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Abstract 
The mental workload associated with work activities is a key factor affecting the performance of human resources in labor-
intensive construction operations, in turn impacting work behavior. While most accidents in construction are caused by unsafe 
behavior, modeling behavior in construction projects remains challenging and relatively unexplored. Here, human cognition is 
incorporated into the design of construction operations to analyze the mental task demands associated with various designs. A 
framework that integrates cognitive modeling with a simulation-based decision-support system capable of analyzing existing 
and non-existing operations in a simple and automated manner is proposed. The superiority of the proposed framework is that 
it eliminates the need for prior knowledge of the underlying cognitive theories. Functionality of the developed framework was 
evaluated following its application to a case study of welding operations, where the proposed method was shown to successfully 
evaluate the trade-off between mental workload and productivity for different operation scenarios.  
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1. Introduction 
By directly impacting safety and productivity of 
operations, human resources have a crucial role in the 
success of labor-intensive construction projects (El-
Gohary and Aziz, 2013; Golabchi et al., 2018). A primary 
contributor to human performance and behavior is the 
mental workload associated with work activities, as it 
impacts decision-making behavior (Khosravi et al., 
2013). However, modeling decision-making behavior 
that impacts work performance, particularly in the 
areas of safety and productivity, is challenging and 
must be further explored.  

Despite numerous studies attempting to improve 
construction safety, accident rates in the construction 

sector remain one of the highest among major industries 
(Choi et al., 2011). Unsafe work behavior continues to be 
identified as a leading cause of construction job site 
accidents (Fang et al., 2016). The traditional approach to 
safety management (i.e., the normative paradigm) 
focuses on compliance with safety regulations and 
ignores the impact of production system features on work 
behavior. As a result, the impact of behavior on errors, 
accidents, and performance is regularly overlooked 
(Mitropoulos et al., 2009). Accordingly, a new approach 
that considers the impact of production factors and task 
features on work behavior and unsafe acts is needed. Since 
production factors impact work behavior through mental 
workload (Mitropoulos and Memarian, 2013), such an 
approach must incorporate mental workload into the 
design and planning of operations to mitigate or prevent 
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unsafe and unproductive behaviors (DiDomenico and 
Nussbaum, 2011). 

Cognitive modeling has the potential to reliably 
model decision-making behavior through the 
evaluation of workers’ mental states. Construction 
tasks involve substantial mental demands 
(DiDomenico and Nussbaum, 2008; Mitropoulos and 
Memarian 2013), and analyzing these demands is 
necessary to predict how workers’ cognitive states will 
affect their work behavior. For instance, high-task 
demands that cause overload, low-task demands that 
cause underload, mental fatigue, monotony, and 
reduced vigilance (Nachreiner, 1995) can all lead to 
decreased performance and safety. Since cognitive 
modeling deals with the characteristics of a work 
environment and its impact on human behavior 
(Rasmussen et al., 1994), it can be incorporated into the 
design of construction operations to identify undesired 
task demands (i.e., higher or lower than acceptable 
thresholds) that result in decreased safety and 
performance. 

Existing methods for incorporating human 
cognition into the design of labor-intensive 
construction operations are limited by the requirement 
of practitioners to have prior knowledge of the 
underlying cognitive theories to effectively leverage 
the benefits of these method. In contrast, this study has 
developed a decision-support system (DSS) where 
cognitive modeling is integrated into construction 
operation planning. To this end, a simulation-based 
DSS, which enables a simple, automated modeling and 
analysis of existing or non-existing operations without 
requiring extensive knowledge of cognitive models, is 
proposed. Here, the simulation component enables 
evaluation of various scenarios, which allows 
practitioners to evaluate the trade-off between mental 
workload and productivity for different operation 
plans. Using these results, practitioners can determine 
which scenario is most efficient from the perspectives 
of both safety and productivity. 

The next sections describe the research background 
and the methodology for developing the DSS. Then, 
implementation of the developed DSS in a case study of 
welding operations is demonstrated. Finally, the 
discussion and conclusions are presented.  

