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Abstract
Inspired by language competition processes, we present amodel of coupled evolution of node and link
states. In particular, we focus on the interplay between the use of a language and the preference or
attitude of the speakers towards it, whichwemodel, respectively, as a property of the interactions
between speakers (a link state) and as a property of the speakers themselves (a node state).
Furthermore, we restrict our attention to the case of two socially equivalent languages and to socially
inspired network topologies based on amechanismof triadic closure. As opposed tomost of the
previous literature, where language extinction is an inevitable outcome of the dynamics, wefind a
broad range of possible asymptotic configurations, whichwe classify as: frozen extinction states,
frozen coexistence states, and dynamically trapped coexistence states.Moreover,metastable
coexistence states with very long survival times and displaying a non-trivial dynamics are found to be
abundant. Interestingly, a system size scaling analysis shows, on the one hand, that the probability of
language extinction vanishes exponentially for increasing system sizes and, on the other hand, that the
time scale of survival of the non-trivial dynamicalmetastable states increases linearly with the size of
the system. Thus, non-trivial dynamical coexistence is the only possible outcome for large enough
systems. Finally, we showhow this coexistence is characterized by one of the languages becoming
clearly predominant while the other one becomes increasingly confined to ‘ghetto-like’ structures:
small groups of bilingual speakers arranged in triangles, with a strong preference for theminority
language, and using it for their intra-group interactions while they switch to the predominant
language for communicationswith the rest of the population.

1. Introduction

Collective social phenomena have traditionally been studiedwithmodels based on node states [1].While the
analysis of dynamics based on link states has received increasing attention in the last decade [2–16], no attempt
has so far beenmade to combine the two approaches.We address this lack by studying amodel where both node
and link states are taken into account and characterized by distinct but coupled dynamics.We focus on language
competition, a process where both the characteristics of the speakers and the properties of their interactions play
a relevant role.

The study of language competition in processes of language contact addresses the dynamics of language use
inmultilingual social systems due to social interactions. Amain goal of the theoreticalmodeling of these
processes is to distinguish between themechanisms and conditions that lead to the coexistence of different
languages and those leading to the extinction of all but one of them. The focus of thefield is on language shift in
terms of users, rather than changes in the language itself (for an evolutionary approach to the latter see [17, 18]).
As a consequence, language is conceptualized as a discrete property of the speakers [19]. In recent years, a
number of contributions lying outside the realmof traditional sociolinguistics have addressed the problemof
language competition from alternative perspectives, using tools andmethods from statistical physics, nonlinear
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dynamics, and complex systems science [20–26].Much of this research stems from the seminal work byAbrams
and Strogatz [27] about the dynamics of endangered languages. Themodel proposed byAbrams and Strogatz
considers a binary-state society, where individuals can be either speakers of languageA or speakers of languageB.
Thus, by definition, thismodel can only account for societal bilingualism, i.e., for the coexistence of two
differentmonolingual groups [28]. Subsequent studies, on the contrary, have considered generalizations of the
originalmodel accounting for the existence of bilingual individuals [29–36]1. In particular, theAB-model was
proposed byCastelló et al [31] based on theworks ofWang andMinett [29]. It develops amodification of the
original, binary-state Abrams–Strogatzmodel to account for the case of two non-excluding options by
introducing a third, intermediate state (AB) to represent bilingual speakers.

An alternative,more natural way of accounting for bilingual speakers is to consider language as a property of
the interactions between individuals [15, 16]. In fact, while traditionally conceptualized as a property of the
speaker, the use of a language as ameans of communication can bemore clearly described as a feature of the
relationship between two speakers—a link state— than as an attribute of the speakers themselves—a node state
—. In thismanner, bilingualism is not anymore an ad-hoc intermediate state, but the natural consequence of
individuals using different languages in different interactions. Furthermore, this approach allows for amore
nuanced understanding of bilingualism: speakers are not only characterized by being bilinguals or not, but by a
certain degree of bilingualism, depending on the share of interactions in each language.

The study ofmodels and dynamics based on link states has received increasing attention from areas of
research such as social balance theory [2–8, 39], community detection [9–13], and network controllability [14].
While thesemodels set a precedent in the use of a link-state perspective, they are not suitable formodeling the
dynamics of competing languages: the two link states considered by social balance theory are not equivalent,
friendship and enmity playing rather different roles; no dynamics of the link states has been studied in the
context of community detection; and only continuous link states have been considered in network
controllability problems.More relevant in the context of language competition, two recent contributions have
addressed the study of link-state dynamics with binary, equivalent states. On the one hand, Fernández-Gracia
et al implemented amajority rule for link states [15],finding a broad distribution of non-trivial asymptotic
configurations characterized by the coexistence of both languages, including both frozen and dynamically
trapped configurations. Interestingly, these non-trivial asymptotic configurations are found to be significantly
more likely than under the traditionalmajority rule for node states in the same topologies [40–43]. On the other
hand, Carro et al [16] developed a coevolutionmodel that couples the aforementionedmajority rule dynamics of
link states with the evolution of the network topology. Depending on the ratio between the probabilities of these
two processes, the system is found to evolve towards different absorbing configurations: either a one-
component networkwith all links in the same state—extinction of one of the languages—or a network
fragmented in two components with opposite states—survival of both languages in completely segregated
communities.

