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Cognitive Robotic Engine: 
Behavioral Perception Architecture for 

 Human-Robot Interaction 

Sukhan Lee, Seung-Min Baek and Jangwon Lee  
Sungkyunkwan University, Suwon 

Republic of Korea 

1. Introduction  

For personal or domestic service robots to be successful in the market, it is essential for them 
to have the capability of natural and dependable interaction with human. However, such a 
natural and dependable human-robot interaction (HRI) is not so easy to accomplish, as it 
involves a high level of robotic intelligence for recognizing and understanding human 
speech, facial expression, gesture, behavior, and intention as well as for generating a proper 
response to human with artificial synthesis. It is our view that the first key step toward a 
successful deployment of HRI is to level up the dependability of a robot for recognizing the 
intention of the human counterpart. For instance, to date, robotic recognition of human 
speech, as well as human gestures, facial expressions, let alone human intention, is still quite 
unreliable in a natural setting, despite the tremendous effort by researchers to perfect the 
machine perception. We observe that the robustness and dependability human enjoys in 
human-human interaction may not merely come from the fact that human has powerful 
perceptual organs such as eyes and ears but human is capable of executing a series of 
behaviors associated with a perceptual goal, for instance, the behaviors related to the 
collection of additional evidences till the decision is sufficiently credible. In analogy, we 
claim here that the dependability of robotic recognition of human intention for HRI may not 
come from the perfection of the individual capabilities for recognizing speech, gesture, facial 
expression, etc. But, it comes with the automatic generation of robotic behaviors that makes 
sure of reaching a credible decision for the given perceptual goal.
We present here “Cognitive Robotic Engine (CRE)” that automatically generates such 
perceptual behaviors as selecting and collecting an optimal set of evidences, for dependable 
and robust recognition of human intention under a high level of uncertainty and ambiguity. 
CRE is to demonstrate that the dependability of robotic perception may not come from "the 
perfection of individual components for perception," but from "the integration of individual 
components into dependable system behaviors, no matter how imperfect and uncertain 
individual components may be." CRE presents a novel robotic architecture featuring 1) the 
spontaneous establishment of ad-hoc missions in connection to perceptual goals, 2) the 
determination of an optimal set of evidences to be selected and/or collected for 
processing based on in-situ monitoring of the current situation, 3) the integration of such 
behavioral building blocks as mission management, evidence selection, evidence 

Source: Human-Robot Interaction, Book edited by Nilanjan Sarkar,
ISBN 978-3-902613-13-4, pp.522, September 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m



Human-Robot Interaction 248

collection, evidence fusion and filtering for decision-making in an asynchronous and 
concurrent architecture, and 4) the implementation of behavioral personality of a robot 
under CRE framework.  We applied CRE to a robot identifying a caller in a crowed and 
noisy environment. The experimental results demonstrate the great enhancement of the 
dependability of robotic caller identification through the proposed behavioral perception 
approach to HRI based on CRE.  

1.1. Issues involved in Conventional Approaches to Human-Robot Interaction 

A natural HRI has been an interesting subject of research in robotic community for 
sometime as a means of establishing viable robotic service to human (Font T, et al., 2003). 
Accordingly, there have been developed  various technologies for understanding human 
expressions such as speech recognition, gesture recognition, understanding human facial 
expression, etc. Many of the recent research results show significant advancement in their 
recognition capabilities for individual sake (Sakaue, et al., 2006, Betkowska, et al., 2007). 
However, the advancement of individual components such as face and speech recognition 
themselves does not guarantee the dependability of HRI required for natural human robot 
interaction. For instance, recognition of human face or speech becomes problematic should 
robot be in dark, noisy, or dynamic environment. And, it is a growing consensus that efforts 
to perfect such individual components may be neither fruitful nor justified. Instead, it makes 
more sense to integrate individual components into a meaningful cognitive process or 
behavior that guarantees the required dependability. 
In an attempt to generate a more user friendly robot, the EU  “Cogniron” Project has 
adopted the multi-modal interaction framework where multiple human-robot interaction 
components are fused in order to reduce the dependence of the decision on, potentially 
uncertain, individual components. ( Fritsh, et al., 2005 and Li, et al., 2005, 2007). Similarly, 
the integration of audio-visual cues based on Bayesian theorem has been conducted in order 
to deal with uncertainties in speaker localization (Choi, et al., 2006). For the development of 
a robot photographer, face and gesture detection components are integrated to identify the 
caller among a crowd of people (Ahn, et al., 2006). However, these approaches stop at the 
level of reducing uncertainties instead of reaching the level of a cognitive process for 
dependability in which robot self defines its own missions and generates behaviors for 
automatically selecting and collecting evidences. It may be interesting to note the work of 
Bin & Masahide where behavioral status is used to determine visual attention as a cognitive 
process for automatically selecting optimal evidences (Bin & Masahide, 2007).  
Cognitive Robotic Engine (CRE) presented in this chapter aims at establishing a biologically 
inspired cognitive process that provides dependable and robust recognition of human 
intention in real noisy environments. 

