
Precise Static Analysis of Untrusted Driver Binaries
Johannes Kinder

Technische Universität Darmstadt
Darmstadt, Germany

Email: kinder@cs.tu-darmstadt.de

Helmut Veith
Technische Universität Wien

Vienna, Austria
Email: veith@forsyte.at

Abstract—Most closed source drivers installed on desktop
systems today have never been exposed to formal analysis.
Without vendor support, the only way to make these often hastily
written, yet critical programs accessible to static analysis is to
directly work at the binary level. In this paper, we describe a
full architecture to perform static analysis on binaries that does
not rely on unsound external components such as disassemblers.
To precisely calculate data and function pointers without any
type information, we introduce Bounded Address Tracking, an
abstract domain that is tailored towards machine code and is
path sensitive up to a tunable bound assuring termination.

We implemented Bounded Address Tracking in our binary
analysis platform Jakstab and used it to verify API specifications
on several Windows device drivers. Even without assumptions
about executable layout and procedures as made by state of the
art approaches [1], we achieve more precise results on a set of
drivers from the Windows DDK. Since our technique does not
require us to compile drivers ourselves, we also present results
from analyzing over 300 closed source drivers.

I. INTRODUCTION

Software model checking and static analysis are successful
methods for finding certain bugs or proving their absence in
critical systems software such as drivers. Source code analysis
tools like SDV [2] are available for developers to statically
check their software for conformance to specifications of the
Windows driver API. For instance, if a driver calls the API
method IoAcquireCancelSpinLock, it is required to call IoRe-
leaseCancelSpinLock before calling IoAcquireCancelSpinLock
again [3]. The vendors, however, are not forced to use these
analysis tools in development, and they are unwilling to submit
their source code and intellectual property to an external
analysis process. Without source code, certification programs
such as the Windows Hardware Quality Labs (WHQL) have to
rely on testing only, which cannot provide guarantees about all
possible executions of a driver. A solution to this problem is to
relocate the static analysis to the level of the compiled binary.
If the analysis does not require source code or debug symbols,
an analysis infrastructure can be created independently of
active vendor support.

Working with binaries poses several specific challenges. In
general, code cannot be easily identified in x86 executables
such as Windows device drivers. Data can be arbitrarily
interleaved with code, and bytes representing code can be
interpreted as multiple different instruction streams depending
on the alignment at which decoding starts [4]. Therefore, a ma-
jor challenge in analyzing binaries is to reliably extract those
instructions that are actually executed at runtime and to build

a control flow graph that accurately represents the possible
targets even of indirect jumps. Existing approaches to static
analysis of binary executables rely on a preprocessing step
performed by a dedicated, heuristics based disassembler such
as IDA Pro [5] to produce a plain text assembly listing [6].
This decouples the analysis infrastructure from disassembly
itself and makes it difficult to use results from static analysis
towards improving the control flow graph. Furthermore, since
the analysis builds on an external disassembler, soundness can
only be guaranteed with respect to the (error prone) output
produced by the disassembler.

To overcome this problem, we propose an architecture for
single pass disassembly and analysis, which does not dis-
criminate between disassembly and analysis stages (Figure 1).
Its integrative design is based on the following key insight:
Following the control flow of a binary in order to decode
the executed instructions is already an analysis of reachable
locations. This is non-trivial in presence of indirect control-
flow and should not be left to heuristic algorithms.

Another challenge in statically analyzing binaries is that the
lack of types and the a priori unknown control flow make a
cheap points-to analysis impossible. Every dereference of an
unknown pointer can mean an access to any memory address,
be it the stack, global memory, or the heap. A write access
then causes a weak update to the entire memory: After the
write, every memory location may contain the written value,
which dramatically impacts the precision of the analysis. Worst
of all, weak updates potentially overwrite return addresses
stored on the stack (or function pointers anywhere in memory),
which can cause spurious control flow to locations that are
never executed at runtime. The goal of a sound and precise
analysis on binaries is thus to achieve strong updates wherever
possible: If a pointer can only point to one specific address in
a state, the targeted memory location must contain the written
value after a write access [7].

read decode

abst. int.check

pc value translate

Executable

Environment

Binary Instruction

ILStatesSpecification

Fig. 1. Disassembly and analysis architecture.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28903927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In essence, an analysis capable of dealing with the lack
of types in binaries needs to be precise enough to represent
addresses without over-approximation that might introduce
spurious control flow into non-code regions. On the other
hand, high precision analyses are known not to scale to larger
programs, so abstraction has to be introduced where possible.
In this paper, we present our approach to dealing with these
challenges without sacrificing soundness. In particular, our
paper makes the following contributions:
• We describe an architecture for checking specifications

on binary executables without access to source code and
without a heuristics based, separate disassembly step. The
control flow of the binary is reconstructed in a single pass
with static analysis, following the approach presented
in [8]. Abstractions of the execution environment can be
written in C and are compiled into a separate module.

• We introduce Bounded Address Tracking, an abstract
domain based on tracking a selection of register and
memory values up to a given bound (inspired by [9]). The
path sensitivity of our analysis allows strong updates to
allocated heap regions. Since path sensitivity subsumes
context sensitivity, we do not require assumptions about
a separate call stack or well-structured procedures.