2. Research background 
Despite substantial efforts to improve safety in the 
construction industry, the rates of accidents, injuries, 
and fatalities remain high (BLS, 2018; OSHA, 2018; 
Socias-Morales et al., 2018). Previous studies have 
shown that unsafe behavior is a leading cause of most 
construction job site accidents (Fang et al., 2016; Bohm 
and Harris, 2010; Haslam et al., 2005; Suraji et al., 2001). 
Many conventional approaches have focused on 
compliance with safety rules and regulations. However, 
they often fail to consider how (1) characteristics of the 
production system impact work behaviors and affect the 

potential for errors (Mitropoulos et al., 2009) and (2) the 
influence of work practices and procedures impact work 
behavior (Cupido, 2009). Accordingly, unsafe behaviors 
must be prevented by eliminating root causes and 
reducing the potential for unsafe acts through the 
intentional design of construction operations. 

2.1. Mental workload and cognitive modeling 

One of the main contributors to unsafe behavior is the 
amount of mental workload associated with a task 
(Khosravi et al., 2013). Mental workload, which is a 
function of an individual’s cognitive capacity as well as 
task demand, can be defined as the ratio of mental 
resources required to carry out an activity compared to 
the total mental resources available (Carswell et al., 
2005). Both high and low workloads have been shown 
to result in decreased performance, increased errors, 
and additional unsafe acts (Mitropoulos and 
Memarian, 2013). Since construction operations 
involve substantial mental demands (DiDomenico and 
Nussbaum, 2008; Mitropoulos and Memarian, 2013), 
understanding and analyzing cognitive task demand is 
critical for predicting the cognitive performance of 
operators and improving worker performance. Tasks 
that cause overload and underload can be mitigated or 
avoided by using cognitive modeling to evaluate 
demands and (re)design operations.  

Cognitive theories have been primarily developed 
and applied to other sectors, such as the aviation 
(Seamster and Redding, 2017), transportation (Recarte 
and Nunes, 2003), and power plant (Boy and Schmitt 
2013) industries. The construction industry can also 
benefit from applying human cognition to design 
operations (Saurin et al., 2008; Mitropoulos et al., 
2009). A few studies have explored the use of cognitive 
modeling and cognitive systems engineering in 
construction. For example, Fang et al. (2016) developed 
a cognitive model of construction workers’ unsafe 
behavior to represent workers’ cognitive processes 
when facing potential hazards. Dadi et al. (2014) 
investigated the cognitive workload demand of 
different engineering information formats. 
Mitropoulos and Memarian (2013) explored task 
demands of masonry work and its impact on 
performance. Saurin et al. (2008) showed how some 
important safety management practices (e.g., safety 
planning, proactive performance measurements, 
identification and monitoring of pressures, etc.) can be 
improved based on cognitive systems engineering 
principles. These studies demonstrate the benefits of 
applying cognition research to construction operation 
planning to improve safety. However, research in 
human cognition and its application in the industry is 
still in its infancy (Fang et al., 2016; Dadi et al., 2014; 
Mitropoulos et al., 2009; Saurin et al., 2008). Unlike 
physical demands, most construction safety studies 
have not considered cognitive issues, such as mental 
workload and task demands, resulting from work 
scenarios and the environment (Saurin et al., 2008). 
Thus, a systematic approach for evaluating 
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construction task demands is required to understand 
and prevent unsafe behavior and errors (Mitropoulos 
and Memarian, 2013). This study intends to provide 
such systematic means for designing construction 
operations by understanding how the process design 
impacts workers’ mental workloads and, consequently, 
increases the likelihood of accidents. 

2.2. Productivity versus safety 

Since safety performance is highly correlated to 
productivity (Hallowell, 2011), one of the main 
concerns in construction practice is the ongoing 
tension between safety and productivity in the 
workplace (Mitropoulos et al., 2009). Production 
demand directly impacts safety performance through 
work pressures that result in hazardous situations and 
adversely affect work behavior, thereby increasing the 
likelihood of accidents (Mitropoulos and Cupido, 2009; 
Mitropoulos et al., 2009; Goldenhar et al., 2003). Thus, 
because of production pressures, improvements made 
to safety through new work methods tend to be 
ineffective due to negative impacts on task demands 
and mental workload (Mitropoulos et al., 2009).  

Understanding the impact of work practices on task 
demands and the likelihood of errors and accidents is 
crucial to ensure safe and productive operations 
(Mitropoulos et al., 2009). Work design and planning 
must incorporate the evaluation of task demands and 
mental workload to identify tasks that encompass 
higher likelihoods of errors (Mitropoulos and 
Memarian, 2013). This study proposes an approach to 
analyze the relationship between productivity and 
safety by simultaneously evaluating the impact of work 
design on mental workload and performance. Thus, 
this approach enables modeling of workplaces and 
operations that decrease the likelihood of errors and 
accidents while improving productivity. 