We focus here on the fact that, while the use of a language can be clearly described as a property of the
interactions between speakers—link states—, there are certain features intrinsic to these speakers—node states
—which have a relevant influence on the language they choose for their communications. In particular, the
attitude of a speaker towards a given language—which determines her willingness to use it— is affected by
individual attributes such as her level of competence in that language, her degree of cultural attachment and
affinity with the social group using that language, and the strength of her sense of identity or belonging to that
group. For simplicity, we consider that all individual properties affecting language choice can be subsumed
under the concept of ‘preference’. At the same time, the evolution of the speakers’ individual preferences is, in
turn, affected by the languages used in their respective social neighborhoods. In thismanner, the problemof
language competition can be studied from the point of view of the intrinsically coupled evolution of language use
and language preference. Ultimately, this change of perspective can be regarded as a shift from a paradigm in
which language is considered only as a cultural or identity trait to one inwhich the tight entanglement with its
role as ameans of communication is also taken into account.

In order to address this intertwined dynamics of language use—as ameans of communication—and
language preference—as an attitude towards it—, we propose here amodel of coupled evolution of node and
link states. In particular, the use of two socially equivalent languages is represented by a binary-state variable
associated to the links. In addition, nodes are endowedwith a discrete real variable representing their level of
preference for one or the other language. The dynamics of link states results from the interplay between, on the
one hand, the tendency of speakers to reduce the cognitive effort or cost associatedwith switching between
several languages [44–47] and, on the other hand, their tendency to use their internally preferred language.

1
Interestingly, an alternativemodeling approach developed by Baggs and Freedman [37, 38] had already addressed the problemof

individual bilingualism from amacroscopic,mean-field perspectivemore than a decade before the introduction of the Abrams–Strogatz
model.
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Regarding the dynamics of node states, we assume that speakers update their preference towards the language
most commonly used in their respective social neighborhoods, i.e., the onemost frequently used by their
neighbors to communicate between themselves. In this way, node states influence the evolution of link states
and vice versa.

In the above describedmechanismof evolution of node states we implicitly assume that triangles—sets of
three nodes connectedwith each other—represent actual group relationships, in which each speaker is aware of
the interaction between the other two. Thus, we are led to focus on network topologies where triangles are
abundant, a topic that has received a great deal of attention throughout the last decade [48–50]. Interestingly, it
has been recently shown that real social networks are characterized by large clustering coefficients and, therefore,
contain a large proportion of triangles [51–55]. Triadic closure [56]—the principle that individuals tend tomake
new acquaintances among friends of friends—has been found to be a successfulmechanism in reproducing
these structural properties.While a number of different implementations of the triadic closuremechanismhave
been studied in different contexts [57–63], we focus here on a socially inspired network generation algorithm
proposed byKlimek andThurner [64], whose results have been validatedwith data from awell-knownmassive
multiplayer online game [5, 65–67]. Note, nonetheless, that in order to have awell-defined evolution of
speakers’ preferences, we introduce a smallmodification to the algorithm so as to ensure that every node belongs
to, at least, one triangle. Finally, note that we focus here onfixed topologies (for studies of coevolving networks
see [68–73]).

A broad range of possible asymptotic configurations is found, which can be divided into three categories:
frozen extinction of one of the languages, frozen coexistence of both languages, and dynamically trapped
coexistence of both languages. Furthermore,metastable states with non-trivial dynamics and very long survival
times are frequently found. The situations of coexistence (frozen, dynamically trapped, andmetastable) are
characterized by one of the languages becoming aminority but persisting in the formof ‘ghetto-like’ structures,
where predominantly bilingual speakers use it for the interactions among themselves—mostly triangular—but
switch to themajority language for communications with the rest of the system—generally non-triangular. A
system size scaling shows, on the one hand, that the probability of extinction of one of the languages vanishes
exponentially for increasing system sizes and, on the other hand, that the time scale of survival of the non-trivial
dynamicalmetastable states increases linearly with the size of the system. Thus, non-trivial dynamical
coexistence is the only possible outcome for large enough systems.

A detailed presentation of themodel is given in section 2, with a particular emphasis on the coupling between
the dynamics of link states and the dynamics of node states. The structural constraints imposed by the definition
of themodel are also described in this section, as well as the particularities of the networks used for the numerical
simulations. The different asymptotic configurations of themodel, as well as their respective probabilities, are
presented in section 3, while in section 4we study two different time scales characterizing the transient dynamics
of themodel before reaching these asymptotic configurations. In section 5we investigate the role of bilingual
speakers in sustaining the coexistence of both languages. A detailed comparisonwith the previously proposed
AB-model, which also takes into account the existence of bilingual speakers, is addressed in section 6. Finally,
some conclusions are drawn in section 7.

2. Themodel

Inspired by the aforementioned language competition processes, we consider a population ofN speakers and the
linguistic interactions between them—any social interactionmediated through language—, represented,
respectively, by the nodes and the links of a network.We focus on the competition between two socially
equivalent languages, that we label asA andB. On the one hand, each speaker i, with kineighbors in the network
of interactions, is characterized by a certain preference xi for languageA (node state), being ( )- x1 i its
preference for languageB. In particular, wemodel the preference xi as a discrete variable taking values

{ }Î ¼x k k0, 1 , 2 , , 1i i i , where xi=1 indicates an absolute or extreme preference for languageA and xi=0
an absolute or extreme preference for languageB. On the other hand, each interaction between speakers can take
place in one of the two possible languages, being thus each link i–j characterized by a binary variable Sij (link
state) taking the value =S 1ij if the language spoken isA and =S 0ij if languageB is used.

