7,125 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A Research Perspective on Data Management Techniques for Federated Cloud Environment

    Get PDF
    Cloud computing has given a large scope of improvement in processing, storage and retrieval of data that is generated in huge amount from devices and users. Heterogenous devices and users generates the multidisciplinary data that needs to take care for easy and efficient storage and fast retrieval by maintaining quality and service level agreements. By just storing the data in cloud will not full fill the user requirements, the data management techniques has to be applied so that data adaptiveness and proactiveness characteristics are upheld. To manage the effectiveness of entire eco system a middleware must be there in between users and cloud service providers. Middleware has set of events and trigger based policies that will act on generated data to intermediate users and cloud service providers. For cloud service providers to deliver an efficient utilization of resources is one of the major issues and has scope of improvement in the federation of cloud service providers to fulfill user’s dynamic demands. Along with providing adaptiveness of data management in the middleware layer is challenging. In this paper, the policies of middleware for adaptive data management have been reviewed extensively. The main objectives of middleware are also discussed to accomplish high throughput of cloud service providers by means of federation and qualitative data management by means of adaptiveness and proactiveness. The cloud federation techniques have been studied thoroughly along with the pros and cons of it. Also, the strategies to do management of data has been exponentially explored

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Mobiilse värkvõrgu protsessihaldus

    Get PDF
    Värkvõrk, ehk Asjade Internet (Internet of Things, lüh IoT) edendab lahendusi nagu nn tark linn, kus meid igapäevaselt ümbritsevad objektid on ühendatud infosüsteemidega ja ka üksteisega. Selliseks näiteks võib olla teekatete seisukorra monitoorimissüsteem. Võrku ühendatud sõidukitelt (nt bussidelt) kogutakse videomaterjali, mida seejärel töödeldakse, et tuvastada löökauke või lume kogunemist. Tavaliselt hõlmab selline lahendus keeruka tsentraalse süsteemi ehitamist. Otsuste langetamiseks (nt milliseid sõidukeid parasjagu protsessi kaasata) vajab keskne süsteem pidevat ühendust kõigi IoT seadmetega. Seadmete hulga kasvades võib keskne lahendus aga muutuda pudelikaelaks. Selliste protsesside disaini, haldust, automatiseerimist ja seiret hõlbustavad märkimisväärselt äriprotsesside halduse (Business Process Management, lüh BPM) valdkonna standardid ja tööriistad. Paraku ei ole BPM tehnoloogiad koheselt kasutatavad uute paradigmadega nagu Udu- ja Servaarvutus, mis tuleviku värkvõrgu jaoks vajalikud on. Nende puhul liigub suur osa otsustustest ja arvutustest üksikutest andmekeskustest servavõrgu seadmetele, mis asuvad lõppkasutajatele ja IoT seadmetele lähemal. Videotöötlust võiks teostada mini-andmekeskustes, mis on paigaldatud üle linna, näiteks bussipeatustesse. Arvestades IoT seadmete üha suurenevat hulka, vähendab selline koormuse jaotamine vähendab riski, et tsentraalne andmekeskust ülekoormamist. Doktoritöö uurib, kuidas mobiilsusega seonduvaid IoT protsesse taoliselt ümber korraldada, kohanedes pidevalt muutlikule, liikuvate seadmetega täidetud servavõrgule. Nimelt on ühendused katkendlikud, mistõttu otsuste langetus ja planeerimine peavad arvestama muuhulgas mobiilseadmete liikumistrajektoore. Töö raames valminud prototüüpe testiti Android seadmetel ja simulatsioonides. Lisaks valmis tööriistakomplekt STEP-ONE, mis võimaldab teadlastel hõlpsalt simuleerida ja analüüsida taolisi probleeme erinevais realistlikes stsenaariumites nagu seda on tark linn.The Internet of Things (IoT) promotes solutions such as a smart city, where everyday objects connect with info systems and each other. One example is a road condition monitoring system, where connected vehicles, such as buses, capture video, which is then processed to detect potholes and snow build-up. Building such a solution typically involves establishing a complex centralised system. The centralised approach may become a bottleneck as the number of IoT devices keeps growing. It relies on constant connectivity to all involved devices to make decisions, such as which vehicles to involve in the process. Designing, automating, managing, and monitoring such processes can greatly be supported using the standards and software systems provided by the field of Business Process Management (BPM). However, BPM techniques are not directly applicable to new computing paradigms, such as Fog Computing and Edge Computing, on which the future of IoT relies. Here, a lot of decision-making and processing is moved from central data-centers to devices in the network edge, near the end-users and IoT sensors. For example, video could be processed in mini-datacenters deployed throughout the city, e.g., at bus stops. This load distribution reduces the risk of the ever-growing number of IoT devices overloading the data center. This thesis studies how to reorganise the process execution in this decentralised fashion, where processes must dynamically adapt to the volatile edge environment filled with moving devices. Namely, connectivity is intermittent, so decision-making and planning need to involve factors such as the movement trajectories of mobile devices. We examined this issue in simulations and with a prototype for Android smartphones. We also showcase the STEP-ONE toolset, allowing researchers to conveniently simulate and analyse these issues in different realistic scenarios, such as those in a smart city.  https://www.ester.ee/record=b552551

    Coordinate Channel-Aware Page Mapping Policy and Memory Scheduling for Reducing Memory Interference Among Multimedia Applications

    Full text link
    "© 2017 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."[EN] In a modern multicore system, memory is shared among more and more concurrently running multimedia applications. Therefore, memory contention and interference are more andmore serious, inducing system performance degradation significantly, the performance degradation of each thread differently, unfairness in resource sharing, and priority inversion, even starvation. In this paper, we propose an approach of coordinating channel-aware page mapping policy and memory scheduling (CCPS) to reduce intermultimedia application interference in a memory system. The idea is to map the data of different threads to different channels, together with memory scheduling. The key principles of the policies of page mapping and memory scheduling are: 1) the memory address space, the thread priority, and the load balance; and 2) prioritizing a low-memory request thread, a row-buffer hit access, and an older request. We evaluate the CCPS on a variety of mixed single-thread and multithread benchmarks and system configurations, and we compare them with four previously proposed state-of-the-art interference-reducing policies. Experimental results demonstrate that the CCPS improves the performance while reducing the energy consumption significantly; moreover, the CCPS incurs a much lower hardware overhead than the current existing policies.This work was supported in part by the Qing Lan Project; by the National Science Foundation of China under Grant 61003077, Grant 61100193, and Grant 61401147; and by the Zhejiang Provincial Natural Science Foundation under Grant LQ14F020011.Jia, G.; Han, G.; Li, A.; Lloret, J. (2017). Coordinate Channel-Aware Page Mapping Policy and Memory Scheduling for Reducing Memory Interference Among Multimedia Applications. IEEE Systems Journal. 11(4):2839-2851. https://doi.org/10.1109/JSYST.2015.2430522S2839285111

    Contents

    Get PDF
    corecore