactive experiments with human-to-robot and robot-to-human handover tasks allowed a comparison of the PI and FLC control strategies. It can be concluded that the quantitative measurement of the performance of robot velocity and force control can be considered acceptable for human-robot interaction. These can provide effective performance during the robot-human object handover tasks, where the robot was able to successfully pass the object from/to the human in a safe, reliable and timely manner. However, after careful analysis with regard to human-robot handover test results, the FLC scheme was shown to be superior to PI control by actively compensating for the dynamics in the non-linear system and demonstrated better overall performance and stability. The FLC also shows superior performance in terms of improved sensitivity to small error changes compared to PI control, which is an advantage in establishing effective robot force control. The results of survey responses from the participants were in agreement with the parallel test outcomes, demonstrating significant satisfaction with the overall performance of the human-robot interactive system, as measured by an average rating of 4.06 on a five point scale. In brief, this research has contributed the foundations for long-term research, particularly in the development of an interactive real-time robot-force control system, which enables the robot manipulator arm to cooperate with a human to facilitate the dextrous transfer of objects in a safe and speedy manner.Thai government and Prince of Songkla University (PSU
    corecore