2.3. Integrating cognitive modeling into simulation-
based DSS 

DSSs have evolved as computer-based tools that 
facilitate analysis and decision-making for 
construction operations. With a DSS, users can analyze 
various scenarios and make more informed decisions 
by integrating data with analytical and heuristic 
models (Chau et al., 2003; Leu et al., 2000). DSSs have 
been shown to be effective for modeling various aspects 
of construction operations, such as project 
management (Zavadskas et al., 2012), prefabrication 
(Hwang et al., 2018), infrastructure management (Park 
and Kim, 2013), safety monitoring (Cheng and Ko, 
2002), and safety planning (Kim et al., 2018), with the 
aim of improving productivity and safety in 
construction (Mahfouz, 2012; Cho and Hastak, 2012; 
Tam et al., 2002). Despite the effectiveness of DSSs in 
improving productivity and safety through better 
decision-making, the impact of human cognition has 
often been overlooked in construction operation 
planning (Saurin et al., 2008).  

Leveraging DSSs for designing work systems and 
production practices during the planning phase—
before workers are exposed to demanding operations—
can facilitate decision-making and reduce complexity 
and uncertainty of operations. Simulation modeling 
can represent characteristics of the work system and its 
elements in a manageable scale to observe the 
feasibility of different work scenarios. Furthermore, 
simulation modeling is a highly effective tool to 
analyze and plan for productivity (Dozzi and AbouRizk, 
1993). In particular, a simulation-based DSS can be 
effective to model human cognition and workload 
demands due to the harmony between simulation and 
cognitive modeling. Cognitive modeling focuses on the 
how a work system impacts decision-making, work 
behaviors, and likelihood of errors (Mitropoulos et al., 
2009), where such errors indicate the existence of an 
issue within the work system (Dekker, 2006). Thus, 
integrating cognition and simulation enables 
analyzing work systems in terms of mental workload 
and productivity, and provides insight into how the 
design of work systems can reduce the likelihood of 
errors and accidents. 

3. Methodology 
A DSS framework that incorporates human cognition 
into simulation modeling to evaluate the mental 
workload and productivity of labor-intensive 
construction operations, while concurrently planning 
safe and efficient operations, is proposed. The 
structure of the framework and a flowchart of the 
decision-making process is illustrated in Figure 1. 
First, as shown in Figure 1, a work operation design that 
represents either an existing or non-existing operation 
is analyzed to identify characteristics, such as sequence 
and duration of activities or required resources. Then, 
the analyzed information is used to evaluate the design 
based on cognitive models to determine the 
corresponding task demand and cognitive state of the 
operator. The cognitive model is detailed in Section 3.1. 
The results of this evaluation are then used to 
determine if the obtained mental workload levels fall 
within acceptable thresholds. These thresholds are 
identified based on the cognitive model used. In this 
study, the Cognitive Task Load (CTL) model was 
adopted as a cognitive model; the thresholds of this 
model are illustrated in Figure 2 and described in 
Section 3.1. Finally, the operator’s productivity 
performance (measured by duration of operations) and 
safety (measured through mental workload state) are 
obtained using the simulation model. A special purpose 
simulation tool was developed to capture this 
information. Details of the developed simulation tool 
are provided in Section 3.2. This information can then 
be used to redesign the operation or evaluate different 
scenarios to achieve an optimum design through 
experimental scenario analysis using simulation. 
Implementation of the framework in a case study is 
demonstrated in Section 4. 
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3.1. Cognitive task load model 

To evaluate the mental workload associated with manual 
tasks, different methods have been developed, including 
subjective and objective methods. Subjective methods 
involve assessing the operator’s judgment of the 
operation’s cognitive workload (Reid and Nygren, 1988). 
While these methods are appropriate for overall ratings, 
they are not suitable at a detailed work level, as operator 
biases may decrease accuracy of the outputs (Moray, 
2013). Rather, these techniques are best suited for existing 
operations and are limited for analyzing operations that 
do not currently exist. Consequently, objective methods 
are more suitable for the purposes of this study. 

