35 research outputs found

    Precise static analysis of untrusted driver binaries

    Get PDF
    Most closed source drivers installed on desktop systems today have never been exposed to formal analysis. Without vendor support, the only way to make these often hastily written, yet critical programs accessible to static analysis is to directly work at the binary level. In this paper, we describe a full architecture to perform static analysis on binaries that does not rely on unsound external components such as disassemblers. To precisely calculate data and function pointers without any type information, we introduce Bounded Address Tracking, an abstract domain that is tailored towards machine code and is path sensitive up to a tunable bound assuring termination. We implemented Bounded Address Tracking in our binary analysis platform Jakstab and used it to verify API specifications on several Windows device drivers. Even without assumptions about executable layout and procedures as made by state of the art approaches, we achieve more precise results on a set of drivers from the Windows DDK. Since our technique does not require us to compile drivers ourselves, we also present results from analyzing over 300 closed source drivers

    Binary Disassembly Block Coverage by Symbolic Execution vs. Recursive Descent

    Get PDF
    This research determines how appropriate symbolic execution is (given its current implementation) for binary analysis by measuring how much of an executable symbolic execution allows an analyst to reason about. Using the S2E Selective Symbolic Execution Engine with a built-in constraint solver (KLEE), this research measures the effectiveness of S2E on a sample of 27 Debian Linux binaries as compared to a traditional static disassembly tool, IDA Pro. Disassembly code coverage and path exploration is used as a metric for determining success. This research also explores the effectiveness of symbolic execution on packed or obfuscated samples of the same binaries to generate a model-based evaluation of success for techniques commonly employed by malware. Obfuscated results were much higher than expected, which lead to the discovery that S2E was not actually handling the multiple executable memory regions present in unpacker runtime code. Three recommendations are made to address the shortcomings of S2E and allow it to process obfuscated samples correctly

    A compiler level intermediate representation based binary analysis system and its applications

    Get PDF
    Analyzing and optimizing programs from their executables has received a lot of attention recently in the research community. There has been a tremendous amount of activity in executable-level research targeting varied applications such as security vulnerability analysis, untrusted code analysis, malware analysis, program testing, and binary optimizations. The vision of this dissertation is to advance the field of static analysis of executables and bridge the gap between source-level analysis and executable analysis. The main thesis of this work is scalable static binary rewriting and analysis using compiler-level intermediate representation without relying on the presence of metadata information such as debug or symbolic information. In spite of a significant overlap in the overall goals of several source-code methods and executables-level techniques, several sophisticated transformations that are well-understood and implemented in source-level infrastructures have yet to become available in executable frameworks. It is a well known fact that a standalone executable without any meta data is less amenable to analysis than the source code. Nonetheless, we believe that one of the prime reasons behind the limitations of existing executable frameworks is that current executable frameworks define their own intermediate representations (IR) which are significantly more constrained than an IR used in a compiler. Intermediate representations used in existing binary frameworks lack high level features like abstract stack, variables, and symbols and are even machine dependent in some cases. This severely limits the application of well-understood compiler transformations to executables and necessitates new research to make them applicable. In the first part of this dissertation, we present techniques to convert the binaries to the same high-level intermediate representation that compilers use. We propose methods to segment the flat address space in an executable containing undifferentiated blocks of memory. We demonstrate the inadequacy of existing variable identification methods for their promotion to symbols and present our methods for symbol promotion. We also present methods to convert the physically addressed stack in an executable to an abstract stack. The proposed methods are practical since they do not employ symbolic, relocation, or debug information which are usually absent in deployed executables. We have integrated our techniques with a prototype x86 binary framework called \emph{SecondWrite} that uses LLVM as the IR. The robustness of the framework is demonstrated by handling executables totaling more than a million lines of source-code, including several real world programs. In the next part of this work, we demonstrate that several well-known source-level analysis frameworks such as symbolic analysis have limited effectiveness in the executable domain since executables typically lack higher-level semantics such as program variables. The IR should have a precise memory abstraction for an analysis to effectively reason about memory operations. Our first work of recovering a compiler-level representation addresses this limitation by recovering several higher-level semantics information from executables. In the next part of this work, we propose methods to handle the scenarios when such semantics cannot be recovered. First, we propose a hybrid static-dynamic mechanism for recovering a precise and correct memory model in executables in presence of executable-specific artifacts such as indirect control transfers. Next, the enhanced memory model is employed to define a novel symbolic analysis framework for executables that can perform the same types of program analysis as source-level tools. Frameworks hitherto fail to simultaneously maintain the properties of correct representation and precise memory model and ignore memory-allocated variables while defining symbolic analysis mechanisms. We exemplify that our framework is robust, efficient and it significantly improves the performance of various traditional analyses like global value numbering, alias analysis and dependence analysis for executables. Finally, the underlying representation and analysis framework is employed for two separate applications. First, the framework is extended to define a novel static analysis framework, \emph{DemandFlow}, for identifying information flow security violations in program executables. Unlike existing static vulnerability detection methods for executables, DemandFlow analyzes memory locations in addition to symbols, thus improving the precision of the analysis. DemandFlow proposes a novel demand-driven mechanism to identify and precisely analyze only those program locations and memory accesses which are relevant to a vulnerability, thus enhancing scalability. DemandFlow uncovers six previously undiscovered format string and directory traversal vulnerabilities in popular ftp and internet relay chat clients. Next, the framework is extended to implement a platform-specific optimization for embedded processors. Several embedded systems provide the facility of locking one or more lines in the cache. We devise the first method in literature that employs instruction cache locking as a mechanism for improving the average-case run-time of general embedded applications. We demonstrate that the optimal solution for instruction cache locking can be obtained in polynomial time. Since our scheme is implemented inside a binary framework, it successfully addresses the portability concern by enabling the implementation of cache locking at the time of deployment when all the details of the memory hierarchy are available

