86 research outputs found

    Assessing Coexistence of IEEE 802.15.4 Networks and IEEE 802.11b/g/n Networks - A Study of Interference Effects

    Get PDF
    The study of the coexistence capabilities of networks based on the IEEE 802.11 and IEEE 802.15.4 standards has long been of interest to researchers owing to the individual success of these two technologies in various applications of Internet of Things (IoT). Operating in the same Industrial-Scientific-Medical (ISM) band, their coexistence does not always yield satisfactory results. The performance of a network based on IEEE 802.15.4 standard has been shown to be significantly lowered in the presence of a strong IEEE 802.11 based network (Wireless LAN) to the extent that communication based on the IEEE 802.15.4 standard can be rendered impossible in certain scenarios. This work is an effort towards analyzing interference caused by the three non-overlapping channels 1, 6 and 11 of IEEE 802.11b/g/n on the usable 2.4GHz spectrum of IEEE 802.15.4 standard. Recommendations of plausible scenarios for successful coexistence of these two networking technologies have been made. Assessment of the performance of an IEEE 802.15.4 standard based network through the Packet Delivery Ratio (PDR) on various channels of operation has yielded valuable insights. The experiments carried out in real-world environment stand as datapoints in predicting and understanding the interference behavior in real-life applications

    Interference mitigation strategy design and applications for wireless sensor networks

    Get PDF
    The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard presents a very useful technology for implementing low-cost, low-power, wireless sensor networks. Its main focus, which is to applications requiring simple wireless connectivity with relaxed throughout and latency requirements, makes it suitable for connecting devices that have not been networked, such as industrial and control instrumentation equipments, agricultural equipments, vehicular equipments, and home appliances. Its usage of the license-free 2.4 GHz frequency band makes the technique successful for fast and worldwide market deployments. However, concerns about interference have arisen due to the presence of other wireless technologies using the same spectrum. Although the IEEE 802.15.4 standard has provided some mechanisms, to enhance capability to coexist with other wireless devices operating on the same frequency band, including Carrier Sensor Multiple Access (CSMA), Clear Channel Assessment (CCA), channel alignment, and low duty cycle, it is essential to design and implement adjustable mechanisms for an IEEE 802.15.4 based system integrated into a practical application to deal with interference which changes randomly over time. Among the potential interfering systems (Wi-Fi, Bluetooth, cordless phones, microwave ovens, wireless headsets, etc) which work on the same Industrial, Scientific, and Medical (ISM) frequency band, Wi-Fi systems (IEEE 802.11 technique) have attracted most concerns because of their high transmission power and large deployment in both residential and office environments. This thesis aims to propose a methodology for IEEE 802.15.4 wireless systems to adopt proper adjustment in order to mitigate the effect of interference caused by IEEE 802.11 systems through energy detection, channel agility and data recovery. The contribution of this thesis consists of five parts. Firstly, a strategy is proposed to enable IEEE 802.15.4 systems to maintain normal communications using the means of consecutive transmissions, when the system s default mechanism of retransmission is insufficient to ensure successful rate due to the occurrence of Wi-Fi interference. Secondly, a novel strategy is proposed to use a feasible way for IEEE 802.15.4 systems to estimate the interference pattern, and accordingly adjust system parameters for the purpose of achieving optimized communication effectiveness during time of interference without relying on hardware changes and IEEE 802.15.4 protocol modifications. Thirdly, a data recovery mechanism is proposed for transport control to be applied for recovering lost data by associating with the proposed strategies to ensure the data integrity when IEEE 802.15.4 systems are suffering from interference. Fourthly, a practical case is studied to discuss how to design a sustainable system for home automation application constructed on the basis of IEEE 802.15.4 technique. Finally, a comprehensive design is proposed to enable the implementation of an interference mitigation strategy for IEEE 802.15.4 based ad hoc WSNs within a structure of building fire safety monitoring system. The proposed strategies and system designs are demonstrated mainly through theoretical analysis and experimental tests. The results obtained from the experimental tests have verified that the interference caused by an IEEE 802.11 system on an IEEE 802.15.4 system can be effectively mitigated through adjusting IEEE 802.15.4 system s parameters cooperating with interference pattern estimation. The proposed methods are suitable to be integrated into a system-level solution for an IEEE 802.15.4 system to deal with interference, which is also applicable to those wireless systems facing similar interference issues to enable the development of efficient mitigation strategies

    Co-existence of wireless communication systems in ISM bands: An analytical study

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Coexistence and interference mitigation for WPANs and WLANs from traditional approaches to deep learning: a review

    Get PDF
    More and more devices, such as Bluetooth and IEEE 802.15.4 devices forming Wireless Personal Area Networks (WPANs) and IEEE 802.11 devices constituting Wireless Local Area Networks (WLANs), share the 2.4 GHz Industrial, Scientific and Medical (ISM) band in the realm of the Internet of Things (IoT) and Smart Cities. However, the coexistence of these devices could pose a real challenge—co-channel interference that would severely compromise network performances. Although the coexistence issues has been partially discussed elsewhere in some articles, there is no single review that fully summarises and compares recent research outcomes and challenges of IEEE 802.15.4 networks, Bluetooth and WLANs together. In this work, we revisit and provide a comprehensive review on the coexistence and interference mitigation for those three types of networks. We summarize the strengths and weaknesses of the current methodologies, analysis and simulation models in terms of numerous important metrics such as the packet reception ratio, latency, scalability and energy efficiency. We discover that although Bluetooth and IEEE 802.15.4 networks are both WPANs, they show quite different performances in the presence of WLANs. IEEE 802.15.4 networks are adversely impacted by WLANs, whereas WLANs are interfered by Bluetooth. When IEEE 802.15.4 networks and Bluetooth co-locate, they are unlikely to harm each other. Finally, we also discuss the future research trends and challenges especially Deep-Learning and Reinforcement-Learning-based approaches to detecting and mitigating the co-channel interference caused by WPANs and WLANs