The Cognitive Task Load (CTL) model (Neerincx, 
2003) was adopted for this study, as it provides an 
effective method to evaluate mental workload of 
activities without requiring operator feedback. The CTL 
model evaluates task demands and identifies associated 
cognitive issues (e.g., cognitive lock-up resulting from 
excessive workload or lower vigilance resulting from 
highly-repetitive tasks) (Colin et al., 2012). As a result, 
the impact of a work system and task design on operator 
performance and mental effort can be evaluated. The 
CTL model classifies an operation by three attributes 
that evaluate the operator’s cognitive state:  

1. Time occupied (TO), which is the ratio between the 
time it takes the operator to carry out a task and 
the total time;  

2. Task set switches (TSS), which is the number of 
times that the operator switches between tasks; 
and  

3. Level of information processing (LIP), which adapts 
Rasmussen’s skills-rules-knowledge model of 
human performance (Rasmussen, 1983). 

After acquiring the values for the TO, TSS, and LIP 
variables, the mental state of the operator is obtained 
through the cube model representation shown in Figure 
2. The transparent areas of the cube are acceptable 
regions, and the solid areas represent cognitive issues 
that can impact the operator’s performance and safety. 
Based on the resulting mental state returned by the CTL 
model, interventions are taken (e.g., modifying design) 
to address the identified cognitive issue. 

This study incorporates the CTL model into a 
simulation modeling environment, and the TO and TSS 
variables are obtained automatically through the model 
without manual input. Furthermore, the calculated 
mental workload of the operation automatically updates 
the rest of the simulation model and provides more 
reliable results in terms of operator efficiency and 
overall productivity. By integrating the CTL model with 
simulation, construction practitioners can model tasks 
and operations and obtain the mental workload of their 
design without requiring prior knowledge of the CTL 
model or the principles of human cognition theories. 

3.2. Special Purpose Simulation for Human 
Cognition Modeling 

The Simphony (Hajjar and AbouRizk, 1996) modeling 
environment is used to integrate the CTL model with 

simulation. The Simphony environment provides a 
structured approach to Special Purpose Simulation 
(SPS) modeling. As a result of SPS modeling, precise 
simulation modeling can be carried out with less time 
and effort compared to general-purpose simulation, 
due to decreased complexity and abstraction (Chua and 
Li, 2002). An SPS tool that uses the CTL model as part 
of the simulation to provide feedback on the mental 
state of the operator was developed. The template 
includes a composite element, task element, and idle 
element. The modeling elements with their inputs and 
outputs are described in Table 1, along with an example 
of the interface in Figure 3. As shown in Figure 3, the 
composite element represents an operation that 
includes a sequence of tasks (e.g., one full cycle of an 
operation). These composite elements for different 
operations connect to each other to represent an 
operator’s entire working shift or can be used as part of 
a larger simulation model of a construction process. 
The task elements inside a composite element 
represent the individual tasks that an operator carries 
out to complete the operation. LIP and task duration are 
inputs into the task element, while the idle element 
only has duration as its input. These elements can also 
be used in conjunction with any simulation model 
created using the general template in Simphony. After 
running the model, the cognitive load of each operation 
is calculated at the operation level and presented as an 
output, along with the total duration of manual tasks; 
idle times; and average LIP, TO, and TSS. 

4.  Case study 

To evaluate functionality, the framework was 
implemented to model a steel welding operation. The 
welding operation was selected, as it represents one of 
the most critical and labor-intensive jobs on many 
construction sites in terms of productivity and safety. 
In a welding operation, a welder carries out various 
activities (fitting, grinding, measuring, welding) that 
require considerable mental effort. Thus, the welder’s 
cognitive state is important and typically has a direct 
impact on the success of the overall operation. The 
framework was adapted to model and evaluate the 
cognition load of the operator during the existing 
welding operations (i.e., base scenario), as well as to 
analyze different scenarios of the operation to find the 
best in terms of both productivity and mental workload. 
The welder’s tasks during a welding cycle include 
reviewing blueprints, making measurements, marking 
the steel beam, carrying steel plates, placing plates in 
designated spots, grinding the plates, and welding 
plates to the beam. In the case study, the welder welds 
six plates to a steel beam during the modeled operation; 
Figure 5 shows the welding workstation.  

The existing welding operation was modeled as the 
base scenario. To model the base scenario in the 
simulation environment, a full cycle of the operation 
was observed and videotaped. The video recording was 
used to extract the duration of different tasks and to 
model them accordingly. 
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Figure 1. Framework of simulation-based DSS for human cognition.

 
Figure 2. 3D representation of the cognitive load space of the CTL 
model (adapted from Neerincx, 2003). 