2. Cognitive Robotic Engine (CRE): Conceptual Overview 

As an introduction of the concept of CRE, let us consider how a human identifies a caller, if 
there is, dependably despite the adverse condition of, say, a crowded and noisy party 
environment. Upon hearing a novel but highly uncertain nature of sound that may indicate 
someone calling, one immediately registers in his/her consciousness an ad-hoc mission of 
verifying if there is a caller, if any. This ad-hoc mission will remain in his/her consciousness 
till the verification is done with a sufficient level of confidence an individual set. With the 
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registered mission producing a stress, a flurry of asynchronous and concurrent perceptual 
processing takes place inside in such a way as to reduce the uncertainty as efficiently as 
possible.  
The asynchronous and concurrent perceptual processing starts with laying out an 
asynchronous and concurrent flow of perceptual building blocks spontaneously, from 
which a sufficient amount of evidences are collected for the registered ad-hoc mission. The 
basic perceptual building blocks represent the perception units of various levels of 
abstraction and complexity, ranging from a lower level of elementary sensing primitives to a 
higher level of conceptual recognition units. These building blocks are assumed predefined, 
although individuals may have a different number, type, and quality of these building 
blocks. In the above example, a sufficient amount of evidences may be quickly assembled 
from multi-modal sensing cues, including both auditory and visual cues such as calling 
hand gestures and/or calling facial expressions, generated by an asynchronous and 
concurrent flow of auditory and visual perception building blocks. Potentially, there may 
exist a large number of possibilities for laying out an asynchronous and concurrent flow of 
building blocks, with individual sensors as origins, and for acquiring distinct evidences 
from different paths of the chosen asynchronous concurrent flow. However, to explore all 
the possible flows of evidences may be neither possible due to a limit in computational 
resources, nor desirable for efficiency in time and energy. The key may be to understand an 
optimal way of constructing an asynchronous concurrent flow of perceptual building blocks 
for decision, dynamically to the real-time variation of situations and, perhaps, similarly to 
the way our brain functions. 
An asynchronous and concurrent flow of perceptual building blocks is connected to the 
actions to be taken proactively to collect sensing data of less uncertainty or of additional 
evidences. Human seldom depends passively on what is sensed only for a decision, if the 
sensed information is incomplete or uncertain. Rather, human tends to take appropriate 
actions for gathering a better quality of or a new addition of information. For instance, in the 
above example, to reduce uncertainty, one may resort to look around to see if he/she can 
find someone making a calling gesture or to generate a confirmation call, like “ is there 
anybody calling? ”, to get a reply. Human dependability of perception is thus deeply linked 
to the proactive actions for assisting and guiding perception by incorporating action 
building blocks into an asynchronous and concurrent flow of perceptual building blocks. 
Action building blocks range from an actuator level of action primitives to a task level of 
functional units. To explore all the possible ways of incorporating action blocks into a 
perceptual flow may be prohibitive or infeasible due to a potentially large number of 
possibilities that action blocks can be incorporated, due to the existence of possible conflicts 
among action blocks, or due to the cost in time and energy that is associated with taking 
actions. The key is how to choose action blocks to be incorporated into an asynchronous and 
concurrent flow of perceptual building blocks in such a way as to achieve an optimal overall 
efficiency in reaching the decision. This requires evaluating an action block as an 
information source against the cost in time and energy to exercise it.  
Summarizing the above, human dependability in perception may be conjectured as the 
result of the following exercises: 
1. The spontaneous and self-establishment of ad-hoc perceptual missions in connection to 

particular sensing that drive the subsequent perceptual processes till satisfied.  
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2. The choice of particular asynchronous and concurrent flow architecture of perceptual 
building blocks out of a potentially huge number of possible flow architectures as the 
basis for deriving evidences to be fused together.  