• In our path-sensitive analysis, nondeterminism in the pro-
gram (e.g., from modeling input) is especially expensive.
To address this issue, we offer two different constructs for
nondeterminism, havoc and nondet, which cause explicit
enumeration of variable values or their abstraction to an
unknown value, respectively.

II. BACKGROUND

We extended our own iterative disassembler JAKSTAB [10]
to implement the integrated analysis architecture for single
pass disassembly and static analysis (Figure 1). Using the
entry point of the executable as the initial program counter
(pc) value, our tool decodes one instruction at a time from
the file offset that corresponds to pc. This instruction is then
translated into one or more statements of the intermediate lan-
guage (IL). Depending on the abstract domain chosen for the
analysis, JAKSTAB calculates successor states by interpreting
the abstract semantics of the IL. If a newly reached state is an
error state according to the specification, an abstract error trace
is generated. Otherwise, JAKSTAB concretizes new pc values
from the states and uses these to decode the next instructions
to be interpreted.

A. Low Level Intermediate Language

CISC architectures such as x86 offer very rich instruc-
tion sets, in which a single instruction can affect multiple
registers and status flags and can even represent non-trivial
operation sequences including loops. To avoid dealing with
hundreds of different concrete and abstract state transformers
when analyzing machine code, we translate each instruction
into a sequence of IL statements using specifications of the
instruction semantics. For instance, the instruction push eax,
which pushes the contents of register eax to the stack and

decrements the stack pointer, is specified to translate to the IL
code m[esp] := eax ; esp := esp−4. Note that for simplicity of
the exposition, in this paper we assume all memory accesses
and all bit vectors to be 32 bit. The actual implementation
allows arbitrary word lengths using bit masking expressions.

The IL uses a finite set of bit vector type registers V =
{v0, . . . , vn}, a store m[·], and the program counter pc. The
set Exp of expressions of the IL contains common arithmetic,
Boolean, and bit-manipulation operations. All expressions are
of the 32-bit bit vector type I32; Boolean true and false are
represented by the bit vectors 1 and 0, respectively. To model
input from the hardware, expressions can contain the keyword
nondet , which nondeterministically evaluates to some bit
vector value in its concrete semantics.

A program is made up of IL statements of the form [stmt]``′ ,
where ` ∈ I32 is the address of the statement, `′ ∈ I32 is the
address of the next statement, and stmt ∈ Stmt is one of
nine types of statements:
• Register assignments v := e, with v ∈ V and e ∈ Exp,

assign the value of expression e to register v.
• Store assignments m[e1] := e2, with e1, e2 ∈ Exp,

assign the value of expression e2 to the memory location
at the address computed by evaluating e1.

• Guarded jumps if e1 jmp e2, with e1, e2 ∈ Exp, transfer
control to the target address resulting from evaluating e2

if the guard expression e1 does not evaluate to 0.
• A halt statement terminates execution.
• Allocation statements alloc v, e, with v ∈ V and e ∈

Exp, reserve a block of memory of the size determined
by evaluating e and write the address to register v.

• Deallocation statements free v release the block of mem-
ory pointed to by v ∈ V for reallocation.

• Statements assume e terminate execution if e ∈ Exp
evaluates to 0, and do nothing otherwise.

• Assertions assert e are similar to assume statements, but
signal an error on termination.

• Statements havoc v <u n, with v ∈ V, n ∈ I32, nonde-
terministically assign a value x with 0 ≤u x ≤u n to v,
where ≤u denotes unsigned comparison. The same effect
can be achieved using v := nondet ; assume v ≤u n. The
point of having two different sources of nondeterminism
becomes apparent in Section III-C, where they will be
used for selective abstraction.

The statements alloc, free, assert, and havoc are never gen-
erated from regular instructions, but are encoded in our ab-
stracted model of the operating system (Section IV-C).

Note that call and return instructions receive no special
treatment in our IL but are translated to assignments and
jumps. In x86 assembly, these instructions simply store the
current program counter on the stack and jump to a target, or
read an address from the stack and jump to it, respectively.
There is no fixed concept of procedures in x86 assembly,
so relying on binary code to respect high level procedural
structuring can introduce unsoundness into the analysis.

The concrete IL semantics is defined in terms of states
S = Loc×Val× Store×Heap, consisting of the location

postJ[v := e]``′K(s) := s[v 7→ evalJeK(s)][pc 7→ `′]

postJ[m[e1] :=e2]``′K(s) := s[m[evalJe1K(s)] 7→evalJe2K(s)][pc 7→`′]

postJ[if e1 jmp e2]``′K(s) :=

{
s[pc 7→ `′] if evalJe1K(s) = 0
s[pc 7→ evalJe2K(s)] otherwise

postJ[halt]``′K(s) := ⊥
postJ[alloc v, e]``′K(s) := s[v 7→ h][pc 7→ `′], min. h > h0 s.t.