Finally, the states of nodes and links evolve asynchronously, i.e., a single node or link is updated at each time
step: with probability p a randomly chosen node is updated, andwith the complementary probability ( )- p1 a
randomly chosen link is updated. Therefore, the probability p sets the relationship between the time scale of
evolution of the speakers’ preferences and the time scale at which the language used in conversations changes.
Note that time ismeasured in the usualMonte Carlo steps, withNupdating events per unit time—whether node
or link updates.While the parameter p does have an effect on how fast the system reaches its asymptotic
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behavior, themain features of this asymptotic regime seem to be unaffected by it [74]. Thus, we focus here on the
particular case of equal probability of node and link updates, i.e., p=0.5.

2.1. Evolution of link states
The dynamics of link states—the language used in the interactions between speakers— results from the interplay
between twomechanisms. On the one hand, we assume that there is a cognitive effort or cost associatedwith the
use of several languages [44, 45], which leads speakers to try to use the same language in all their conversations.
As a consequence, the interaction between two given speakers tends to take place in the languagemost often used
by both of them in their conversations with other speakers. In particular, we can define for each link i–j the
majority pressure for languageA as the fraction of the total number ( ) ( )- + -k k1 1i j of interactionswith
other speakers inwhich languageA is used,

( )=
+ -

+ -
F

k k S

k k

2

2
, 1ij

A i
A

j
A

ij

i j

where ki
A stands for the number of interactions inwhich speaker iuses languageA, and ki for its total number of

interactions. On the other hand, speakers tend to use their internally preferred language: the higher their
preference for a given language, themorewilling they are to enforce its use in their conversations with other
speakers. Combining the preferences of both participants in each interaction i–j, we can define the link preference
for languageA as

( )( )
( )( )
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+ - -

+ - - >
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where the second case ensures thatPij is well-definedwhen there is a tie between two speakers with extreme
preferences for different languages (xi=0 and xj=1, or xi=1 and xj=0). This expression for Pij

A takes into
account the preferences of both nodes, xi and xj, in such away that it yields the value 1 if both nodes have
complete preference for languageA, = =x x 1i j , and it yields 0 if both nodes have null preference for it,

= =x x 0i j . If one of the nodes is neutral with respect to languageA, say =x 1 2i , then the link preference is
equal to the other node’s preference, xj. Finally, the definition is such that it satisfies the requirement

( ) ( )= - - -P x x P x x, 1 1 , 1ij
A

i j ij
A

i j reflecting the symmetry between the two languages. A schematic
example of the calculation of these two quantities is shown infigure 1.Note that themajority pressure and link
preference for languageB are, respectively, = -F F1ij

B
ij
A and = -P P1ij

B
ij
A.

When a link i–j is picked for updating, its new state is chosen according to the following rules: (i) if the sumof
themajority pressure and the link preference for languageA is larger than the corresponding sum for languageB,
then languageA is chosen; (ii) if, on the contrary, the sum is larger for languageB than it is for languageA, then
languageB is chosen; (iii) if there is a tie between both languages, then one of them is chosen at random.Given
the aforementioned symmetry between both languages, these rules can be formally written as

Figure 1. Schematic illustration of the evolution of link states. The use of the two competing languagesA andB is represented,
respectively, by red links and blue links, while the preferences of the speakers are represented by node colors ranging from red to blue
throughwhite. The interaction being updated is represented by a gray link.Only the linksmarked as bold are relevant for the particular
link update illustrated here.
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(see figure 1 for a schematic example of a link update). Note that, if the preferences of all the speakers are fixed as
1/2, then all link preferences are alsofixed as 1/2 andwe recover themajority rule for link states studied by
Fernández-Gracia et al [15]: the state of a link is updated to the state of themajority of its neighboring links.With
freely evolving preferences of the speakers, on the contrary, the threshold for a state to be considered amajority is
not anymore universal and fixed at 1/2, but becomes local and dynamic: the fraction of neighbors in stateB
needs to be larger than Pij

A for link i–j to change its state toB, while the fraction of neighbors in stateAneeds to be
larger than ( )= -P P1ij

B
ij
A for it to change its state toA. Finally, note that speakers with extreme preferences

(xi=0 or xi=1) impose their preferred language in all their conversations, except when they are faced by a
speakerwith an extreme preference for the other language, when there is an equilibriumbetween them and the
language for their interaction is chosen at random. Thus, we are implicitly assuming that all speakers are able to
use both languages, in line with themodels previously proposed in the literature.

2.2. Evolution of node states
Regarding the dynamics of node states, we assume that speakers update their preferences according to the
language that they observe their neighbors use between them—obviously, only thosewho are also neighbors of
each other. Thus, we implicitly assume that triangles represent actual group relationships, inwhich each speaker
is aware of the interaction between the other two (see [75] for a study on the relationship between communities
and triangles). In these terms, themore often the participants of the closer social group of a speaker—her
triangular relationships—use a given language to communicate between themselves, themore likely it is that the
speakerwill update her preference towards that language. In particular, when a node i is picked for updating, its
state xi evolves according to the following probabilities
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whereTi is the total number of links between neighbors of node i andTi
A is the number of those links in state 1,

i.e., those inwhich languageA is used (see figure 2 for a schematic example of a node update). Note that this
evolution is equivalent to a one-dimensional randomwalk in the discrete-state space { }Î ¼x k k0, 1 , 2 , , 1i i i

with a bias towards 0 or 1 given by the probabilities in equation (4). The fact that themodification of the
preference (D =x k1 i) is larger in nodes with fewer links can bemotivated by noting that they tend to have
fewer triangles and, therefore, each of themhas a stronger influence on the node.

