176 research outputs found

    Some Implications on Amorphic Association Schemes

    Get PDF
    AMS classifications: 05E30, 05B20;amorphic association scheme;strongly regular graph;(negative) Latin square type;cyclotomic association scheme;strongly regular decomposition

    Localizing genuine multiparty entanglement in noisy stabilizer states

    Full text link
    Characterizing large noisy multiparty quantum states using genuine multiparty entanglement is a challenging task. In this paper, we calculate lower bounds of genuine multiparty entanglement localized over a chosen multiparty subsystem of multi-qubit stabilizer states in the noiseless and noisy scenario. In the absence of noise, adopting a graph-based technique, we perform the calculation for arbitrary graph states as representatives of the stabilizer states, and show that the graph operations required for the calculation has a polynomial scaling with the system size. As demonstrations, we compute the localized genuine multiparty entanglement over subsystems of large graphs having linear, ladder, and square structures. We also extend the calculation for graph states subjected to single-qubit Markovian or non-Markovian Pauli noise on all qubits, and demonstrate, for a specific lower bound of the localizable genuine multiparty entanglement corresponding to a specific Pauli measurement setup, the existence of a critical noise strength beyond which all of the post measured states are biseparable. The calculation is also useful for arbitrary large stabilizer states under noise due to the local unitary connection between stabilizer states and graph states. We demonstrate this by considering a toric code defined on a square lattice, and computing a lower bound of localizable genuine multiparty entanglement over a non-trivial loop of the code. Similar to the graph states, we show the existence of the critical noise strength in this case also, and discuss its interesting features.Comment: 36 pages, 21 figures, 2 table

    Quantum communication cost of preparing multipartite entanglement

    Full text link
    We study the preparation and distribution of high-fidelity multi-party entangled states via noisy channels and operations. In the particular case of GHZ and cluster states, we study different strategies using bipartite or multipartite purification protocols. The most efficient strategy depends on the target fidelity one wishes to achieve and on the quality of transmission channel and local operations. We show the existence of a crossing point beyond which the strategy making use of the purification of the state as a whole is more efficient than a strategy in which pairs are purified before they are connected to the final state. We also study the efficiency of intermediate strategies, including sequences of purification and connection. We show that a multipartite strategy is to be used if one wishes to achieve high fidelity, whereas a bipartite strategy gives a better yield for low target fidelity.Comment: 21 pages, 17 figures; accepted for publication in Phys. Rev. A; v2: corrections in figure

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Cometric Association Schemes

    Get PDF
    The combinatorial objects known as association schemes arise in group theory, extremal graph theory, coding theory, the design of experiments, and even quantum information theory. One may think of a d-class association scheme as a (d + 1)-dimensional matrix algebra over R closed under entrywise products. In this context, an imprimitive scheme is one which admits a subalgebra of block matrices, also closed under the entrywise product. Such systems of imprimitivity provide us with quotient schemes, smaller association schemes which are often easier to understand, providing useful information about the structure of the larger scheme. One important property of any association scheme is that we may find a basis of d + 1 idempotent matrices for our algebra. A cometric scheme is one whose idempotent basis may be ordered E0, E1, . . . , Ed so that there exists polynomials f0, f1, . . . , fd with fi ◦ (E1) = Ei and deg(fi) = i for each i. Imprimitive cometric schemes relate closely to t-distance sets, sets of unit vectors with only t distinct angles, such as equiangular lines and mutually unbiased bases. Throughout this thesis we are primarily interested in three distinct goals: building new examples of cometric association schemes, drawing connections between cometric association schemes and other objects either combinatorial or geometric, and finding new realizability conditions on feasible parameter sets — using these conditions to rule out open parameter sets when possible. After introducing association schemes with relevant terminology and definitions, this thesis focuses on a few recent results regarding cometric schemes with small d. We begin by examining the matrix algebra of any such scheme, first looking for low rank positive semidefinite matrices with few distinct entries and later establishing new conditions on realizable parameter sets. We then focus on certain imprimitive examples of both 3- and 4-class cometric association schemes, generating new examples of the former while building realizability conditions for both. In each case, we examine the related t-distance sets, giving conditions which work towards equivalence; in the case of 3-class Q-antipodal schemes, an equivalence is established. We conclude by partially extending a result of Brouwer and Koolen concerning the connectivity of graphs arising from metric association schemes

    Uniformity in Association schemes and Coherent Configurations: Cometric Q-Antipodal Schemes and Linked Systems

    Get PDF
    2010 Mathematics Subject Classification. Primary 05E30, Secondary 05B25, 05C50, 51E12
    corecore