∀(h′, z′) ∈ s(H).h ≥ h′ + z′ ∨ h + z ≤ h′, where z = evalJeK(s)

postJ[free v]``′K(s) := s[H 7→ H \ (v, ·)][pc 7→ `′]

postJ[assume e]``′K(s) :=

{
⊥ if evalJe1K(s) = 0

s[pc 7→ `′] otherwise

postJ[assert e]``′K(s) :=

{
⊥(raise error) if evalJe1K(s) = 0

s[pc 7→ `′] otherwise

postJ[havoc v<un]``′K(s) := s[v 7→ x][pc 7→ `′], with some x ≤ n

Fig. 2. Concrete semantics of the intermediate language.

valuation Loc := {pc} → I32, the register valuation Val :=
V → I32, the store valuation Store := I32 → I32, and a heap
set Heap := I32 → I32, which maps addresses of allocated
heap objects to their corresponding sizes. Allocation of heap
objects starts above some constant h0 in the address space. We
denote access to parts of the state by s(pc), s(vi), s(m[·]),
s(H(p)). The syntax s[· 7→ ·] denotes the state obtained
by updating part of state s with a new value. The concrete
semantics is then given by the concrete post operator from
states and statements to states in Figure 2. It uses the operator
eval :: Exp→ I32 to concretely evaluate IL expressions.

B. Control Flow Reconstruction

In [8], we proposed an integrated theoretical framework for
building the most precise control flow graph of a low level
program while calculating data flow facts, akin to control
flow analysis in functional programming languages. The basic
idea of the framework is to translate low level statements into
edges (I32 × Stmt × I32) of the control flow automaton (a
control flow graph where edges instead of vertices carry the
statements). The edges over-approximate the concrete control
flow of the program, eliminating any indirect jumps.

In particular, every guarded jump [if e1 jmp e2]``′ is trans-
formed into a set E of edges labeled with assume statements:
If e1 = 0, E contains the fall-through edge (`, assume (e1 =
0), `′). If e1 6= 0, E also contains all of the possible
target edges {(`, assume (e1 6= 0 ∧ e2 = `′′), `′′) | `′′ ∈
êvalJe2K(p̂ostJassume (e1 6= 0)K(s))}, where p̂ost and
êval denote the abstract post and eval operator of a suitable
abstract domain, respectively. The key feature that allows this
approach to produce the most precise control flow automaton
is that the conditions for taking a particular edge from a
guarded jump, i.e., the jump condition and the jump target,
are encoded into the assumption.

As a result, an abstract domain used with this framework
only needs to supply implementations of the p̂ost (for state-
ments other than jmp) and êval operators and does not need
to deal specifically with indirect jumps.

III. PRECISE POINTER AND VALUE ANALYSIS

The translation of guarded jumps to labeled edges requires a
precise evaluation of the target expression, otherwise spurious
control flow edges can be introduced that point into code or
data sections never meant to be executed, causing a cascading
loss of precision. Furthermore, the lack of types in binaries
prohibits a limited over-approximation of points-to sets. While
in regular source based static analysis an unknown pointer
may point to all variables of the matching type, an unknown
pointer in untyped assembly code may point to any location
in the entire memory, including code.

We have therefore devised a highly precise abstract domain
for tracking states as valuations of registers and memory
locations that supports pointer arithmetic and the ambiguity
between integer values and addresses (there is no distinction
between pointers and regular values in machine code).

A. Memory Model
The virtual memory available to a process is organized as

one large, continuous array. The stack, the heap, and global
variables all share this address space. The runtime environment
initializes the stack and heap locations to reasonable values
such that they do not interfere, and it uses buffer pages
between these logical memory regions to detect overflows.
Correct implementations of malloc (and its kernel-level equiv-
alents available to drivers) guarantee that allocated memory
blocks in the heap do not overlap. Therefore, we use a concrete
memory model based on a set R of separate memory regions:
• The global region, containing code, global variables, and

static data,
• a single stack, holding local variables, parameters, and

return addresses at runtime,
• and zero or more allocated heap regions, which corre-

spond to memory blocks allocated using malloc.
We thus treat every memory address as a pair of memory

region and offset from R×I32. Pointers into the global region
are denoted by (global, offset); the stack pointer is assumed to
be initialized to a value of (stack, 0). Subsequent modifications
to the stack pointer then change the offset, but let it stay
within the stack region. In x86, the stack grows downward,
so the stack pointer will always have negative offsets within
valid code. The number of heap regions is unbounded, and a
fresh heap region is created by any call to malloc. A fresh
identifier tags the individual heap region, creating pointers
such as (allocid , offset).

Strictly speaking, this memory model presents an abstrac-
tion of the actual x86 memory layout, since it ignores the
relative position of regions to each other. If for whatever reason
the memory region model is too imprecise for the kind of code
being analyzed, it can be effectively turned off by initializing
the stack pointer and any newly allocated memory into the
global address space.

Our memory model combines integer and pointer values
similarly to Value Set Analysis [6]; it does not make the
assumption of separated procedure stack frames, however, but
uses a single region for the entire stack instead.

(>R,>32)

(global,>32) (stack,>32) (alloc1,>32)(alloc2,>32) · · ·
...

...

(global, 4) · · · (stack,−8) (stack,−7) · · · (alloc2, 0) · · ·

⊥

Fig. 3. Diagram of the lattice of abstract addresses Â.

B. Bounded Address Tracking

To build our abstract domain, we extend the model of
memory addresses to a lattice that includes a top element
(>R,>32) representing a memory address with the unknown
region >R and unknown offset >32. We further introduce an
intermediate level of pointers with known region but unknown
offset of the form (region,>32), which represents the join
of different addresses within the same region (e.g., (r, 4) t
(r, 8) = (r,>32)). We thus define the set of abstract memory
addresses as Â = {(>R,>32)} ∪ (R × {>32}) ∪ (R × I32).
The resulting lattice for Â is sketched in Figure 3.