3. The incorporation of action blocks into the chosen asynchronous and concurrent flow 
architecture of perceptual building blocks as a means of proactively collecting sensing 
data of less uncertainty and of new evidence, which triggers a dynamic reorganization 
of the asynchronous and concurrent flow architecture of perceptual building blocks.  

4. The optimal process control in terms of the choice of a particular asynchronous and 
concurrent flow architecture of perceptual building blocks to follow as well as of the 
choice of particular action blocks to be invoked at each sampling time, where the 
optimality is defined in terms of the time and energy to be consumed for completing 
the ad-hoc mission, which is in turn a function of the amount of uncertainty reduction 
and the time and computational resources required for completing the perceptual and 
action building blocks to be processed. Note the control strategy may differ by 
individuals since some heuristics are involved in the strategy, due to the complexity of 
search space leading no definite optimal solution is feasible. However, it is interesting 
to see that this heuristics actually represent a personality of an individual or a robot that 
we can exploit for creating robots with personality. 

The environment or toolkit that enables the above asynchronous and concurrent flow of a 
perceptual process, or, in general, a robotic process, is referred to here as Cognitive Robotic 
Engine (CRE). In what follows, we present a more details on how to implement the above 
concept in computer by describing 1) an asynchronous and concurrent architecture for CRE 
with  the definition of perceptual and action building blocks, the representation of search 
space with the partial order and fusion relation of perceptual building blocks as well as with 
the exclusion relation and organized actions for action building blocks, 2) a method of 
connecting perceptual and action building blocks, 3) an optimal control of CRE with self-
establishment of ad-hoc missions, of choosing a particular flow architecture with the 
optimality in terms of speed and time, and, finally, 4) a demonstration of the value of CRE 
by a caller identification experimentation with a robot . 

3. CRE Architecture 

Overall architecture of CRE system is shown in Fig. 1. CRE consists of three major parts, 
perceptual, control and action parts. Perceptual part is composed of sensors, perceptual 
processes which are processed asynchronously and concurrently, precedence and evidence 
fusion relations through which a robot perceives the environment like a human. Control 
part takes charge of invoke mission or mission transition and it controls behavior selection 
or behavior changing. Finally, action part is in charge of robot action such as searching, 
approaching, and gazing. The system operating procedures are as follows: 1) the sensors 
receive and transmit external data, 2) the perceptual processes analyze the information, 3) 
the control part gathers all the information from perceptual processes, and then make a 
decision, 4) if there is any necessity the action part makes the robot to act. Note that system 
operates asynchronously. 
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Figure 1. Overall Architecture of Cognitive Robotic Engine 

3.1 Perceptual Process and Precedence Relation 

Present CRE architecture and all perceptual processes have been organized to accomplish 
the caller identification mission. The perception process of CRE means basic building block 
for the entire perception. Table I represents the specification of all perceptual processes – 
Novel Sound Detection (NSD), Frontal Face Detection (FFD), Skin Color Blob (SCB), Calling 
Hand Posture (CHP), Color Detection (CD), and Alarm (AL). Normally, the output of 
individual perceptual process has calculated certainty (CF), spatial probability distribution 
(SP), action candidates that can improve the certainty factor (AC), processing time (PT), and 
packet recording time (RT).  
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Def.
When the sound volume exceeds the threshold, estimates the 
direction of source

Source Mic array (3 channel)

Input Raw data of sound

NSD

Output

Direction of novel sound 
Calculated Certainty (CF) 
Spatial probability distribution (SP) 
Candidate of Action (AC) 
Processing Time (PT) 
Packet recording Time (RT)

Def. Finds face region by image feature 

Source Camera 

Input Raw image from Camera FFD

Output
Coordinate, and size of detected face 
CF, SP, AC, PT, RT 

Def.
Distinguishes skin region by RGB condition and makes 
others black in image 

Source Camera 

Input Raw image from Camera SCB

Output
Image of skin color segmentation 
Most probable direction that callers exist in. 
CF, SP, AC, PT, RT 

Def. Estimates calling hand by skin color in face adjacent area 

Source FFD, SCB 

Input 
Coordinate and size of detected face 
Skin segmented image 

CHP

Output
Direction, and distance of caller 
CF, SP, AC, PT, RT 

Def.
Estimates clothing color of a person who is detected by FFD 
process.