2.3. Network structure
Themodel presented above imposes a structural constraint on the underlying network topology: in order for the
evolution of the speakers’ preferences to bewell-defined, each of themmust be part of, at least, one triangle. In
fact, it has been recently shown that real social networks are characterized by an abundance of triangles, related
to high values of the clustering coefficient [51–55]. Thus, we consider networkswith a large proportion of

Figure 2. Schematic illustration of the evolution of node states. The use of the two competing languagesA andB is represented,
respectively, by red links and blue links, while the preferences of the speakers are represented by node colors ranging from red to blue
throughwhite. Only the linksmarked as bold are relevant for the particular node update illustrated here.
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triangles [48–50]. In particular, we focus here on a socially inspired network generation algorithmproposed by
Klimek andThurner [64] and based on triadic closure, i.e., on the principle that individuals tend tomake new
acquaintances among friends of friends. Validatedwith data from awell-studiedmassivemultiplayer online
game [5, 65–67], this network generationmodel involves three differentmechanisms: random link formation,
triadic closure—link formation between nodeswith a commonneighbor—, and node replacement—removal
of a nodewith all its links and introduction of a newnodewith a certain number of links.

Bearing inmind the structural constraint imposed by ourmodel, and noticing that the node replacement
mechanismmight lead to some nodes losing all their triangles, we introduce amodification of the algorithm so
as to avoid removing all the triangles from any node. Namely, when the removal of a nodewould lead to some of
its neighbors losing all their triangles, these neighbors are arranged in triangles between themselves, or with
randomly chosen nodeswhen necessary. Furthermore, the newnode is introduced as a triangle by initially
linking it with a randomnode and one of its neighbors. Finally, we use the same parameter values found by
Klimek andThurner [64]when calibrating their algorithm to the friendship network of the above-mentioned
online game: a probability of triadic closure c=0.58 (being - c1 the probability of random link formation)
and a probability of node replacement r=0.12. The degree distribution and the scaling of the average clustering
coefficient as a function of the degree are shown infigure 3 for the networks obtained in thismanner. Afit of the
degree distribution to a q-exponential function, ( ) ( )µ -P k e bkq with ( ) ( ( ) )( ( ))= + - -e x q x1 1q

q1 1 , leads
to a value of q compatible with a purely exponential decay ( =q 1.0096, see panel (a)). Regarding the average
clustering coefficient as a function of the degree, afit to a power-law decay leads to an exponent slightly smaller
than one (b = 0.9548, see panel (b)). Comparing these results with those presented byKlimek andThurner [64]
(with fitting parameters q=1.1162 and b = 0.693), we conclude that the describedmodification does not
affect the general characteristics of the networks created, but it does have an effect on the specific values of the
different scaling exponents.

3. Transient dynamics and asymptotic configurations

Bymeans of numerical simulations, we study the coupled dynamics of node and link states described above. Let
us start by introducing three differentmeasures characterizing the state of the system at any given time. Firstly,
bearing inmind thatwe are interested here in the survival of languages regarding their actual use in the
interactions between speakers, we can define an order parameter ρ in terms of link states. In particular, we define
ρ as the density of nodal interfaces [15, 16], i.e., the fraction of pairs of connected links—links sharing a node—
that are in different states,

( )
( )å

å
r =

-
=

=

k k

k k 1 2
, 5i

N
i
A

i
B

i

N
i i

1

1

where ki is the degree of node i, and ki
A B is the number ofA/B-links connected to node i. The order parameter

ρ, by definition [ ]r Î 0, 1 , is thus ameasure of the local order in the system, becoming r = 0 when all
connected links share the same state and r = 1 2 for a randomdistribution of link states. Note that, defined as
such, the order parameter ρ can also be understood as the usual density of active links—fraction of links
connecting nodeswith different states—in the line-graph of the original network [15, 16, 76–79].

Figure 3.Panel (a): degree distribution and fit to a q-exponential function (for k 3). Panel (b): average clustering coefficient as a
function of the degree and fit to a power-law function (for k 5). 10000 realizations of the network generation algorithmwere used.
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Secondly, we introduce the fraction of links in theminority language,m, as an alternative, non-localmeasure
characterizing the system in terms of link states,

( )

å
å å å

å
å

=

⎧

⎨
⎪⎪

⎩
⎪⎪

m

k

k
k k

k

k

, if ,

, otherwise.
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i i
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i i i
i
A

i
i
B

i i
B

i i

Note that theminority language is thereby defined as that which is less used in interactions between speakers—
fewer links in the corresponding state, regardless of the total number of those speakers. In this way, even if a
majority of the population uses a certain language in some of their interactions, wewill still consider it to be the
minority language if only aminority of the total number of interactions actually take place in that language. By
definition, [ ]Îm 0, 1 2 .

Finally, we can characterize the system in terms of node states by introducing the average preference of the
speakers for theminority language, xM,

( )
( )

å å å

å
=

-

⎧
⎨
⎪⎪

⎩
⎪⎪

x
N

x k k

N
x

1
, if ,

1
1 , otherwise,

7i
i

i
i
A

i
i
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i
i

M

where, as before, theminority language is identified according to the fraction of interactions inwhich it is used.
By definition, [ ]Îx 0, 1M .