Our analysis over-approximates the set of reachable con-
crete states of the program by calculating a fixpoint over
the abstract states. Abstract states form the set Ŝ = Loc ×
V̂al × Ŝtore, consisting of an abstract register valuation
V̂al := V → Â and an abstract store Ŝtore := Â →
Â. The initial state at the entry point of the executable
is initialized to (`start, {esp → (stack, 0)}, {(stack, 0) →
`end, (global, a0) → d0), . . . , (global, an) → dn)}), where
a0, . . . , an denote static data locations in the executable (e.g.,
initial values for global variables, integer or string constants)
and d0, . . . , dn their respective values. Location `end points
to a halt statement that catches control flow when the main
procedure returns, the esp register is initialized to point to
this return address on the stack. All registers and memory
locations (including all offsets in all heap regions) not shown
are implicitly set to (>R,>32).

Our analysis is path sensitive, i.e., it does not join abstract
states when control flow recombines after a conditional block
or loop. To ensure termination, we introduce bounds on the
number of values tracked for each register and memory loca-
tion (hence the name Bounded Address Tracking). In particular,
the analysis bounds the number of abstract addresses per
variable per location that it explicitly tracks and performs
widening in two steps. Before calculating abstract successors
for a state s at location `, the analysis checks for each register
or memory location x whether the total number of unique
abstract values for x in all reached states at ` exceeds the
configurable bound k. If it does, then the value of x is widened
to (r,>32), where r is the memory region of x in s. If the
number of unique memory regions also exceeds the bound k,
then x is widened to (>R,>32) (see BOUND rule in Figure 5).

Consider the example code in Figure 4. The single initial
abstract state is (0, {x → (>R,>32), b → (>R,>32)}, ∅), so

0

1

2

3

4

5

x := alloc(100)

b := x

m[x] := 0

x := x + 1

assume x ≥ b+100

a
ss

u
m

e
x

<
b
+

1
0
0

` # x # b
0 1 1
1 1 1
2 6 1
3 6 1
4 6 1
5 1 1

x, # b: Number of unique val-
ues for x and b.

Fig. 4. Example code fragment and final value counts.

there is one unique value per variable. We choose to set the
bound k to 5. After creating a new abstract heap region and
copying the pointer into b, the analysis enumerates states in
the loop 2, 3, 4 while the edge (4, assume x ≥ b + 100, 5)
remains infeasible. When the state (2, {x → (global, 5), b →
(global, 0)}, {(alloc1, 0) → (global, 0), . . .}) is reached, the
analysis counts 6 unique values for x in location 2, and widens
x to (alloc1,>32). This causes a weak update to alloc1 once
x is dereferenced. At the end of the loop, both assume edges
are now feasible, and the analysis reaches a fixpoint.

The abstract semantics of Bounded Address Tracking is
given using the abstract evaluation operator êval :: Exp →
Ŝ → Â, the bounding operator bound :: Ŝ → (V ∪ Â)→ Ŝ,
and the abstract transfer function p̂ost :: Stmt → Ŝ → 2Ŝ

from statements and abstract states to sets of abstract states
defined in Figure 5. A worklist algorithm extended to apply
and adapt precision information [11] (in our case bounds over
the number of abstract values) enforces the bound for all
registers and memory locations before calculating the abstract
transfer function.

Global addresses (global, n) are absolute integers and thus
expressions over them are calculated concretely (first case
of EVALOP). Addresses for other regions have no statically
known absolute value, so only additions of positive or negative
integers to their offset can be precisely modeled (second and
third case); if pointers to different regions are added or pointers
are involved in other types of expressions (including compar-
isons), the resulting abstract value is safely over-approximated
to (>R,>32) (fourth case). Other operations (bit extraction,
sign extension, etc.) are interpreted analogously. Explicit
nondeterminism in expressions evaluates to (>R,>32), and
memory reads are interpreted by joining the values stored at
the addresses in the concretization of the abstract pointer.

A register assignment is interpreted concretely and replaces
an existing mapping in the new abstract state. For an as-
signment to a memory location (i.e., an assignment to a
dereferenced pointer), we distinguish three cases depending
on the abstract value of the pointer. We can perform a:
• Strong update, if both region and offset of the pointer are

known. A strong update allows to replace the old value
of the memory location in the new state.

• Weak update to a single region, if the region of the pointer
is known but the offset is >32. Since the precise offset is
not known, all memory locations in the region may hold
the new value, so the existing values have to be joined

EVALOP êvalJe1 � e2K(s) := let(r1, o1) := êvalJe1K(s), (r2, o2) := êvalJe2K(s)
(global, o1 � o2) if � not + and r1 = global ∧ r2 = global

(r1, o1 + o2) if � is + and r2 = global
(r2, o1 + o2) if � is + and r1 = global

(>R,>32) otherwise

EVALNONDET êvalJnondetK(s) := (>R,>32)