    Enabling Sophisticated Analysis of x86 Binaries with RevGen

    Get PDF
    Current state-of-the-art static analysis tools for binary software operate on ad-hoc intermediate representations (IR) of the machine code. Therefore, even though IRs facilitate program analysis by abstracting away the source language, it is hard to reuse existing implementations of analysis tools in new endeavors. Recently, a new compiler framework — LLVM— has emerged, together with many analysis tools that use its IR. However, these tools rely on a compiler to generate the IR from source code. We propose RevGen, a tool that automatically converts existing binary programs to the standard LLVM IR, making an increasingly large number of static and dynamic analysis frameworks, as well as run-time instrumentation tools, applicable to legacy software. We show the potential of RevGen by converting several programs and device drivers to LLVM and checking the resulting code with off-the-shelf analysis tools

    Automating Mobile Device File Format Analysis

    Get PDF
    Forensic tools assist examiners in extracting evidence from application files from mobile devices. If the file format for the file of interest is known, this process is straightforward, otherwise it requires the examiner to manually reverse engineer the data structures resident in the file. This research presents the Automated Data Structure Slayer (ADSS), which automates the process to reverse engineer unknown file for- mats of Android applications. After statically parsing and preparing an application, ADSS dynamically runs it, injecting hooks at selected methods to uncover the data structures used to store and process data before writing to media. The resultant association between application semantics and bytes in a file reveal the structure and file format. ADSS has been successfully evaluated against Uber and Discord, both popular Android applications, and reveals the format used by the respective proprietary application files stored on the filesystem

    Adaptable Value-Set Analysis for Low-Level Code

    Get PDF
    This paper presents a framework for binary code analysis that uses only SAT-based algorithms. Within the framework, incremental SAT solving is used to perform a form of weakly relational value-set analysis in a novel way, connecting the expressiveness of the value sets to computational complexity. Another key feature of our framework is that it translates the semantics of binary code into an intermediate representation. This allows for a straightforward translation of the program semantics into Boolean logic and eases the implementation efforts, too. We show that leveraging the efficiency of contemporary SAT solvers allows us to prove interesting properties about medium-sized microcontroller programs

    Automated Analysis of ARM Binaries using the Low-Level Virtual Machine Compiler Framework

    Get PDF
    Binary program analysis is a critical capability for offensive and defensive operations in Cyberspace. However, many current techniques are ineffective or time-consuming and few tools can analyze code compiled for embedded processors such as those used in network interface cards, control systems and mobile phones. This research designs and implements a binary analysis system, called the Architecture-independent Binary Abstracting Code Analysis System (ABACAS), which reverses the normal program compilation process, lifting binary machine code to the Low-Level Virtual Machine (LLVM) compiler\u27s intermediate representation, thereby enabling existing security-related analyses to be applied to binary programs. The prototype targets ARM binaries but can be extended to support other architectures. Several programs are translated from ARM binaries and analyzed with existing analysis tools. Programs lifted from ARM binaries are an average of 3.73 times larger than the same programs compiled from a high-level language (HLL). Analysis results are equivalent regardless of whether the HLL source or ARM binary version of the program is submitted to the system, confirming the hypothesis that LLVM is effective for binary analysis

    An Abstract Interpretation-Based Framework for Control Flow Reconstruction from Binaries

    Get PDF
    Due to indirect branch instructions, analyses on executables commonly suffer from the problem that a complete control flow graph of the program is not available. Data flow analysis has been proposed before to statically determine branch targets in many cases, yet a generic strategy without assumptions on compiler idioms or debug information is lacking. We have devised an abstract interpretation-based framework for generic low level programs with indirect jumps which safely combines a pluggable abstract domain with the notion of partial control flow graphs. Using our framework, we are able to show that the control flow reconstruction algorithm of our disassembly tool Jakstab produces the most precise overapproximation of the control flow graph with respect to the used abstract domain
    corecore