The time evolution of these threemeasures is presented infigure 4 for individual realizations of themodel:
the order parameter in panel(a), the fraction of links in theminority language in panel(b), and the average
preference of the speakers for theminority language in panel(c). All realizations start from a random initial
distribution of states for both nodes and links, leading to all threemeasures starting from1/2, and they all
experience a substantial ordering process inwhich one of the languages becomes predominant, leading to a large
decrease of all threemeasures. Nevertheless, a variety of asymptotic behaviors can be observed. These behaviors
are a direct consequence of the different types of asymptotic configurations reached by the system,which can be
classified as:

(i) Frozen extinction states: Absorbing configurations where one of the languages has completely disappeared,
all links and nodes sharing the same state, and thus no further change of state is possible in the system. As a
result, all the three introducedmeasures become zero (see black lines infigure 4).

(ii) Frozen coexistence states: Absorbing configurations where both language still exist but no further change of
state is possible in the system. As a result, all our threemeasures remain constant with non-zero values (see
blue lines infigure 4). Note that these situations of coexistence are characterized by one of the languages
becoming aminority but persisting in the formof ‘ghetto-like’ structures, defined as subsets of nodes such
that all of thembelong to triangles completely included in the subset. A schematic illustration of a simple
‘ghetto-like’motif composed of a single triangle can be found infigure 5(a).

(iii) Dynamically trapped coexistence states: Configurations where both languages still exist and the system is
forever dynamic, but only a restricted (and usually small)number of changes of state are possible. In
particular, only changes that do notmodify the density of nodal interfaces are accessible. Bearing inmind
that, by definition of themodel, these changes are reversible, the system canmove back and forth ad
infinitum [80, 81]. Depending on the kind of dynamical trap involved, we can identify three types of
configurations:

– Configurations based onBlinker links: Both the order parameter and the average preference of the
speakers for theminority language remain constant while the fraction of links in theminority language
fluctuates around a certain value (see orange lines in figure 4). A schematic illustration of themost
simple blinker linkmotif is presented infigure 5(b).

– Configurations based onBlinker nodes: Both the order parameter and the fraction of links in the
minority language remain constant while the average preference of the speakers for theminority
language fluctuates around a certain value (see green lines infigure 4). A schematic illustration of a single
blinker nodemotif can be observed infigure 5(c).
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– Configurations based on both blinker links and blinker nodes:More or less complex combinations of the
two previous types, leading to a constant order parameter and afluctuating fraction of links in the
minority language and average preference of the speakers for it.

Note that dynamical traps can only appear at the interface between the frozen, ‘ghetto-like’ structures described
above and the rest of the network.

Apart from these asymptotic configurations, we can also observe the presence of long-livedmetastable coexistence
states. These non-trivial dynamical states are characterized byfluctuating, non-zero values of all the three
introducedmeasures (see red lines infigure 4). Themetastability of these states is based on a variation orweaker
version of the ‘ghetto-like’ structures described above, whichwould now consist of a subset of nodes such that a
significantly large fraction of the triangles they belong to are completely included in the subset, i.e., they have a
significantly larger number of triangles towards the inside of the subset than towards the outside. Due tofinite-
sizefluctuations, however, the system always ends up falling to one of the previously described asymptotic states.

Once the different types of asymptotic states of the systemhave been presented, let us now focus on their
relative likelihood. In particular, we show infigure 6 the fraction of realizations having reached each of the

Figure 4.Time evolution of (a) the order parameter, (b) the fraction of links in theminority language, and (c) the average preference of
the speakers for theminority language. 200 individual realizations of the process are shown, amongwhichfive realizations are
highlighted as representative of the different types of possible trajectories. The system size used isN=8000.
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possible asymptotic configurations before the end of the studied time period ( =t 105), as well as the fraction of
those still in ametastable state, for different system sizes.While the (frozen) extinction of theminority language
is themost likely outcome for small systems ( <N 2000), its probability decreases exponentially with system
size, thus becoming negligible for large enough systems. Frozen coexistence is clearly predominant for large
system sizes inside the studied range ( < N2000 8000). However, given the linear growth observed in the
fraction of dynamically trapped coexistence configurations, the numerical results presented in thisfigure for
limited system sizes are inconclusive regarding the prevalence of frozen or dynamically trapped coexistence in
the infinite size limit. Regarding themetastable coexistence states, it should be noted that they are not asymptotic
states, and thus the systemwill eventually end up falling to any of the other frozen or dynamically trapped
configurations. The fact that the fraction ofmetastable realizations at a given time grows linearly with the system
size, suggests that the time scale inwhich the system is able to leave thosemetastable states also grows linearly
withN, a point that will be discussed further in the next section.

4. Time scales of extinction andmetastable coexistence

Due to the diversity of possible asymptotic configurations described in the previous section, different time scales
can be defined to characterize the dynamics of the system. In particular, we focus here on two time scales: the
characteristic time of extinction of one of the languages and the characteristic duration or survival time of the
metastable states.While in the first case we focus on realizations reaching the frozen extinction state over the

Figure 5. Schematic illustration of the kind of structuralmotifs characterizing the different asymptotic configurations. The use of the
two competing languages is represented, respectively, by solid red links and dashed blue links, while the preferences of the speakers are
represented by node colors ranging from red to blue throughwhite. Gray color is used to represent blinking or undecided situations.
Crosses indicate the non-existence of a link.

Figure 6. Scalingwith system size of the fraction of realizations having reached each of the possible asymptotic configurations at time
=t 105, as well as the fraction of those still in ametastable state. A total of 10000 realizationswere used, with different networks and

different initial conditions.
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time period under study, in the second casewe consider all realizations leaving themetastable coexistence state
over that time period, regardless of the particular asymptotic state they reach.