EVALMEM êvalJm[e]K(s) := let(r, o) := êvalJeK(s)

 s(m̂[r, o]) if r 6=>R ∧ o 6=>32⊔
i∈I32 s(m̂[r, i]) if r 6=>R ∧ o=>32

(>R,>32) if r=>R ∧ o=>32

BOUND bound(s, x) :=

 s if |{s(x) | s ∈ {s′|s′(pc) = `}}| ≤ k
s[x 7→ (>R,>32)] if |{r | (r, o) = s′(x).s′ ∈ {s′′|s′′(pc) = `}}| > k

let(r, o) = s(x).s[x 7→ (r,>32)] otherwise

ASSIGNREG p̂ostJ[v := e]``′K(s) :=
{

s[v 7→ êvalJeK(s)][pc 7→ `′]
}

ASSIGNMEM p̂ostJ[m[e1] := e2]
`
`′K(s) := let(r, o) := êvalJe1K(s), a := êvalJe2K(s), s′ := s[pc 7→ `′]

strong update
weak update single region

weak update all regions

 {s′[m̂[r, o] 7→ a]} if r 6=>R ∧ o 6=>32

{s′[m̂[r, i] 7→ s(m̂[r, i]) t a][. . .] for all i ∈ I32} if r 6=>R ∧ o=>32

{s′[m̂[r, i] 7→ s(m̂[j, i]) t a][. . .] for all j ∈ R, i ∈ I32} if r=>R

ALLOC p̂ostJ[alloc v, e]``′K(s) :=
{
s[v 7→ (r, 0)][pc 7→ `′] where r is a fresh region identifier

}
FREE p̂ostJ[free v]``′K(s) := let(r, o) := s(v), s′ := s[pc 7→ `′]{

∅ (raise error) if r=>R ∨ o 6= 0
{s′[m̂[r, i] 7→ (>R,>32)][. . .] for all i ∈ I32} otherwise

ASSUME p̂ostJ[assume e]``′K(s) :=

{
∅ if êvalJeK(s) = (global, 0)

{s[pc 7→ `′]} otherwise

ASSERT p̂ostJ[assert e]``′K(s) :=

{
∅ (raise error) if êvalJeK(s) = (global, 0)
{s[pc 7→ `′]} otherwise

HAVOC p̂ostJ[havoc v<u n]``′K(s) :=
{
s[v 7→ (global, i)][pc 7→ `′] | i <u n, i ∈ I32

}
Fig. 5. Definition of abstract evaluation and abstract post operators for Bounded Address Tracking.

with the new value (with respect to the lattice of abstract
addresses shown in Figure 3).
Note that this rule makes the assumption that a memory
write to a specific region never exceeds the bounds to
write to an adjacent heap regions, since the goal of
this work is not to prove memory safety but check API
specifications. For full soundness, however, we would
have to perform a weak update to all regions.

• Weak update to all regions, if neither region nor offset
of the pointer are known. All memory locations in all
regions have to be joined with the new value.
In practice, the state becomes too imprecise to continue
analysis. In particular, all return addresses will be affected
by the weak update. Our implementation thus signals
an error for writing to an unknown (possibly also null)
pointer in this case.

Besides the fact that region and offset have to be known,
there is another prerequisite for performing strong updates:
The region of the pointer must not be a summary region,
i.e., on all execution paths, the abstract region corresponds
only to one concrete memory region [7]. Our analysis never
creates summary regions, which can be seen from the ALLOC
rule in Figure 5. New regions are tagged with fresh, unique

identifiers. The only way the abstract region value of a pointer
can represent multiple regions is if the number of regions for
the pointer exceeds the value bound k and is joined to >R.
In this case, a weak update to all regions will be performed
when the pointer is dereferenced, which is a sound over-
approximation for an assignment to a summary region.

The abstract post operator for free sets all memory locations
in the freed region to (>R,>32). The abstract semantics for
assume and assert is similar to the concrete case and only
adapted to the abstract address model. The abstract post for
havoc is the only implementation that returns a non-singleton
set: It splits abstract states by enumerating absolute integer
values for the given register.

C. Abstraction of Nondeterminism

Abstraction by approximating multiple concrete program
states with abstract states is the key to achieving scalability
of an analysis. In static analysis, abstraction is introduced by
choosing a suitable abstract domain for the program to be
analyzed. In software model checking, an iterative refinement
finds a suitable abstraction by adding new predicates over
program variables. Control flow reconstruction from binaries
requires concrete values for jump targets, however, and the

lack of types requires precise values for pointer offsets.
Therefore, existing mechanisms for abstraction are not well-
suited for a precise analysis of binaries. Still, abstraction has
to be introduced to make the analysis feasible.

Even though Bounded Address Tracking resembles software
model checking in the way that states from different paths
are not merged, it allows registers and memory locations
to be unknown, i.e., set to (>R,>32). This is especially
useful when representing nondeterminism in the execution
environment (e.g., input, unspecified behavior). Setting parts
of the state to unknown avoids an exponential enumeration of
value combinations. When designing the environment model
for a program, we often have a good idea of what needs to be
precisely modeled and where we can safely over-approximate.
For instance, the standard calling convention of the Windows
API specifies that upon return the contents of registers eax,
ecx, and edx are undefined. Enumerating all possible values for
the registers in a full explicit state exploration would require
creating 296 states. By abstracting the nondeterministic choice
of values to (>R,>32) for all three registers, we only need
a single abstract state. It is extremely unlikely to produce
a spurious counterexample from this abstraction, since code
should not depend on undefined side-effects.