    WLAN CSMA/CA Performance in a Bluetooth Interference Environment

    Get PDF
    IEEE 802.11 WLANs and Bluetooth piconets both operate in the 2.4 GHz Industrial Scientific and Medical (ISM) radio band. When operating in close proximity, these two technologies interfere with each other. Current literature suggests that IEEE 802.11 (employing direct sequence spread spectrum technology) is more susceptible to this interference than Bluetooth, which uses frequency hopping spread spectrum technology, resulting in reduced throughput. Current research tends to focus on the issue of packet collisions, and not the fact that IEEE 802.11 may also delay its transmissions while the radio channel is occupied by a Bluetooth signal. This research characterizes previously neglected transmission delay effects. Through analytic modeling and simulation, the impact of this interference is determined to identify all facets of the interference issues. Results show that Bluetooth-induced transmission delays improve network performance in many scenarios. When isolating delay effects, the likelihood that WLAN STA signals collide with each other decreases, causing an overall increase in normalized throughput and decrease in expected delay for many network configurations. As wireless communication technologies become an integral part of national defense, it is imperative to understand every performance characteristic. For instance, if the Air Force uses IEEE 802.11 and wants to incorporate a Bluetooth piconet as well, the impact of concurrent operation should be known beforehand. Since IEEE 802.11 and Bluetooth technologies could become vital for the Air Force to maintain its position of air superiority, all the strengths, weaknesses, and limitations of these systems should be understood

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    An Analysis of Electromagnetic Interference (EMI) of Ultra Wideband(UWB) and IEEE 802.11A Wireless Local Area Network (WLAN) Employing Orthogonal Frequency Division Multiplexing (OFDM)

    Get PDF
    Military communications require the rapid deployment of mobile, high-bandwidth systems. These systems must provide anytime, anywhere capabilities with minimal interference to existing military, private, and commercial communications. Ultra Wideband (UWB) technology is being advanced as the next generation radio technology and has the potential to revolutionize indoor wireless communications. The ability of UWB to mitigate multipath fading, provide high-throughput data rates (e.g., greater than 100 Mbps), provide excellent signal penetration (e.g., through walls), and low implementation costs makes it an ideal technology for a wide range of private and public sector applications. Preliminary UWB studies conducted by The Institute for Telecommunications Science (ITS) and the Defense Advanced Research Projects Agency (DARPA) have discovered that potential exists for harmful interference to occur. While these studies have provided initial performance estimates, the interference effects of UWB transmissions on coexisting spectral users are largely unknown. This research characterizes the electromagnetic interference (EMI) effects of UWB on the throughput performance of an IEEE 802.11a ad-hoc network. Radiated measurements in an anechoic chamber investigate interference performance using three modulation schemes (BPSK, BPPM, and OOK) and four pulse repetition frequencies over two Unlicensed National Information Infrastructure (U-NII) channels. Results indicate that OOK and BPPM can degrade throughput performance by up to 20% at lower pulse repetition frequencies (PRFs) in lower U-NII channels. Minimal performance degradation (less than one percent) due to interference was observed for BPSK at the lower PRFs and higher U-NII channels

    Evaluation of Wireless Sensor Networks Technologies

    Get PDF
    Wireless sensor networks represent a new technology that has emerged from developments in ultra low power microcontrollers and sophisticated low cost wireless data devices. Their small size and power consumption allow a number of independent ‘nodes’ (known as Motes) to be distributed in the field, all capable of ad-hoc networking and multihop message transmission. New routing algorithms allow remote data to be passed reliably through the network to a final control point. This occurs within the constraints of low power RF transmissions in a congested 2.4GHz radio spectrum. Wireless sensor network nodes are suitable for applications requiring long term autonomous operation, away from mains power supplies, such as environmental or health monitoring. To achieve this, sophisticated power management techniques must be used, with the units remaining ‘asleep’ in ultra low power mode for long periods of time. The main aim of this research described in this thesis is first to review the area and then to evaluate one of the current hardware platforms and the popular software used with it called TinyOS. Therefore this research uses a hardware platform designed from University of Berkeley, called the TmoteSky. Practical work has been carried out in different scenarios. Using Java tools running on a PC, and customized applications running on the Motes, data has been captured, together with information showing topology configuration and adaptive routing of the network and radio link quality information. Results show that the technology is promising for distributed data acquisition applications, although in time critical monitoring systems new power management schemes and networking protocols to improve latency in the system will be required

    Modeling of Current Consumption in 802.15.4/ZigBee Sensor Motes

    Get PDF
    Battery consumption is a key aspect in the performance of wireless sensor networks. One of the most promising technologies for this type of networks is 802.15.4/ZigBee. This paper presents an empirical characterization of battery consumption in commercial 802.15.4/ZigBee motes. This characterization is based on the measurement of the current that is drained from the power source under different 802.15.4 communication operations. The measurements permit the definition of an analytical model to predict the maximum, minimum and mean expected battery lifetime of a sensor networking application as a function of the sensor duty cycle and the size of the sensed data
    corecore