During the base scenario, the welder first reviewed 
the blueprints to understand the location and 
orientation of each plate and then marked the beam 
accordingly. This process of reviewing the blueprint and 
marking the beam was repeated six times (once for each 
plate). The welder then moved the plates to spread them 
out on the beam and ground them. Then, they moved 
each plate into its appropriate location on the beam, 
carried out the measurements, marked the beam, and 
repeated this process for all of the plates. Finally, the 
welder hammered each plate to fix it into the exact 
location, performed the final measurements, and 
welded the plates. This cycle was also repeated six times.  

The result from the simulation model for the base 
scenario is presented in Table 2. The simulation model 
outputs the duration of the operation, the corresponding 
LIP, TO, and TSS for the entire cycle, and the overall 
cognition load. The output enables planning for other 
scenarios that address existing cognition issues while 
also evaluating the efficiency of each. As shown in Table 
2, the base scenario results in a cognition overload. Thus, 
other scenarios must be modeled and analyzed to 

address this mental state. Figure 6 shows the process of 
designing different potential scenarios. 

To address the mental overload observed in the base 
scenario, the model was modified to incorporate more 
rest (idle time) and to reduce the level of information 
processing required, as shown in Figure 6. These 
changes to the base scenario resulted in a cognitive state 
of underload while increasing the duration of the 
operation (Scenario 1). For the next scenario (Scenario 
2), the given rest time was reduced, resulting in a 
cognitive state of vigilance. For Scenario 3, the amount 
of time spent on low LIP tasks was reduced, which 
resulted in a state of cognitive lock-up. Returning the 
rest time to the base scenario resulted in an acceptable 
cognitive state, but also a longer duration, which implies 
lower productivity (Scenario 4). However, the 
simulation environment enabled the restructuring of 
tasks to achieve an acceptable cognitive state and 
potentially improve productivity (Scenario 6). Figure 7 
shows modifications in the design of the operation to 
achieve an acceptable cognition load and higher 
productivity. The scenario of adding another worker to 
assist the welder was also modeled and analyzed 
(Scenario 5), which resulted in acceptable cognitive state 
for the welder, but cognitive underload for the helper. 
Modeling availability of the resources and the new 
arrangement of the entire operation for both workers is 
also an important factor in practice, which is possible 
through the simulation modeling of the welding 
operation as part of the entire operation. The outputs of 
each scenario are summarized in Table 2 and visualized 
in Figure 8.  

5. Discussion 
The results of the case study demonstrate that the 

proposed integration of cognitive modeling into 
simulation-based DSSs can provide an effective means 
of modeling construction operations for safety and 
productivity analysis. Through the framework, the 
mental effort required, as well as the efficiency, of 
manual tasks can be more easily evaluated. 
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Figure 3. Example model representing the interface of the SPS template. 

 
Figure 4. Mental workload, potential issues, and possible interventions for an operator’s work schedule.

Table 1. Modeling elements of the developed SPS template. 

Modeling 
Element Interface Description Input Output 

Manual 
Operation 

 

 

Represents an 
operation and 
contains a 
series of tasks. 
The cognitive 
load is 
calculated at 
this level. 

• A sequence 
of manual 
tasks 

• Cognitive 
load 

• Total 
duration 

• Average 
LIP 

• Average 
TO 

• Average 
TSS 

Manual 
Task  

Represents a 
single task 
with a 
specified 
duration. 

• Duration 

• LIP 

• Total 
manual 
task 
duration 

Idle 
 

Represents 
the time the 
operator is 
idle.  

• Duration 
• Total idle 

time 
duration 

The following are some implications from the study: 

(1) The cognition load output from the simulation 
not only provides feedback on the mental effort 
required to carry out a manual task, but also serves as a 
basis to modify the design of the operation and evaluate 
the impact of these modifications on the worker’s 
mental state. In particular, the integrated simulation 
modeling component enables design and planning of 
operations and provides information on the 
productivity of various work methods. As shown in 
Figure 7, the simulation model can be a valuable tool to 
modify the design of an operation and evaluate the 
impact of the modifications. Accordingly, an output, 
such as Figure 8, can be achieved, allowing for the 
selection of the design with the highest productivity 
(i.e., lowest duration) and the most desirable level of 
mental effort required. In the welding operation of the 
case study, the mental effort required for the task is 
changed from cognitive overload to acceptable, and 
productivity is also increased by approximately 18%, as 
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shown in Table 2. The developed approach, therefore, 
integrates safety and productivity analysis and 
provides a new method for evaluating the correlation 
between both. It also enables the identification of 
production practices that decrease the likelihood of 
accidents while simultaneously improving 
productivity, thereby overcoming an existing challenge 
for construction researchers and practitioners (Cupido, 
2009).  