Source Camera, FFD 

Input Coordinate and size of detected face 
CD

Output
Estimated clothing color (Red/Blue) 
CF, SP, AC, PT, RT 

Def. Send alarm signal at reservation time 

Source Time check Thread 

Input Current time AL

Output
Alarm signal 
Information of reserved user 
CF, SP, AC, PT, RT 

 Table 1. Description of Perceptual Processes 

If the outputs of one or more processes are necessary as an input or inputs of another for 
processing, a relationship between the processes defines precedence relation. Each process is 
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assumed independent as long as they are not under precedence restrictions. Fig. 2 shows the 
precedence relation of all perceptual processes of system. 

Figure 2.  The precedence relation of all perceptual processes – All the relations without 
AND mean OR 

4. In-Situ Selection of an optimal set of evidences 

4.1 Evidence Structure for the Robot Missions 

Caller 

Identification

(CI)

Calling Hand

Posture

(CHP)

Novel Sound 

Direction

(NSD)

Skin Color

Blob

(SCB)

Frontal Face

Detection

(FFD)

AND

Figure 3. Evidence Structure For Caller Identification Mission 

CRE aims at combining or fusing multiple evidences in time for dependable decision. In 
order to integrate multiple evidences, we needed another relation graph for certainty 
estimation. Although, above mentioned precedence relation graph shows the input-output 
relation of each perceptual process nicely, however it is not suitable for certainty estimation. 
Because to calculate certainty of the mission, the robot applies difference shape of calculate 
expression to each mission. Therefore, we define the “evidence structure” for certainty 
estimation.
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Customer 

Identification

(CI)

Color Detection

(CD)

Novel Sound 

Direction

(NSD)

Frontal Face

Detection

(FFD)

Skin Color Blob

(SCB)

Alarm

(AL)

Figure 4.  Evidence Structure For Customer Identification Mission 

Caller/Customer
Following

(CF)

Color
Detection

(CD)

Frontal Face
Detection

(FFD)

The distance 

between

the robot and

 the caller/user

Figure 5. Evidence Structure For Caller/Customer Following Mission 

Frontal Face

Detection

(FFD)

Color

Detection

(CD)

Attention

(A)

Figure 6. Evidence Structure For Attention Mission 

Our analysis of current service robot’s ability tell us that main objects of service robot are 
recognizing user and providing information to the user. Therefore, bring a current service 
robot platform into focus, we created four missions which are caller identification, customer 
identification, caller/customer following and attention. Consequently, evidence structure 
was made suitability for each individual mission. The robot selects adapted evidences for 
using this structure. The reason why we was not make one united structure but made 
individual structures for four missions is that if some missions are extended in the future, it 
is difficult to design architecture graph to extended missions. The evidence structure 
described by Fig. 3 through Fig. 6 is equivalent to a Bayesian net, except that we consider 
explicitly the conjunctions of evidences that becomes sufficient for proving the truth of 
another evidence and represent them with AND operations. This is to make it easier to 
define the joint conditional probabilities required for the computation of certainties based on 
the Bayesian probability theorem. The actual implementation of computing certainty update 
is based on the Bayesian net update procedure. 

4.2 Certainty Estimation based on Bayesian Theorem 

In this paper, we calculate the mission certainty based on Bayesian theorem. 
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  (1) 

(1) shows that the formula of the mission certainty estimation. In here,  is calculated 
differently in each mission. Under assumption that each evidence is independent, from the 
evidence structures, we are able to calculate . For example, if the caller identification 
mission is selected,  is calculated by formula (2). 

(2)

The rest  value of individual missions as follows: 

• Customer identification 

( | ) ( | ) ( | ) ( | ) ( | ) ( )

( | ) ( | ) ( | ) ( | ) ( | ) ( )

p FFD CI p SCB CI p NSD CI p CD CI p AL CI p CI

p FFD CI p SCB CI p NSD CI p CD CI p AL CI p CI
α =

 (3) 

• Caller/Customer Following 

( | ) ( | ) ( )

( | ) ( | ) ( )

p FFD CF p CD CF p CF

p FFD CF P CD CF p CF
α =

 (4) 

• Attention

( | ) ( | ) ( )

( | ) ( | ) ( )

p CD A p FFD A p A

p CD A p FFD A p A
α =

 (5) 

4.3 Certainty Estimation with Consider Space-Time 

Figure 7. Interaction Space of the Robot for Certainty Representation 

In this research, we implemented all perceptual processes with considering the two-
dimensional interaction space of the robot. Fig 7 shows that interaction space of the robot. 
The interaction space is represented by 81(9*9) cells and each cell has around 50cm*50cm 
size. Since all processes have the information of two-dimensional space, each mission 
certainty is also represented by two-dimensional space and it is calculated for each cell. 
Therefore, the robot has spatial information. The spatial probability distribution is changed 
according to the robot behaviors and is estimated according to evidences continually. 