Let us start by considering the time evolution of the probability of coexistence of both languages Pc(t), i.e.,
the fraction of realizations not having reached a frozen extinction configuration by time t, depicted infigure 7 for
different system sizes. Coherent with the results presented above infigure 6, the coexistence probability becomes
closer and closer to one, for any time, as the system size becomes larger and larger. For small systems, on the
contrary, the probability of both languages coexisting shows a large decrease around a certain characteristic
time, which growswith system size, before asymptotically reaching a plateau.Note, nevertheless, that this
plateau is not reached as long as there aremetastable realizations able to reach the frozen extinction
configuration.

Aswe can observe infigure 7,most extinction events take place around a certain characteristic time. For
instance, for the system sizeN=1000, 90%of all extinction events observed in the interval [ ]Ît 0, 105 take
place between t=200 and t=2000.However, for a non-negligible fraction of realizations the extinction of one
of the languages happens at significantly longer times, and thus the coexistence probability keeps on slowly
decreasing instead of quickly reaching a plateau. In order to further analyze this behavior, we present infigure 8
the probability distribution of extinction times pe(t) for the system sizeN=1000, where, according to the
results presented infigure 6, extinction is predominant. Note that this distribution is related to the coexistence
probability by

( ) ( ) ( )ò= - ¢ ¢P t p t t1 d . 8
t

c
0

e

In this way, we see that extinction times are broadly distributed and that the decay of their probability for long
times seems to be compatible with a power law ( ) ~ a-p t te with exponent a ~ 0.5. Being the exponent smaller
than one, themean of the distribution diverges, and thus there is nowell-defined characteristic time scale for the
extinction events. As a consequence, even if the extinction of one of the languages is predominant for small
system sizes, there are, at all time scales, realizations where both languages are still coexisting.

Figure 7.Time evolution of the coexistence probability (fraction of realizations not having reached the frozen extinction configuration
by time t) for different system sizes, namelyN=250, 500, 1000, 2000, 4000, and 8000. A total of 10000 realizationswere used, with
different networks and different initial conditions.

Figure 8.Distribution of extinction times for realizations reaching the frozen extinction configuration over the interval [ ]Ît 0, 105

(69.5% of the 10000 realizations studied) for a system sizeN=1000. A power-law decaywith exponent a = 0.5 is shown as a guide to
the eye.
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A further characterization of the behavior of themodel is given by the time scale at which the system is able to
escape from themetastable coexistence states, i.e., the characteristic survival time of these non-trivial dynamical
states before the dynamics of the systembecomes locked in any frozen or dynamically trapped configuration. In
order to study this, let usfirst introduce the survival probability of themetastable statesPs(t), defined as the
fraction of realizations not having reached any frozen or dynamically trapped state by time t. Our results for this
probability are presented infigure 9, on a log–log scale, for different system sizes. Comparing figures 7 and 9we
can observe that, similarly to the coexistence probability, surviving realizations aremore andmore likely, for any
point in time, for larger and larger systems. On the contrary, the survival probability of themetastable states does
not asymptotically approach any plateau, as it was the case for the coexistence probability. This is coherent with
the fact that, by definition, allmetastable realizations eventually end up being frozen or dynamically trapped.

Even if the survival probability of themetastable states appears to be fat-tailed in the log–log scale offigure 9,
a closer look at the same results presented on a semilogarithmic scale infigure 10 shows that any fat-tailed
behavior is interrupted by an exponential decay occurring after a long cutoff time. This final exponential decay
allows for both themean and thefluctuations of the distribution of survival times of themetastable states to be
well-defined, and thus themean can play the role of a characteristic duration or survival time of thesemetastable
states ts before the system reaches a frozen or dynamically trapped configuration.

The characteristic survival time of themetastable states ts can be directly computed from their survival
probability Ps(t) as

( ) ( )òt =
¥

P t td . 9s
0

s

However, given that a non-negligible number of realizations in our sample stay in ametastable state for the
whole period under study—particularly for large system sizes, we cannot simply discard the queue of the
distribution and numerically compute themean using only the observed survival times. On the contrary, we
need to take the queue of the distribution into account, whichwe can do by fitting the final exponential decay
uncovered above infigure 10. In particular, if we assume that the survival probability of themetastable states

Figure 9.Time evolution of the survival probability of themetastable states (fraction of realizations not having reached any frozen or
dynamically trapped state by time t) on a log–log scale and for different system sizes, namelyN=250, 500, 1000, 2000, 4000, and
8000. A total of 10000 realizationswere used, with different networks and different initial conditions.

Figure 10.Time evolution of the survival probability of themetastable states (fraction of realizations not having reached any frozen or
dynamically trapped state by time t) on a semilogarithmic scale and for different system sizes, namelyN=250, 500, 1000, 2000, 4000,
and 8000. An exponential decaywith the slope obtained by fitting the data forN=1000 is also shown as a guide to the eye (thin solid
gray line). A total of 10000 realizationswere used, with different networks and different initial conditions.
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takes the functional form

( ) ( ) ( )( )* ** = - -P t P t t te for , 10b t t
s s

from a certain cutoff time t*, where b and t* are fitting parameters, thenwe can divide the integral in equation (9)
into two terms,

( ) ( ) ( ) ( ) ( )( )*
*

*

*

*
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Finally, performing the integral in the last term,wefind an expression for the characteristic survival time of the
metastable states as a sumof two contributions,

( ) ( ) ( )**

òt = +P t t
P t

b
d , 12

t

s
0

s
s

thefirst of which can be numerically computed as the average of the survival times of the realizations reaching a
frozen or dynamically trapped state before t*. Regarding the second contribution, it can be computed by an
exponential fit to the results presented infigure 10 for *t t .

