5 research outputs found

    A concatenated coded modulation scheme for error control

    Get PDF
    A concatenated coded modulation scheme for error control in data communications is presented. The scheme is achieved by concatenating a Reed-Solomon outer code and a bandwidth efficient block inner code for M-ary PSK modulation. Error performance of the scheme is analyzed for an AWGN channel. It is shown that extremely high reliability can be attained by using a simple M-ary PSK modulation inner code and a relatively powerful Reed-Solomon outer code. Furthermore, if an inner code of high effective rate is used, the bandwidth expansion required by the scheme due to coding will be greatly reduced. The proposed scheme is very effective for high speed satellite communications for large file transfer where high reliability is required. A simple method is also presented for constructing codes for M-ary PSK modulation. Some short M-ary PSK codes with good minimum squared Euclidean distance are constructed. These codes have trellis structure and hence can be decoded with a soft decision Viterbi decoding algorithm. Furthermore, some of these codes are phase invariant under multiples of 45 deg rotation

    Bandwidth efficient block codes for M-ary PSK modulation

    Get PDF
    A class of bandwidth efficient block codes for M-ary PSK modulation is presented. A soft-decision decoding for this class of codes is devised. Some specific short codes for Quad Phase Shift Key (QPSK), 8-PSK and 16-PSK modulations are constructed. These codes have good minimum squared Euclidean distances and provide 2 to 5.8 dB coding gains over uncoded QPSK modulation without (or with little) bandwidth expansion. The complete weight distributions of these specific codes are determined. Based on these weight distributions, their error probabilities are evaluated. Some of these codes have simple trellis structures and hence can be decoded by Viterbi decoding algorithm with relatively simple implementation. Moreover, the codes are very suitable for use as inner codes for various cascaded coding schemes with Reed-Solomon codes as outer codes

    A concatenated coded modulation scheme for error control (addition 2)

    Get PDF
    A concatenated coded modulation scheme for error control in data communications is described. The scheme is achieved by concatenating a Reed-Solomon outer code and a bandwidth efficient block inner code for M-ary PSK modulation. Error performance of the scheme is analyzed for an AWGN channel. It is shown that extremely high reliability can be attained by using a simple M-ary PSK modulation inner code and a relatively powerful Reed-Solomon outer code. Furthermore, if an inner code of high effective rate is used, the bandwidth expansion required by the scheme due to coding will be greatly reduced. The proposed scheme is particularly effective for high-speed satellite communications for large file transfer where high reliability is required. This paper also presents a simple method for constructing block codes for M-ary PSK modulation. Some short M-ary PSK codes with good minimum squared Euclidean distance are constructed. These codes have trellis structure and hence can be decoded with a soft-decision Viterbi decoding algorithm. Furthermore, some of these codes are phase invariant under multiples of 45 deg rotation
    corecore