( )

1 1
( | )

1( | ) ( )
1

( | ) ( )

( | ) ( )

( | ) ( )

MissionCertainty Mission

P Mission Evidences
P Evidences Mission P Mission

P Evidences Mission P Mission

P Evidences Mission P Mission

P Evidences Mission P Mission

=

= =

+ α
+

 ∴  α =

( | ) ( | ) ( | ) ( | ) ( )

( | ) ( | ) ( | ) ( | ) ( )

p FFD CI p SCB CI p NSD CI p CHP CI p CI

p FFD CI p SCB CI p NSD CI p CHP CI p CI
α =
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Moreover, in order to provide time-related service, we implemented alarm process (AL). 
Using this process, the robot is able to provide service such as delivery information for the 
customer at specific time. 

5. Evidence Collection Behaviors 

The action should be selected to eliminate uncertainty of mission, not uncertainty of 
individual process. This means that the selected action has to improve the mission certainty 
best. Let B = {b1,b2, … , bn} is a set of proposed actions by  a set of perceptual processes P= 
{p1, p2, … pn}, at time t. From the perceptual process, we can estimate the variation of 
certainty when the robot takes an action below. 

b1 C(b1) = { c1(b1), c2(b1), … , ck(b1), … , cn(b1)}
b2 C(b2) = { c1(b2), c2(b2), … , ck(b2), … ,  cn(b2)} 
…
bk C(bk) = { c1(bk),  c2(bk), … , ck(bk), … ,  cn(bk)} 
…
bn C(bn) = { c1(bn),  c2(bn), … , ck(bn), … , cn(bn)}

where ck(bk) is expected certainty variation of pk when the action is selected. C(bk) is a 
set of variation values. Now we can select an action using (6).  

    (6) 

The selected action will increase the mission certainty best. 

6. Mission Management 

Most of developed service robots recognize their mission by user’s manual input. However, 
to provide advanced service, if there are several missions, the robot should be select mission 
naturally. Accordingly, we implemented the mission manager for advanced service of a 
robot. The mission manager should tell the mission with the minimum of perceptual 
processes. 
The roles of mission manager are detailed below: 
1. The manager should be monitoring enabled perceptual processes. 
2. If any change of environment stimulus some perceptual process, the manager has to 

recognizes all the missions which are related to the process. The connection relation 
between missions and perceptual processes should be pre-defined. 

3. Since enabled perceptual processes are very primitive, some missions will remain and 
be invoked among the subset of missions, or the others may be removed. To recognize 
which of them to be selected, additional perceptual processes should be enabled. 

4. If there is one mission selected, the manager performs it, while the number of mission is 
bigger than one, they are took into queue based on the priority of missions. Note that, 
simultaneous and multiple mission will be considered later. 

5. Performing a mission, the manager should check if the mission is on going, or success, or fail 
6. With succeed/failure of the mission, the manager should change the state of robot naturally. 

max 1{ ( | ), ..., ( | )}b bn

Selection of action

b P callerID Evidences C P callerID Evidences C

=

+ Δ + Δ
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Figure 8. Mission Manager for Four Missions 

Mission Definition 

Attention Gazes into Caller/Customer 

Caller Identification Seeks for the caller and then identifies the caller 

Customer Identification Seeks for the customer and then identifies the customer 

Caller/Customer Following Follows the caller/customer 

Table 2. List of missions and definition 

7. Implementation 

7.1 Hardware Specification 

Figure 9. Robot Hardware 

The approach outlined above has been implemented on the mobile robot iRobi. The 
specification of single-board-computer has Intel Pentium mobile processor 1.40GHz, 1GB 
RAM. And the Robot has three channel microphones for estimates the direction of sound 
source. Logitech Quickcam Pro 3000 camera as imaging sensor has approximately 60° 
horizontal-field-of-view (HFOV) and 320*240 square pixels. 
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7.2 Software Configuration 

Overall architecture of the CRE system is presented in Fig. 10. As seen in the figure, the 
system is composed of server and client. In here, client means the robot and the robot and 
the server communicated by Common Robot Interface Framework (CRIF). It provides 
TCP/IP wireless connection so that CRE system could be adapted to another platform 
easily. Two multi threads in the server request image and sound continuously. A perceptual 
process is called when a thread get sensing information from robot. There procedures are 
operated asynchronously and concurrently.

