1,423 research outputs found

    Coupled dynamics of node and link states in complex networks: A model for language competition

    Get PDF
    Inspired by language competition processes, we present a model of coupled evolution of node and link states. In particular, we focus on the interplay between the use of a language and the preference or attitude of the speakers towards it, which we model, respectively, as a property of the interactions between speakers (a link state) and as a property of the speakers themselves (a node state). Furthermore, we restrict our attention to the case of two socially equivalent languages and to socially inspired network topologies based on a mechanism of triadic closure. As opposed to most of the previous literature, where language extinction is an inevitable outcome of the dynamics, we find a broad range of possible asymptotic configurations, which we classify as: frozen extinction states, frozen coexistence states, and dynamically trapped coexistence states. Moreover, metastable coexistence states with very long survival times and displaying a non-trivial dynamics are found to be abundant. Interestingly, a system size scaling analysis shows, on the one hand, that the probability of language extinction vanishes exponentially for increasing system sizes and, on the other hand, that the time scale of survival of the non-trivial dynamical metastable states increases linearly with the size of the system. Thus, non-trivial dynamical coexistence is the only possible outcome for large enough systems. Finally, we show how this coexistence is characterized by one of the languages becoming clearly predominant while the other one becomes increasingly confined to "ghetto-like" structures: small groups of bilingual speakers arranged in triangles, with a strong preference for the minority language, and using it for their intra-group interactions while they switch to the predominant language for communications with the rest of the population.Comment: 21 pages, 15 figure

    Time scales of epidemic spread and risk perception on adaptive networks

    Full text link
    Incorporating dynamic contact networks and delayed awareness into a contagion model with memory, we study the spreading patterns of infectious diseases in connected populations. It is found that the spread of an infectious disease is not only related to the past exposures of an individual to the infected but also to the time scales of risk perception reflected in the social network adaptation. The epidemic threshold pcp_{c} is found to decrease with the rise of the time scale parameter s and the memory length T, they satisfy the equation pc=1T+ωTas(1eωT2/as)p_{c} =\frac{1}{T}+ \frac{\omega T}{a^s(1-e^{-\omega T^2/a^s})}. Both the lifetime of the epidemic and the topological property of the evolved network are considered. The standard deviation σd\sigma_{d} of the degree distribution increases with the rise of the absorbing time tct_{c}, a power-law relation σd=mtcγ\sigma_{d}=mt_{c}^\gamma is found

    From sparse to dense and from assortative to disassortative in online social networks

    Full text link
    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.Comment: 10 pages, 7 figures and 2 table

    Controllability of Social Networks and the Strategic Use of Random Information

    Get PDF
    This work is aimed at studying realistic social control strategies for social networks based on the introduction of random information into the state of selected driver agents. Deliberately exposing selected agents to random information is a technique already experimented in recommender systems or search engines, and represents one of the few options for influencing the behavior of a social context that could be accepted as ethical, could be fully disclosed to members, and does not involve the use of force or of deception. Our research is based on a model of knowledge diffusion applied to a time-varying adaptive network, and considers two well-known strategies for influencing social contexts. One is the selection of few influencers for manipulating their actions in order to drive the whole network to a certain behavior; the other, instead, drives the network behavior acting on the state of a large subset of ordinary, scarcely influencing users. The two approaches have been studied in terms of network and diffusion effects. The network effect is analyzed through the changes induced on network average degree and clustering coefficient, while the diffusion effect is based on two ad-hoc metrics defined to measure the degree of knowledge diffusion and skill level, as well as the polarization of agent interests. The results, obtained through simulations on synthetic networks, show a rich dynamics and strong effects on the communication structure and on the distribution of knowledge and skills, supporting our hypothesis that the strategic use of random information could represent a realistic approach to social network controllability, and that with both strategies, in principle, the control effect could be remarkable
    corecore