1,164 research outputs found

    A novel quantize-and-forward cooperative system : channel parameter estimation techniques

    Get PDF
    The Quantize and Forward cooperative communication protocol improves the reliability of data transmission by allowing a relay to forward to the destination a quantized version of the signal received from the source. In prior studies of the Quantize and Forward protocol, all channel parameters are assumed to be perfectly known at the destination, while in reality these need to be estimated. This paper proposes a novel Quantize and Forward protocol in which the relay compensates for the rotation on the source-relay channel using a crude channel estimate, before quantizing the phase of the received M-PSK data symbols. Therefore, as far as the source-relay channel is concerned, only an SNR estimate is needed at the destination. Further, the destination applies the EM algorithm to improve the estimates of the source-destination and relay-destination channel coefficients. The resulting performance is shown to be close to that of a system with known channel parameters

    Dispensing with Channel Estimation…

    No full text
    In this article, we investigate the feasibility of noncoherent detection schemes in wireless communication systems as a low-complexity alternative to the family of coherent schemes. The noncoherent schemes require no channel knowledge at the receiver for the detection of the received signal, while the coherent schemes require channel inherently complex estimation, which implies that pilot symbols have to be transmitted resulting in a wastage of the available bandwidth as well as the transmission power

    Quantize and forward cooperative communication: joint channel and frequency offset estimation

    Get PDF

    A genetic algorithm-assisted semi-adaptive MMSE multi-user detection for MC-CDMA mobile communication systems

    Get PDF
    In this work, a novel Minimum-Mean Squared-Error (MMSE) multi-user detector is proposed for MC-CDMA transmission systems working over mobile radio channels characterized by time-varying multipath fading. The proposed MUD algorithm is based on a Genetic Algorithm (GA)-assisted per-carrier MMSE criterion. The GA block works in two successive steps: a training-aided step aimed at computing the optimal receiver weights using a very short training sequence, and a decision-directed step aimed at dynamically updating the weights vector during a channel coherence period. Numerical results evidenced BER performances almost coincident with ones yielded by ideal MMSE-MUD based on the perfect knowledge of channel impulse response. The proposed GA-assisted MMSE-MUD clearly outperforms state-of-the-art adaptive MMSE receivers based on deterministic gradient algorithms, especially for high number of transmitting users

    On receiver design for an unknown, rapidly time-varying, Rayleigh fading channel

    Get PDF

    Channel parameter estimation for Quantize and Forward cooperative systems

    Get PDF

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Communications over fading channels with partial channel information : performance and design criteria

    Get PDF
    The effects of system parameters upon the performance are quantified under the assumption that some statistical information of the wireless fading channels is available. These results are useful in determining the optimal design of system parameters. Suboptimal receivers are designed for systems that are constrained in terms of implementation complexity. The achievable rates are investigated for a wireless communication system when neither the transmitter nor the receiver has prior knowledge of the channel state information (CSI). Quantitative results are provided for independent and identically distributed (i.i.d.) Gaussian signals. A simple, low-duty-cycle signaling scheme is proposed to improve the information rates for low signal-to-noise ratio (SNR), and the optimal duty cycle is expressed as a function of the fading rate and SNR. It is demonstrated that the resource allocations and duty cycles developed for Gaussian signals can also be applied to systems using other signaling formats. The average SNR and outage probabilities are examined for amplify-and-forward cooperative relaying schemes in Rayleigh fading channels. Simple power allocation strategies are determined by using knowledge of the mean strengths of the channels. Suboptimal algorithms are proposed for cases that optimal receivers are difficult to implement. For systems with multiple transmit antennas, an iterative method is used to avoid the inversion of a data-dependent matrix in decision-directed channel estimation. When CSI is not available, two noncoherent detection algorithms are formulated based on the generalized likelihood ratio test (GLRT). Numerical results are presented to demonstrate the use of GLRT-based detectors in systems with cooperative diversity
    • …
    corecore