296,489 research outputs found

    REKAYASA SISTEM KOGNITIF BERBASIS MULTI-AGEN: PENDEKATAN PENALARAN BERBASIS KASUS

    Get PDF
    Cognitive system modeling first introduced by psychology researchers. Unfortunately, the model has not been sufficient in supporting computer based problem solving. For that reason, artificial intelligence tries to propose a computational model of cognitive system. The main purpose of the computational model is to support human in solving complex problems, especially problems that involve large number of data, uncompleted data, and problem solving that requires systematic approach as human does. This research proposes an engineering of such multiagent based cognitive system, which employs case based reasoning as imitation of human reasoning to maintain the knowledge base

    Applying a Revised Approach of Fuzzy Cognitive Maps on a Hybrid Electrical Energy System

    Get PDF
    Complex systems modeling is a rapidly developing research field which incorporates various scientific sectors from bio medicine and energy to economic and social sciences. However, as the systems’ complexity increases pure mathematical modeling techniques prove to be a rather laborious task which demands wasting many resources and in many occasions, could not lead to the desired system response. This realization led researchers turn their attention into the field of computational intelligence; Neural Networks and Fuzzy Logic etc. In this way scientists were able to provide a model of a system which is strongly characterized by fuzziness and uncertainties. Fuzzy Cognitive Maps (FCM) in another methodology which lies in the field of computational intelligence. FCM came as a combination of Neural Networks and Fuzzy Logic and were first introduced by B. Kosko in 1986. All these years they have been applied on a variety of systems such as social, psychological, medical, agricultural, marketing, business management, energy, advertising etc, both for systems modeling and decision-making support systems, with very promising results. Classical FCM approach uses the experts’ knowledge in order to create the initial knowledge base of each system. Based on the experts’ knowledge, the interrelations among the system variables are determined and the system response is defined. Through years, improvements have been made and learning algorithms were embodied in the initial approach. Learning algorithms used data information and history to update the weights (the interconnections) among concepts (variables), contributed to the optimization of FCMs and reached more efficient systems’ response. However, all these decades, researchers have mentioned some weak points as well. In the last years substantial research has been made in order to overcome some of the well-known limitations of the FCM methodology. This paper will apply a revised approach of the Fuzzy Cognitive Maps method on a techno-economic study of an autonomous hybrid system photovoltaic and geothermal energy Specifically, the FCM model of this system includes twenty-five concepts and three of them are considered as outputs, the total system efficiency, the total energy production and the total system cost. The aim of the study is to provide maximum performance with the minimum total cost. To this end results for both the classic and revised approach of the FCM method are provided and discussed. Computational Intelligence and especially Fuzzy Cognitive Maps are a very promising field in modeling complex systems. The latest approaches of the method show that FCM can open new paths towards higher efficiency, more accurate models and effective decision-making results

    Applying a Revised Approach of Fuzzy Cognitive Maps on a Hybrid Electrical Energy System

    Get PDF
    Complex systems modeling is a rapidly developing research field which incorporates various scientific sectors from bio medicine and energy to economic and social sciences. However, as the systems’ complexity increases pure mathematical modeling techniques prove to be a rather laborious task which demands wasting many resources and in many occasions, could not lead to the desired system response. This realization led researchers turn their attention into the field of computational intelligence; Neural Networks and Fuzzy Logic etc. In this way scientists were able to provide a model of a system which is strongly characterized by fuzziness and uncertainties. Fuzzy Cognitive Maps (FCM) in another methodology which lies in the field of computational intelligence. FCM came as a combination of Neural Networks and Fuzzy Logic and were first introduced by B. Kosko in 1986. All these years they have been applied on a variety of systems such as social, psychological, medical, agricultural, marketing, business management, energy, advertising etc, both for systems modeling and decision-making support systems, with very promising results. Classical FCM approach uses the experts’ knowledge in order to create the initial knowledge base of each system. Based on the experts’ knowledge, the interrelations among the system variables are determined and the system response is defined. Through years, improvements have been made and learning algorithms were embodied in the initial approach. Learning algorithms used data information and history to update the weights (the interconnections) among concepts (variables), contributed to the optimization of FCMs and reached more efficient systems’ response. However, all these decades, researchers have mentioned some weak points as well. In the last years substantial research has been made in order to overcome some of the well-known limitations of the FCM methodology. This paper will apply a revised approach of the Fuzzy Cognitive Maps method on a techno-economic study of an autonomous hybrid system photovoltaic and geothermal energy Specifically, the FCM model of this system includes twenty-five concepts and three of them are considered as outputs, the total system efficiency, the total energy production and the total system cost. The aim of the study is to provide maximum performance with the minimum total cost. To this end results for both the classic and revised approach of the FCM method are provided and discussed. Computational Intelligence and especially Fuzzy Cognitive Maps are a very promising field in modeling complex systems. The latest approaches of the method show that FCM can open new paths towards higher efficiency, more accurate models and effective decision-making results