On the other hand, there are occasions when abstracting to
an unknown value increases the requirements for the abstract
domain. Consider the following code, which is a stub for the
Windows API function IoCreateSymbolicLink:

int choice = nondet32; mov eax, nondet32
if (choice == 0) neg eax
return STATUS_SUCCESS; sbb eax, eax

else and eax, 0xC0000001
return STATUS_UNSUCCESSFUL; ret

Here, the compiler replaced the if-statement with bit-
manipulation of the return value. Our abstract domain can
only deduce that eax is (>R,>32) at the return statement, even
though eax actually can be only either 0 or 0xC0000001.
Therefore we added the havoc statement to the IL; it causes
the analysis to generate multiple successor states with different
integer values for a register (HAVOC in Figure 5). With it,
we can change the first line of the stub to int choice;
havoc(choice, 1). This causes the analysis to create two
states; one with eax set to 0, and one with eax set to 1. From
these states it can easily compute the two possible states at
the return statement: In the first case eax becomes 0, in the
second case 0xC0000001.

IV. IMPLEMENTATION

We have implemented the architecture and approach de-
scribed in this paper in our binary analysis platform JAKSTAB
(Java toolkit for static analysis of binaries). As input, JAK-
STAB is able to process Windows PE files (the format used in
32-bit Windows for .exe, .dll, .sys, and more), unlinked
COFF object files, and Linux ELF executables. It can load an
executable in combination with multiple dynamic libraries and
will resolve dependencies between the files.

A. Instruction Sets

JAKSTAB currently supports only the x86 architecture, but
can be extended to other architectures by supplying an opcode
table and a description of instruction semantics. Instructions
are specified using the semantic specification language of
the Boomerang decompiler [12], [13]. We used Boomerang’s
existing x86 specifications as a starting point, which we
rewrote and extended heavily.

Our current description of x86 instruction semantics covers
over 500 instructions, which includes all instructions that we
encountered in the executables analyzed during the experi-
ments. Large parts of the floating point instruction set and
the various SSE extensions are supported. The instruction
semantics are specified on the level of registers and flags, I/O
instructions are specified to read nondeterministic values.

B. Analysis Architecture

JAKSTAB’s analysis architecture is based on the Config-
urable Program Analysis API by Beyer et al. [9], [11], which
allows to seamlessly combine state splitting and state joining
analyses such as predicate abstraction and interval analysis,
respectively. For the work described in this paper, we used
only our Bounded Address Tracking domain combined with
the trivial location domain that expands the state space of the
program to at least one state per IL statement.

C. OS Abstraction and Driver Harness

Executables in general and drivers in particular frequently
interact with the operating system. As in source based anal-
yses, we abstract system calls using stubs, which model
the relevant side effects such as memory allocation or the
execution of callback routines. Following the approach of the
source code software model checker SDV [2], we load the
driver into JAKSTAB together with a separate harness module,
that includes system call abstractions relevant to drivers and
contains a main function that nondeterministically exercises
the driver’s initialization and dispatch routines. The harness is
written in C and compiled into a dynamic library (DLL) for
loading; it is based on SDV’s osmodel.c and follows SDV’s
invocation scheme for plug&play drivers. For our experiments,
we manually encoded specifications in the harness by inserting
state variables and assertions at the locations where SDV
places hooks into its specification files.

Several parts of the SDV harness and rules had to be mod-
ified to make it suitable for binary analysis. For example, the
preprocessor macro IoMarkIrpPending, which sets a bit in the
control word of interrupt request packets (IRPs), is intercepted
by SDV to change the state for the PendedCompletedRequest
rule. Since macro invocations are no longer explicit in the
binary, we had to modify the rule’s assertion to check the bit
directly instead of a separate state variable. Furthermore, we
replaced SDV’s statement for nondeterminism by either havoc
or nondet , depending on the context.

The IL statements alloc, free, havoc, and assert are exclu-
sively generated by the harness, since they do not correspond
to any real x86 instructions. These statements are encoded

DDA/x86 JAKSTAB
Driver Instr Time Result k kh States Instr Time Result
vdd/dosioctl/krnldrvr/krnldrvr.sys 2824 14s X 28 5 378 413 2s X
general/ioctl/sys/sioctl.sys 3504 13s X 28 5 3947 630 7s X
general/tracedrv/tracedrv/tracedrv.sys 3719 16s X 28 5 486 439 2s X
general/cancel/startio/cancel.sys 3861 12s X 28 5 633 759 2s X
general/cancel/sys/cancel.sys 4045 10s X 28 5 600 780 2s X
input/moufiltr/moufiltr.sys 4175 3m 3s × 28 5 3830 722 9s ×
general/event/sys/event.sys 4215 20s X 28 5 663 690 2s X
input/kbfiltr/kbfiltr.sys 4228 2m 53s × 28 5 3834 726 8s ×
general/toaster/toastmon/toastmon.sys 6261 4m 1s X 28 25 4853 977 9s X
storage/filters/diskperf/diskperf.sys 6584 3m 17s X 28 5 19772 1409 46s X
network/modem/fakemodem/fakemodem.sys 8747 11m 6s X 28 5 13994 1887 24s ×m

storage/fdc/flpydisk/flpydisk.sys 12752 1h 6m FP 100 35 186543 1782 39m34s X
input/mouclass/mouclass.sys 13380 40m 26s FP 28 28 3055 1763 8s FPc

input/mouser/sermouse.sys 13989 1h 4m FP 28 28 1888 1293 4s FP
kernel/serenum/SerEnum.sys 14123 19m 41s X 28 25 5213 1503 8s X
wdm/1394/driver/1394diag/1394DIAG.sys 23430 1h33m FP 28 28 2181 2426 4s FPm

wdm/1394/driver/1394vdev/1394VDEV.sys 23456 1h38m FP 28 28 2837 2872 5s FPm

Fig. 6. Comparison of experimental results on Windows DDK drivers between DDA/x86 (on a 3GHz Xeon) and JAKSTAB (on a 3GHz Opteron).