Results for the scaling with system size of the characteristic survival time of themetastable states are
presented infigure 11, showing a linear relationship between both quantities. Thus, for increasing system sizes,
realizations survive for longer and longer times in ametastable state before falling to a frozen or dynamically
trapped configuration.Moreover, in the infinite size limit, the system is unable to escape from themetastable
states in anyfinite time.

5.Use of theminority language

Oncewe have identified the different types of configurations associatedwith the coexistence of both languages,
and studied their probabilities and typical time scales, let us now turn our attention to the extent of this
coexistence. In particular, bearing inmind that the situations of coexistence are characterized by one of the
languages becoming a clearminority (see section 3), we focus here on twomeasures quantifying the use of this
minority language: the number of speakers who use only this language (minority languagemonolingual
speakers,NM) and the number of thosewho use both languages (bilingual speakers,NAB). In order to consider
only very long-livedmetastable states, apart from frozen and dynamically trapped coexistence configurations,
we focus on the last point of the time period under study, =t 105, andwe average only over realizations where
both languages are still coexisting (whichwe note by ·á ñc). Results for the dependence of these two quantities on
system size are presented infigure 12,measured as fractions of the total number of speakers in themain plot and
as absolute numbers in the inset.

Afirst observation is that the state of coexistence is predominantly sustained by bilingual speakers, both their
fraction and their absolute number being significantly larger that those corresponding tomonolingual speakers
of theminority language for any system size. Secondly, while both fractions ofminority-language speakers are
shown to be decreasing functions of the system size for small systems, they appear to be reaching a plateau for
large systems. On the one hand, bearing inmind that averages are computed over coexisting realizations—rare
for small systems, predominant for large ones—, this suggests that there is aminimum size of the structures
sustaining the use of theminority language. In this way, the smaller the size of the system, the less likely these
minimal structures are to appear, but the larger the fraction of the system they represent whenever they actually

Figure 11. Scalingwith system size of the characteristic survival time of themetastable states. A total of 10000 realizationswere used,
with different networks and different initial conditions.
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appear. On the other hand, the asymptotic tendency of both fractions towards a plateau suggests a linear growth
with system size of the absolute number of bothmonolingual and bilingual speakers of theminority language for
large systems, which is confirmed in the inset. Finally, the substantially faster growth of the absolute number of
bilingual speakers with system size, as compared tominority-languagemonolinguals, underlines again the
importance of bilinguals in sustaining the use of theminority language: bilingualism becomesmore andmore
prevalent among speakers of theminority language for growing systems.

6. Comparisonwith theAB-model

Given the non-standard topology used for our numerical simulations, imposed by the structural constraints of
themodel—namely, an abundance of triangles—, we present here, for comparison, numerical results for the
AB-model in the same networks. Let usfirst briefly recall themain features of thismodel, inwhich language use
is considered to be a state of the agents. As outlined in section 1, the AB-model was proposed byCastelló et al [31]
based on theworks ofWang andMinett [29], and it develops amodification of the original, binary-state
Abrams–Strogatzmodel to account for the case of two non-excluding options by introducing a third,
intermediate state. Thus, agents can be in one of the following states:A (monolingual speaker of languageA),B
(monolingual speaker of languageB), orAB (bilingual speaker). Starting froma random initial distribution of
states, an agent is randomly chosen at each iteration and its state is updated according to the following
probabilities,

( ) ( ) ( )

s s

s s

= =

= - = -

 

 

p p
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where sA, sB and sAB are, respectively, the fractions of neighbors of the chosen agent in stateA,B andAB (note
that s s s+ + = 1A B AB ). That is,monolingual speakers ofA (B) become bilinguals with a probability
proportional to the local fraction ofmonolingual speakers ofB (A), while bilinguals becomemonolingual
speakers ofA (B)with a probability proportional to the local fraction of speakers ofA (B), which includes both
monolingual and bilingual speakers.

Frozen coexistence configurations and dynamically trapped states are not possible in the AB-model, which
has, by definition, a single absorbing state: the extinction of one of the languages. Therefore, the order parameter
rAB, defined now as the density of link interfaces—fraction of links connecting nodeswith different states—, is
enough to characterize the time evolution of individual realizations, some ofwhich are shown infigure 13.While
this parameter rAB is different from the order parameter ρ used above to characterize ourmodel, both of them
aremeasures of the local order of the system.Note that, due to the existence of three different states, all
realization start from r = 2 3AB , corresponding to a random initial distribution of states. Similarly to our

Figure 12. Scalingwith system size of the fractions ofminority-languagemonolingual and bilingual speakers at the last point of the
time period under study, =t 105, averaged over coexisting realizations. Inset: scalingwith system size of the absolute number of
minority-languagemonolingual and bilingual speakers at the last point of the time period under study, =t 105, averaged over
coexisting realizations.
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model, all the realizations go through a substantial ordering process inwhich one of the languages becomes
predominant. In contrast to ourmodel, however, this ordering process takes place around an order of
magnitude before ( ~t 102 as opposed to ~t 103) and it very quickly leads to the complete extinction of one of
the languages, all nodes sharing the same state, whetherA orBmonolingual. Furthermore, only very few
realizations are observed to last noticeably longer than the rest of them ( ~t 600), suggesting that there are no
long-livedmetastable coexistence states (compare withfigure 4).