    Agent-oriented constructivist knowledge management

    Get PDF
    In Ancient Times, when written language was introduced, books and manuscripts were often considered sacred. During these times, only a few persons were able to read and interpret them, while most people were limited in accepting these interpretations. Then, along with the industrial revolution of the XVIII and XIX centuries and especially boosted by the development of the press, knowledge slowly became available to all people. Simultaneously, people were starting to apply machines in the development of their work, usually characterized by repetitive processes, and especially focused in the production of consuming goods, such as furniture, clocks, clothes and so on. Following the needs of this new society, it was finally through science that new processes emerged to enable the transmission of knowledge from books and instructors to learners. Still today, people gain knowledge based on these processes, created to fulfill the needs of a society in its early stages of industrialization, thus not being compatible with the needs of the information society. In the information society, people must deal with an overloading amount of information, by the means of the media, books, besides different telecommunication and information systems technology. Furthermore, people’s relation to work has been influenced by profound changes, for instance, knowledge itself is now regarded as a valuable work product and, thus, the workplace has become an environment of knowledge creation and learning. Modifications in the world economical, political and social scenarios led to the conclusion that knowledge is the differential that can lead to innovation and, consequently, save organizations, societies, and even countries from failing in achieving their main goals. Focusing on these matters is the Knowledge Management (KM) research area, which deals with the creation, integration and use of knowledge, aiming at improving the performance of individuals and organizations. Advances in this field are mainly motivated by the assumption that organizations should focus on knowledge assets (generally maintained by the members of an organization) to remain competitive in the information society’s market. This thesis argues that KM initiatives should be targeted based on a constructivist perspective. In general, a constructivist view on KM focuses on how knowledge emerges, giving great importance to the knowledge holders and their natural practices. With the paragraph above, the reader may already have an intuition of how this work faces and targets Knowledge Management, however, let us be more precise. Research in Knowledge Management has evolved substantially in the past 30 years, coming from a centralized view of KM processes to a distributed view, grounded in organizational and cognitive sciences studies that point out the social, distributed, and subjective nature of knowledge. The first Knowledge Management Systems (KMSs) were centrally based and followed a top-down design approach. The organization managers, supported by knowledge engineers, collected and structured the contents of an organizational memory as a finished product at design time (before the organizational memory was deployed) and then disseminated the product, expecting employees to use it and update it. However, employees often claimed that the knowledge stored in the repository was detached from their real working practices. This led to the development of evolutionary methods, which prescribe that the basic KM system is initially developed and evolves proactively in an on-going fashion. However, most of the initiatives are still based on building central repositories and portals, which assume standardized vocabularies, languages, and classification schemes. Consequently, employees’ lack of trust and motivation often lead to dissatisfaction. In other words, workers resist on sharing knowledge, since they do not know who is going to access it and what is going to be done with it. Moreover, the importance attributed to knowledge may give an impression that these central systems take away a valuable asset from his or her owner, without giving appreciable benefits in return. The problems highlighted in the previous paragraph may be attenuated or even solved if a top-down/bottom-up strategy is applied when proposing a KM solution. This means that the solution should be sought with aim at organizational goals (top-down) but at the same time, more attention should be given to the knowledge holders and on the natural processes they already use to share knowledge (bottom-up). Being active agency such an important principle of Constructivism, this work recognizes that the Agent Paradigm (first defined by Artificial Intelligence and more recently adopted by Software Engineering) is the best approach to target Knowledge Management, taking a technological and social perspective. Capable of modeling and supporting social environments, agents is here recognized as a suitable solution for Knowledge Management especially by providing a suitable metaphor used for modeling KM domains (i.e. representing humans and organizations) and systems. Applying agents as metaphors on KM is mainly motivated by the definition of agents as cognitive beings having characteristics that resemble human cognition, such as autonomy, reactivity, goals, beliefs, desires, and social-ability. Using agents as human abstractions is motivated by the fact that, for specific problems, such as software engineering and knowledge management process modeling, agents may aid the analyst to abstract away from some of the problems related to human complexity, and focus on the important issues that impact the specific goals, beliefs and tasks of agents of the domain. This often leads to a clear understanding of the current situation, which is essential for the proposal of an appropriate solution. The current situation may be understood by modeling at the same time the overall goals of the organization, and the needs and wants of knowledge holders. Towards facilitating the analysis of KM scenarios and the development of adequate solutions, this work proposes ARKnowD (Agent-oriented Recipe for Knowledge Management Systems Development). Systems here have a broad definition, comprehending both technology-based systems (e.g. information system, groupware, repositories) and/or human systems, i.e. human processes supporting KM using non-computational artifacts (e.g. brain stormings, creativity workshops). The basic philosophical assumptions behind ARKnowD are: a) the interactions between human and system should be understood according to the constructivist principle of self-construction, claiming that humans and communities are self-organizing entities that constantly construct their identities and evolve throughout endless interaction cycles. As a result of such interactions, humans shape systems and, at the same time, systems constrain the ways humans act and change; b) KM enabling systems should be built in a bottom-up approach, aiming at the organizational goals, but understanding that in order to fulfill these goals, some personal needs and wants of the knowledge holders (i.e. the organizational members) need to be targeted; and c) there is no “silver bullet��? when pursuing a KM tailoring methodology and the best approach is combining existing agent-oriented approaches according to the given domain or situation. This work shows how the principles above may be achieved by the integration of two existing work on agent-oriented software engineering, which are combined to guide KM analysts and system developers when conceiving KM solutions. Innovation in our work is achieved by supporting topdown/bottom-up approaches to KM as mentioned above. The proposed methodology does that by strongly emphasizing the earlier phases of software development, the so-called requirement analysis activity. In this way, we consider all stakeholders (organizations and humans) as agents in our analysis model, and start by understanding their relations before actually thinking of developing a system. Perhaps the problem may be more effectively solved by proposing changes in the business processes, rather than by making use of new technology. And besides, in addition to humans and organizations, existing systems are also included in the model from start, helping the analyst and designer to understand which functionalities are delegated to these so-called artificial agents. In addition to that, benefits as a result of the application of ARKnowD may be also attributed to our choice of using the proper agent cognitive characteristics in the different phases of the development cycle. With the main purpose of exemplifying the use of the proposed methodology, this work presents a socially-aware recommender agent named KARe (Knowledgeable Agent for Recommendations). Recommender Systems may be defined by those that support users in selecting items of their need from a big set of items, helping users to overcome the overwhelming feeling when facing a vast information source, such as the web, an organizational repository or the like. Besides serving as a case for our methodology, this work also aims at exploring the suitability of the KARe system to support KM processes. Our choice for supporting knowledge sharing through questioning and answering processes is again supported by Constructivism proponents, who understand that social interaction is vital for active knowledge building. This assumption is also defended by some KM theories, claiming that knowledge is created through cycles of transformation between two types of knowledge: tacit and explicit knowledge. Up to now, research on KM has paid much attention to the formalization and exchange of explicit knowledge, in the form of documents or other physical artifacts, often annotated with metadata, and classified by taxonomies or ontologies. Investigations surrounding tacit knowledge have been so far scarce, perhaps by the complexity of the tasks of capturing and integrating such kind of knowledge, defined as knowledge about personal experience and values, usually confined on people’s mind. Taking a flexible approach on supporting this kind of knowledge conversion, KARe relies on the potential of social interaction underlying organizational practices to support knowledge creation and sharing. The global objective of this work is to support knowledge creation and sharing within an organization, according to its own natural processes and social behaviors. In other words, this work is based on the assumption that KM is better supported if knowledge is looked at from a constructivist perspective. To sum up, this thesis aims at: 1) Providing an agent-oriented approach to guide the creation and evolvement of KM initiatives, by analyzing the organizational potentials, behaviors and processes concerning knowledge sharing; 2) Developing the KARe recommender system, based on a semantically enriched Information Retrieval technique for recommending knowledge artifacts, supporting users to ask and answer to each others’ questions. These objectives are achieved as follows: - Defining the principles that characterize a Constructivist KM supporting environment and understanding how they may be used to support the creation of more effective KM solutions; - Providing an agent-oriented approach to develop KM systems. This approach is based on the integration of two different agent-oriented software engineering works, profiting from their strengths in providing a comprehensive methodology that targets both analysis and design activities; - Proposing and designing a socially aware agent-oriented recommender system both to exemplify the application of the proposed approach and to explore its potential on supporting knowledge creation and sharing. - Implementing an Information Retrieval algorithm to support the previously mentioned system in generating recommendations. Besides describing the algorithm, this thesis brings experimental results to prove its effectiveness