into the compiled harness object file using illegal instructions,
which are directly mapped to the corresponding IL statements
during disassembly. For instance, an alloc statement can be
generated from the C source of the harness by inlining the
assembly instruction lock rep inc eax.

V. EXPERIMENTS

For direct comparison with the IDA Pro and CodeSurfer/x86
based binary driver analyzer DDA/x86 described in [1], we ran
JAKSTAB on the same set of drivers from the Windows Driver
Development Kit (DDK) release 3790.1830 and checked the
same specification PendedCompletedRequest. The rule speci-
fies that a driver must not call IoCompleteRequest and return
STATUS PENDING unless it invokes the IoMarkIrpPending
macro on the IRP being processed. We compiled the drivers
without debug information using default settings. Note that
unlike [1], we did not compile and link the driver source
code against the harness; our approach is directly applicable
to drivers without access to source code.

Our experimental results are listed alongside those reported
in [1] in Figure 6. The number of instructions include instruc-
tions from the harness in both cases. Note that the tools report
very different numbers of instructions for the same binaries;
this is due to the fact that JAKSTAB disassembles instructions
only on demand, i.e., if they are reachable by the analysis.
In contrast, CodeSurfer/x86 uses IDA Pro as front end, which
heuristically disassembles all likely instructions in the exe-
cutable. Since for DDA/x86 the entire harness was compiled
and linked with the driver, IDA Pro disassembled all code from
the harness, including code that is unreachable from the driver
under analysis. Conversely, it is possible that some driver code
is unreachable from the harness. For the experiments we used
two value bounds which we determined empirically; k shows

the value bound for registers and stack locations, kh the value
bound for memory locations in allocated heap regions.

For flpydisk.sys, JAKSTAB was able to verify the spec-
ification, while DDA/x86 found a false positive (FP). This is
due to the only limited degree of path sensitivity in DDA/x86,
which follows the ESP approach [14] for differentiating paths
based on states of a property automaton. In [1], the property
automaton is extended to track updates to the variable holding
the return value, but it can miss updates due to its heuristic for
detecting interprocedural dependencies for the return value.

In fakemodem.sys, JAKSTAB encountered a potentially
unsafe memory access (marked as ×m), where an uninitialized
value, i.e., (>R,>32), is used as the index for a write to
an array. We manually confirmed the feasibility of the error
trace for the execution environment simulated by the harness.
DDA/x86 does not check for memory safety due to the large
number of false positives [1], so it did not detect this bug. As
mentioned in Section III-B, our analysis signals an error on
weak updates to all regions. This amounts to implicitly check-
ing for write accesses to uninitialized pointers, which allows
JAKSTAB to detect the error. As a consequence of building on
the SDV harness, which is not designed for checking memory
safety and often omits proper pointer allocation, our analysis
yielded false positives where the result shows FPm in Figure 6.
In mouclass.sys, a switch jump could not be resolved
because the switch variable was over-approximated leading
to a false positive of invalid control flow (FPc). Currently,
we manually investigate abstract error traces and extend the
harness if necessary to eliminate false positives. We leave a
partial or full automation for future work.

The comparison of execution times should be taken with
a grain of salt, since both prototypes were run on different
machines. DDA/x86 was run on a 64-bit Xeon 3GHz processor
with 4GB of memory per process, while the experiments with

JAKSTAB were conducted on a 64-bit AMD Opteron 3GHz
processor with 4GB of Java heap space (we report the average
time of 10 runs per driver). Still, it is possible to see that
execution times for JAKSTAB appear favorable overall.

We do not have to recompile and link drivers with the
harness, so we were able to extend our experiments beyond
the Windows DDK. We ran our prototype on all 322 drivers
from the system32\drivers directory of a regular 32-bit
Windows XP desktop system, using k = 28 and kh = 5.
Besides the PendedCompletedRequest rule, we also checked
the CancelSpinLock rule, which enforces that a global lock is
acquired and released in strict alternation. Note that this set
of drivers also includes classes of drivers which are not even
supported by the SDV harness in source code analysis, such
as graphics drivers. Nonetheless, we were able to successfully
analyze 28% of these drivers. For 41% of the drivers, analysis
failed because of weak global updates, mostly due to missing
information about pointer allocation in the harness. In 31%
of the cases, the analysis failed due to unknown or erroneous
control flow, which can be again caused by unknown side
effects of API functions not supported by the harness, or by
coarse abstraction of variables used in switch jumps. Two
drivers timed out after 1 hour; in three drivers the analysis
found potential assertion violations. To our knowledge, this is
the first time static analysis was successfully applied to real
world, closed source, binary driver executables.