Given that the only asymptotic state of the AB-model is the frozen extinction of one of the languages, the
survival of a non-trivial dynamics—not having reached any frozen or dynamically trapped state—and the
coexistence of both languages—not having reached the frozen extinction state—are equivalent, and so are their
respective probabilities, Ps andPc. Results for the time evolution of the survival (or coexistence)probability Ps(t)
are presented infigure 14 for different system sizes. Aswe can observe, after a very short transient (lasting until
~t 30), the likelihood of an active state where both languages coexist quickly falls to zero, with no fat-tailed

behavior. Furthermore, this decrease seems to be almost independent of system size. Both features are in
agreementwith the results reported for the AB-model in randomnetworkswithout communities [32, 34]. They
are, however, in sharp contrast with the results corresponding to ourmodel, presented above infigures 7 and 9.

The probability distribution of extinction (or survival) times pe(t) is shown infigure 15 for a system size
N=8000. As opposed to the results presented infigure 8 for ourmodel, the extinction times of the AB-model
are very closely distributed around the peak, i.e., almost no realization is found to last significantly longer than
the rest of them—suggesting the absence of long-livedmetastable states—. Therefore, themean of the
distribution is well-defined and it can be used as a characteristic extinction time scale. In contrast with the
method used to analyze ourmodel, where a non-negligible number of realizations survived in a non-trivial
dynamical state for thewhole period of time under study (see section 4), we can here numerically compute the
mean of the distribution fromour sample of realizations, given that all their survival times are smaller that the
studied time period. The dependence of this characteristic extinction time te on system size is also depicted in
figure 15 as an inset. In particular, te is found to be a logarithmic function of the system size, to be comparedwith
the linear relationship found for ourmodel and shown infigure 11. This result is coherent with the previous
observation regarding the small influence of system size on the survival probability.

Figure 13.Time evolution of the order parameter (interface density) for the AB-model. 200 individual realizations of the process are
shown. The system size used isN=8000.

Figure 14.Time evolution of the survival probability (fraction of realizations not having reached a frozen state by time t) for the AB-
model and for different system sizes, namelyN=250, 500, 1000, 2000, 4000, and 8000. A total of 10000 realizationswere used, with
different networks and different initial conditions.
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7. Summary and conclusions

We introduced a prototypemodel of coupled evolution of node and link states. In particular, we implemented a
language competitionmodel where both the use and the preference for a given language are included, with
different but coupled dynamics.We proposed to consider the use of a language as a property of the interactions
between speakers—a link state—and the preference or attitude of the speakers towards it as a property of the
speakers themselves—a node state—. Furthermore, we focused on the case of two socially equivalent languages
and performed numerical simulations on socially inspired network topologies based on amechanismof triadic
closure. As opposed tomost of the previously proposedmodels, where the extinction of one of the languages is
an inevitable outcome of the dynamics, we found a broad range of possible asymptotic configurations, which can
be classified as: frozen extinction states, frozen coexistence states, and dynamically trapped coexistence states.
Furthermore,metastable coexistence states with non-trivial dynamics were found to be abundant andwith very
long survival times. Bymeans of a system size scaling, we showed that the probability of extinction of one of the
languages decreases exponentially with system size, therefore becoming negligible for large enough systems.
Moreover, we showed that, even for small systems, extinction times are so broadly distributed that coexisting
realizations can be found at all time scales. Regarding themetastable coexistence states, we showed that their
characteristic survival time before the system reaches any frozen or dynamically trapped configuration scales
linearly with system size. Thus, in the infinite size limit, all realizations will be found to be in a non-trivial
dynamical coexistence state for anyfinite time. Finally, we showed that bilingualism becomesmore prevalent
among speakers of theminority language the larger the size of the system.

The dynamics of the systembeing characterized by the fast emergence of a predominant language, we found
that, as the use of theminority language decreases, it becomes increasingly confined to themore intimate social
spheres or group interactions—triangular relationships—. In particular, the situations of coexistence (frozen,
dynamically trapped, andmetastable)were found to be based on the existence of ‘ghetto-like’ structures, where
predominantly bilingual speakers use theminority language for the interactions among themselves—mostly
triangular—while they switch to themajority language for communications with the rest of the population—
mostly non-triangular—. In this way, bilingual speakers with a strong preference for theminority language, and
using it for their close group interactions, are found to play an essential role in its survival. Our results highlight
the importance of the network topology for determining the possibility of coexistence of two competing
languages.However, as opposed to previous studies, we find that group interactions—in the formof triangles—
can play amore relevant role than simple one to one interactions.

A natural extension of themodel presented herewould be to consider a coevolving or dynamic topology
[16], allowing to capture phenomena such as births, deaths,migration, and the evolution of social ties. The
robustness of the above-described ‘ghetto-like’ structures could, in this way, be studied for different rewiring
rules. A different way of exploring this robustness would be to consider the effect of a certain type noise affecting
the decisions of the speakers [82, 83].

The ideas andmethods presented here to study language competition processes can also be useful in
different contexts. Indeed, the idea of a coevolution of node and link states is very general and could be applied
whenever there is a relevant property associated to the interactions between agents or nodes and this property is
characterized by a dynamics of its own, which is not completely determined by the states of the agents and their

Figure 15.Distribution of extinction times for theAB-model and for a system sizeN=8000. Inset: scalingwith system size of the
characteristic extinction time for theAB-model. A total of 10000 realizationswere used, with different networks and different initial
conditions.
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particular dynamics. Examples range from friendship-enmity relationships and trust to the coupled dynamics of
trade and economic growth [84]. Finally, the importance of triangular structures both in the definition and in
the results of themodel presented here calls for a generalization of the concept of network beyond the traditional
dyadic interactions, in order to take into account also group interactions of higher order (triadic, tetradic,
etc) [85].
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