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    A simulation-based decision-support system for integration of human cognition into construction operation planning

    Get PDF
    The mental workload associated with work activities is a key factor affecting the performance of human resources in labor-intensive construction operations, in turn impacting work behavior. While most accidents in construction are caused by unsafe behavior, modeling behavior in construction projects remains challenging and relatively unexplored. Here, human cognition is incorporated into the design of construction operations to analyze the mental task demands associated with various designs. A framework that integrates cognitive modeling with a simulation-based decision-support system capable of analyzing existing and non-existing operations in a simple and automated manner is proposed. The superiority of the proposed framework is that it eliminates the need for prior knowledge of the underlying cognitive theories. Functionality of the developed framework was evaluated following its application to a case study of welding operations, where the proposed method was shown to successfully evaluate the trade-off between mental workload and productivity for different operation scenarios

    The Structured Process Modeling Theory (SPMT): a cognitive view on why and how modelers benefit from structuring the process of process modeling

    Get PDF
    After observing various inexperienced modelers constructing a business process model based on the same textual case description, it was noted that great differences existed in the quality of the produced models. The impression arose that certain quality issues originated from cognitive failures during the modeling process. Therefore, we developed an explanatory theory that describes the cognitive mechanisms that affect effectiveness and efficiency of process model construction: the Structured Process Modeling Theory (SPMT). This theory states that modeling accuracy and speed are higher when the modeler adopts an (i) individually fitting (ii) structured (iii) serialized process modeling approach. The SPMT is evaluated against six theory quality criteria
    • …
    corecore