VI. RELATED WORK AND DISCUSSION

Bounded Address Tracking was inspired by the Explicit
Analysis of Beyer et al. [11], which tracks explicit values of
integer variables of C programs up to a certain bound. In their
work, explicit analysis is used for cheap enumeration of values
for a variable before it is modeled by the computationally more
expensive predicate abstraction.

As pointed out already, the CodeSurfer/x86 project is most
closely related to our work and faces similar challenges.
The major differences in approach are that CodeSurfer/x86
is implemented on top of the heuristics based IDA Pro, and
that its analyses (in particular Value Set Analysis (VSA) [6])
are based on more “classic” static analyses such as interval
analysis. VSA is path insensitive and thus requires the use of
call strings for reasonable results. Call strings, however, are
tied to the concept of procedures (which is unreliable in x86
assembly) and assume the existence of a separate call stack.
This issue lead us to the design of the bounded path sensitive
analysis presented in this paper.

Balakrishnan and Reps generally rely on summary nodes for
representing heap objects. They reduce the number of weak
updates by introducing a recency abstraction [15] of heap
nodes. Their approach extends the common paradigm of using
one summary node per allocation site (i.e., address of the call
to malloc), by splitting this summary node into (i) the region
most recently allocated in the current execution path and (ii)
a summary node for the remaining regions. In contrast, our
approach instead explicitly discriminates allocated regions up
to the value bound.

VII. SUMMARY

In this paper, we presented a framework for precise static
analysis of driver binaries. Compared to existing approaches, it
significantly reduces the sources of unsoundness by eliminat-
ing the separate, error-prone disassembly step. We introduced
Bounded Address Tracking, an abstract domain which allows
strong updates to memory locations on the heap, as long as
the number of different pointer values stays below a definable
bound. Experiments on several driver binaries confirm the
feasibility of our approach on small, but real world code and
demonstrate its improved performance compared to state of the
art approaches in spite of increased precision. Moreover, we
tried our approach on all drivers of a regular desktop system
and achieved encouraging results.

For scaling up to larger programs, however, we will attempt
to reduce precision where it is not required. One approach is to
reduce the value bound individually for variables not involved
with control flow or specifications. Starting from a generally
low bound, an iterative refinement loop can help to identify
memory locations and function stubs in the harness where
increased precision is required. Furthermore, we will investi-
gate the use of summaries that do not require assumptions on
procedure structure or calling conventions.

ACKNOWLEDGMENTS

The authors would like to thank Vlad Levin for discussing
SDV, Gogul Balakrishnan for feedback on DDA/x86, and
Peter Bokor and the anonymous reviewers for their detailed
comments on the paper. This work was supported by CASED.

REFERENCES

[1] G. Balakrishnan and T. Reps, “Analyzing stripped device-driver executa-
bles,” in TACAS, ser. LNCS. Springer, 2008, pp. 124–140.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner, “Thorough static analysis
of device drivers,” in Proc. 2006 EuroSys Conf. ACM, 2006, pp. 73–85.

[3] Microsoft. Windows Driver Kit documentation. [Online]. Available:
http://msdn.microsoft.com/en-us/library/ff557573(VS.85).aspx

[4] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of executable
code revisited,” in WCRE. IEEE Computer Society, 2002, pp. 45–54.

[5] Hex-Rays SA. IDA Pro. [Online]. Available: http://www.hex-
rays.com/idapro/ [Accessed: July 26, 2010]

[6] G. Balakrishnan and T. W. Reps, “Analyzing memory accesses in x86
executables.” in CC, ser. LNCS, vol. 2985. Springer, 2004, pp. 5–23.

[7] D. R. Chase, M. N. Wegman, and F. K. Zadeck, “Analysis of pointers
and structures,” in PLDI, 1990, pp. 296–310.

[8] J. Kinder, H. Veith, and F. Zuleger, “An abstract interpretation-based
framework for control flow reconstruction from binaries,” in VMCAI,
ser. LNCS, vol. 5403. Springer, 2009, pp. 214–228.

[9] D. Beyer, T. Henzinger, and G. Théoduloz, “Configurable software ver-
ification: Concretizing the convergence of model checking and program
analysis,” in CAV, ser. LNCS, vol. 4590. Springer, 2007, pp. 504–518.

[10] J. Kinder and H. Veith, “Jakstab: A static analysis platform for binaries,”
in CAV, ser. LNCS, vol. 5123. Springer, 2008, pp. 423–427.

[11] D. Beyer, T. Henzinger, and G. Théoduloz, “Program analysis with
dynamic precision adjustment,” in ASE. IEEE, 2008, pp. 29–38.

[12] M. van Emmerik and T. Waddington, “Using a decompiler for real-world
source recovery.” in WCRE. IEEE Computer Society, 2004, pp. 27–36.

[13] C. Cifuentes and S. Sendall, “Specifying the semantics of machine
instructions.” in IWPC. IEEE Computer Society, 1998, pp. 126–133.

[14] M. Das, S. Lerner, and M. Seigle, “ESP: Path-sensitive program verifi-
cation in polynomial time,” in PLDI. ACM, 2002, pp. 57–68.

[15] G. Balakrishnan and T. Reps, “Recency-abstraction for heap-allocated
storage,” in SAS, ser. LNCS, vol. 4134. Springer, 2006, pp. 221–239.