(2) The proposed approach was implemented on an 
existing labor-intensive operation (i.e., welding) as a 
case study to illustrate its application and 
effectiveness. However, the cognition-based 
simulation framework can be beneficial for modeling 
non-existing manual tasks (during the design phase), 
where limited information is available. Such an 
approach leverages the strength of simulation-based 
DSSs in allowing users to study various work situations 
that do not yet exist or are too difficult or expensive to 
manipulate (Shannon, 1998) without requiring 
previous knowledge of the underlying cognitive 
models. The results can justify the need for design 
adjustments to management by highlighting the 
impact of the changes on productivity—always a 
critical concern when applying new improvements for 
worker health and safety (Mitropoulos and Cupido, 
2009). As future work, this framework could be 
incorporated into simulation-based modeling of a 
Predetermined Motion Time System (PMTS) (Golabchi 
et al., 2016). Through integration with PMTSs, the 
model would only require a description of the manual 
process to be evaluated, allowing users to model any 
task without prior knowledge of cognitive models, 
PMTS, or duration of each work activity. In such a case, 
the LIP variable would also be obtained automatically 
through the simulation engine based on the motion 
type, and expert judgement would not be required 
during the modeling process.  

(3) While previous studies have indicated that 
designing operations that create high mental 

workloads should be avoided as much as possible, it is 
unrealistic to expect design professionals to 
understand the impact of their design on cognitive task 
demands (Mitropoulos and Memarian, 2013). The 
approach of this study addresses such concerns by 
providing feedback on the operator’s cognitive state 
during the design phase, which provides design 
professionals with insight into the impacts of their 
design on safety and productivity. 

 
Figure 5. Welding workstation. 

Table 2. Result of modeling different scenarios of welding operation. 

Scenario Duration 
(s) LIP TO TSS Cognition 

Base Scenario 1189 High High High OVERLOAD 

Scenario 1 1927 Low Low Low UNDERLOAD 

Scenario 2 1427 Low High Low VIGILANCE 

Scenario 3 1327 Low High High COGNITIVE 
LOCK-UP 

Scenario 4 1319 High Low High ACCEPTABLE 

Scenario 5 
 
 

Welder 1235 High Low High ACCEPTABLE 

Helper 264 Low Low Low UNDERLOAD 

Scenario 6 976 High High Low ACCEPTABLE 

 

 

Figure 6. Strategy of modeling different scenarios of welding operation. 
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Figure 7. Comparison of base scenario and optimized scenario of the welding operation (Scenario 6).

 

Figure 8. Comparison of different scenarios in terms of duration and 
cognitive load 

(4) This study used the CTL model to analyze the 
cognition load of manual tasks as an example of a 
simple, effective model, and validated it for operators 
in dynamic, high-demand work environments 
(Neerincx et al., 2009; Colin et al., 2012). More research 
is required to identify and develop cognition models 
that can accurately simulate construction activities 
that have varying degrees of repetitiveness and 
physical demand. Once identified, these models should 
be integrated into simulation models for construction 
planning.  

6. Conclusions 
This study proposes a framework for a simulation-
based decision-support system that integrates 
cognitive modeling into the design and planning of 

labor-intensive construction operations, thereby 
enabling the concurrent analysis of operations for both 
mental workload and productivity. The results from a 
welding operation indicate that an 18% increase in 
productivity can be obtained, while also mitigating the 
mental workload from a state of overload to within 
acceptable thresholds. The contributions of this study 
include: (1) providing a systematic approach to model 
and understand the impact of construction operation 
design and planning on mental workload; (2) 
proposing a simulation-based method for modeling 
mental task demands in an automated manner and 
without extensive expert knowledge; and (3) 
developing a framework to identify production factors 
and work practices that simultaneously improve safety 
while achieving high productivity. Using the proposed 
approach, construction practitioners can develop plans 
aimed at improving construction safety and 
productivity of workers during the early stage of a 
project—even as early as the pre-construction stage.  A 
limitation of the proposed approach is the need to 
manually adjust the operation plan to achieve an 
optimal design. Directions for future work include 
evaluating approaches to automate adjustments to the 
simulation model, incorporating PMTSs into the 
framework to improve the productivity analysis of 
non-existing operations, evaluating the suitability of 
different cognitive models for analyzing construction 
tasks, and assessing the framework by modeling more 
complicated tasks. 
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