Figure 10. Overall Architecture of the System.  (RAL: Robot API Layer, ASL: API Sync 
Layer, RAPL: Robot API Presentation Layer) 

7.2.1 Sampling Time of Control based on Forgetting Curve 

Among the several approaches for sampling time, we got the idea from psychology field 
(Brown, 1958, R. Peterson & J. Peterson, 1959, Atkison & Shiffrin 1968). Fig. 11 shows 
forgetting curve for human short-term memory. Based on that, the sampling time is 
determined as 600ms approximately. 

Figure 11. Forgetting curve of Brown Peterson paradigm 

8. Experimentation 

8.1 Experiment Condition 

The experimental scenario is described in Fig. 12. Experimentation had proceeded in the 
around 6m*8m size tester bed without any obstacles and the caller is only one. Please see the 
figure with attention time and variance of the mission. Descriptions on abbreviation as below: 
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NSD: Novel Sound Detection, FFD: Frontal Face Detection, SCB: Skin Color Blob, CHP: 
Calling Hand Posture , CD: Color Detection, AL: Alarm. 

Figure 12. Experimentation of the multi-mission management and the certainty estimation 
of Cognitive Robotic Engine 

8.2 Experiment Results 

Initially, control part of CRE enables only NSD , FFD, AL processes.  

Figure 13. Certainty of the caller identification mission (t1) 

t0

t1

t4

t3

t2

t7

Handclap 

Caller Following

Caller

Attention

No Mission

Customer Identification

t5

t6

t8
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First (t0), the caller called the robot behind the robot’s back through the handclap. Then, the 
certainty of caller identification mission arisen as Fig. 13 by NSD process output, and the 
mission started (t1). 
As the caller identification mission started, SCB and CHP processes activated to collect more 
evidences. Fig. 14 is certainty of the mission, just after turning to the caller, and the certainty 
increased when FFD and CHP processes detected caller’s hand motion (Fig. 15). 

Figure 14. Certainty of the caller identification mission (t2, before calling hand posture 
detected) 

Figure 15. Certainty of the caller identification mission (t2, after calling hand posture 
detected)) 

At this moment (t2), the mission manager changed the mission to caller tracking. So, FD and 
CD processes activated, and started to move to the caller (t3). Fig. 16 shows the certainty of 
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caller tracking mission at t3. In Fig. 17, the certainty of frontal spaces of the robot is high 
enough to change the mission to attention (t4). 

Figure 16. Certainty of the caller/customer tracking mission (t3) 

Figure 17. Certainty of the caller/customer tracking mission (t4) 

Fig. 18 shows the certainty of attention mission. Generally, the service robot can convey 
information to the caller while doing attention mission. After a communication with the 
caller, mission manager of the robot dismissed attention mission like initial state. After for a 
while, the customer identification mission started by AL process, so the robot try to find 
customer who wears red shirt (reserved mission like timer). The certainty of customer 
identification mission is shown Fig.19 (t4). When the robot found the customer, the certainty 
changed like Fig. 20, then, attention mission started (t8). 
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Figure 18. Certainty of the attention mission (t4) 

Figure 19. Certainty of the customer identification mission (t6) 

We recorded the results several times of experimentation, the results shows that missions 
started, stopped and changed automatically based on variation of the certainty, and by 
defining the certainty of each mission in the interaction space, behavioral parameters can be 
easily obtained. Basic rules to choose behavior is that select one behavior among candidates 
suggested by perception processes to increase their certainties. 
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Figure 20. Certainty of the customer identification mission (t7) 

9. Conclusion and Future work 

In this paper, we described the robotic architecture for dependable perception and action for 
service robot in dynamic environment. This architecture is organized to accomplish 
perception mission in spite of the integration of imperfect perception processes, and 
updated for managing multi-missions. The next step, we are planning to research on 
automatic discrimination method of system dependability. 
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