11 research outputs found

    Vocabulary size influences spontaneous speech in native language users: Validating the use of automatic speech recognition in individual differences research

    No full text
    Previous research has shown that vocabulary size affects performance on laboratory word production tasks. Individuals who know many words show faster lexical access and retrieve more words belonging to pre-specified categories than individuals who know fewer words. The present study examined the relationship between receptive vocabulary size and speaking skills as assessed in a natural sentence production task. We asked whether measures derived from spontaneous responses to every-day questions correlate with the size of participants’ vocabulary. Moreover, we assessed the suitability of automatic speech recognition for the analysis of participants’ responses in complex language production data. We found that vocabulary size predicted indices of spontaneous speech: Individuals with a larger vocabulary produced more words and had a higher speech-silence ratio compared to individuals with a smaller vocabulary. Importantly, these relationships were reliably identified using manual and automated transcription methods. Taken together, our results suggest that spontaneous speech elicitation is a useful method to investigate natural language production and that automatic speech recognition can alleviate the burden of labor-intensive speech transcription

    Multi-Graph Decoding for Code-Switching ASR

    Full text link
    In the FAME! Project, a code-switching (CS) automatic speech recognition (ASR) system for Frisian-Dutch speech is developed that can accurately transcribe the local broadcaster's bilingual archives with CS speech. This archive contains recordings with monolingual Frisian and Dutch speech segments as well as Frisian-Dutch CS speech, hence the recognition performance on monolingual segments is also vital for accurate transcriptions. In this work, we propose a multi-graph decoding and rescoring strategy using bilingual and monolingual graphs together with a unified acoustic model for CS ASR. The proposed decoding scheme gives the freedom to design and employ alternative search spaces for each (monolingual or bilingual) recognition task and enables the effective use of monolingual resources of the high-resourced mixed language in low-resourced CS scenarios. In our scenario, Dutch is the high-resourced and Frisian is the low-resourced language. We therefore use additional monolingual Dutch text resources to improve the Dutch language model (LM) and compare the performance of single- and multi-graph CS ASR systems on Dutch segments using larger Dutch LMs. The ASR results show that the proposed approach outperforms baseline single-graph CS ASR systems, providing better performance on the monolingual Dutch segments without any accuracy loss on monolingual Frisian and code-mixed segments.Comment: Accepted for publication at Interspeech 201

    Semisupervised Speech Data Extraction from Basque Parliament Sessions and Validation on Fully Bilingual Basque–Spanish ASR

    Get PDF
    In this paper, a semisupervised speech data extraction method is presented and applied to create a new dataset designed for the development of fully bilingual Automatic Speech Recognition (ASR) systems for Basque and Spanish. The dataset is drawn from an extensive collection of Basque Parliament plenary sessions containing frequent code switchings. Since session minutes are not exact, only the most reliable speech segments are kept for training. To that end, we use phonetic similarity scores between nominal and recognized phone sequences. The process starts with baseline acoustic models trained on generic out-of-domain data, then iteratively updates the models with the extracted data and applies the updated models to refine the training dataset until the observed improvement between two iterations becomes small enough. A development dataset, involving five plenary sessions not used for training, has been manually audited for tuning and evaluation purposes. Cross-validation experiments (with 20 random partitions) have been carried out on the development dataset, using the baseline and the iteratively updated models. On average, Word Error Rate (WER) reduces from 16.57% (baseline) to 4.41% (first iteration) and further to 4.02% (second iteration), which corresponds to relative WER reductions of 73.4% and 8.8%, respectively. When considering only Basque segments, WER reduces on average from 16.57% (baseline) to 5.51% (first iteration) and further to 5.13% (second iteration), which corresponds to relative WER reductions of 66.7% and 6.9%, respectively. As a result of this work, a new bilingual Basque–Spanish resource has been produced based on Basque Parliament sessions, including 998 h of training data (audio segments + transcriptions), a development set (17 h long) designed for tuning and evaluation under a cross-validation scheme and a fully bilingual trigram language model.This work was partially funded by the Spanish Ministry of Science and Innovation (OPEN-SPEECH project, PID2019-106424RB-I00) and by the Basque Government under the general support program to research groups (IT-1704-22)

    Code-switching detection using multilingual DNNS

    No full text
    10.1109/SLT.2016.7846326IEEE Workshop on Spoken Language Technology (SLT)610-61
    corecore