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ABSTRACT

COMMUNICATIONS OVER FADING CHANNELS WITH PARTIAL CHANNEL
INFORMATION: PERFORMANCE AND DESIGN CRITERIA

by
Xinmin Deng

The effects of system parameters upon the performance are quantified under the assumption

that some statistical information of the wireless fading channels is available. These results

are useful in determining the optimal design of system parameters. Suboptimal receivers

are designed for systems that are constrained in terms of implementation complexity.

The achievable rates are investigated for a wireless communication system when

neither the transmitter nor the receiver has prior knowledge of the channel state information

(CSI). Quantitative results are provided for independent and identically distributed (i.i.d.)

Gaussian signals. A simple, low-duty-cycle signaling scheme is proposed to improve

the information rates for low signal-to-noise ratio (SNR), and the optimal duty cycle is

expressed as a function of the fading rate and SNR. It is demonstrated that the resource

allocations and duty cycles developed for Gaussian signals can also be applied to systems

using other signaling formats.

The average SNR and outage probabilities are examined for amplify-and-forward

cooperative relaying schemes in Rayleigh fading channels. Simple power allocation strategies

are determined by using knowledge of the mean strengths of the channels.

Suboptimal algorithms are proposed for cases that optimal receivers are difficult to

implement. For systems with multiple transmit antennas, an iterative method is used to

avoid the inversion of a data-dependent matrix in decision-directed channel estimation.

When CSI is not available, two noncoherent detection algorithms are formulated based on

the generalized likelihood ratio test (GLRT). Numerical results are presented to demon-

strate the use of GLRT-based detectors in systems with cooperative diversity.
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CHAPTER 1

INTRODUCTION

This opening chapter outlines the scope of this work, and establishes the notation that will

be used throughout the dissertation.

The transmission of information over wireless channels is subject to fading, i.e.,

random variation of amplitude and phase of the received signal. Fading is a challenging

obstacle to the practical implementation of reliable communications, due to the physical

limitations on power and bandwidth resources of wireless systems.

The performance of wireless systems depends on channel models and on the avail-

ability of channel state information (CSI) at the transmitter and receiver. In practice, less is

known about the channel at the transmitter than the receiver. Throughout this dissertation,

attention is confined to the cases in which the transmitter does not have full knowledge

of the channel. Specifically, it is supposed that the transmitter does not have any infor-

mation on the instantaneous realization of the channel (short-term knowledge), except

some statistical information of the channel (long-term knowledge). The channel statistical

information includes the probability density function (pdf), moments of channel gain for a

block-fading channel, and the Doppler spectrum for a time-varying channel.

At the receiver, a typical approach to deal with the fading channel is to estimate

the channel gains by training with known pilot symbols inserted in the transmitted data

sequence. In a fast-fading environment, the CSI is generally imperfect, and the quality of

CSI is determined by the resources devoted for channel estimation and the rate of channel

variations. For low-mobility applications, where the channel varies slowly enough that the

receiver can estimate the channel with very high accuracy, it is reasonable to assume that

the receiver has perfect knowledge of the CSI.

1
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In a wireless network, information may be transmitted from the source to the desti-

nation with the assistance of relay nodes, and therefore multiple wireless links are involved.

Although for simplicity it is usually assumed that the destination knows all the channels

in the cooperative transmission (global CSI), this is not practically true. For example,

the source-relay channels cannot be explicitly measured at the destination. Therefore, it

is practically appealing to consider systems with more realistic knowledge of CSI. For

example, it is of interest to consider the case where only local CSI is available, i.e., the

destination only has access to the CSI of the channels from its immediate neighbors, or the

case that no CSI is available at all.

1.1 Overview of the Dissertation

The purpose of this dissertation is to optimize performance over wireless channels by

exploiting channel information. With statistical information of the channels known at the

transmitters, optimal system parameters will be determined from quantitative results on

the effects of design parameters upon achievable performance. These system parameters

include the power and bandwidth allocation to pilot symbols, duty cycle, and power allocation

among nodes in a wireless network. Although an ideal receiver should exploit the channel

information whenever available, the optimal receiver may be too complicated to implement.

Design criteria for low-complexity suboptimal receivers will be developed under these

situations.

Detailed background for this study is presented in Chapter 2. The main results are

contained in Chapters 3-6.

Chapter 3 investigates the achievable rates over time-varying fading channels for a

point-to-point wireless communication system, under the assumption that neither the trans-

mitter nor the receiver have prior knowledge of the instantaneous CSI. The dynamics of the

time-varying channel are characterized by a Doppler spectrum with a known fading rate.

The penalty due to unknown CSI is expressed in terms of the fading rate, the SNR, and the



3

block length. For a pilot-aided system, expressions for the achievable rates are developed,

and are used to determine the optimal power and bandwidth allocations for pilot symbols.

A low-duty-cycle signaling scheme is proposed to improve the performance in the low SNR

regime.

Chapter 4 proposes an iterative algorithm for decision-directed channel estimation in

systems with multiple transmit antennas to avoid the inversion of a data-dependent matrix.

This estimator is used in joint channel estimation and data detection for systems space-time

coded modulation.

Chapter 5 examines the performance of amplify-and-forward cooperative relaying

schemes in a wireless network with Rayleigh fading. Both average SNR and outage performance

are considered, for various cases of available CSI at the relay and destination nodes. Power

allocation strategies are developed that optimize these performance metrics. Numerical

results are prensented for optimal receivers that utilize the global knowledge of CSI, and

for suboptimal receivers when only local knowledge of CSI is available.

Chapter 6 investigates the noncoherent detection with diversity reception. Two detection

algorithms are formulated based on the generalized likelihood ratio test (GLRT) rules.

These algorithms are used for noncoherent detection in systems with amplify-and-forward

cooperative diversity, for which the optimal Bayesian-based detector is difficult to implement.

Conclusions and some thoughts on possible future work are presented in Chapter 7.

The appendices contain the detailed derivations of some results obtained in this dissertation.

1.2 Notation

The following notation is generally used throughout the dissertation. More specialized

notation will be established in subsequent sections when needed.

Lower- and upper-case boldface letters are used to denote column vectors and matrices,

respectively. The symbol diag(s i , s2, . . . , sn.) denotes a diagonal matrix whose main diagonal

elements are s 1 , s 2 , .. . , s r,. The all-zero vector is denoted by 0. Matrix I stands for the
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identity matrix. Superscripts *, T and H denote the complex conjugation, transposition

and Hermitian transposition (complex conjugation and transposition combined), respec-

tively. The statistical expectation operator is denoted by E. The variance of a random

variable is denoted by var [1, where the quantity enclosed is the random variable of interest.

The symbol CN(μ, R) denotes the circularly-symmetric, complex Gaussian distribution

with mean vector u and covariance matrix R.



CHAPTER 2

BACKGROUND

This chapter reviews the literature related to the topics studied for this dissertation.

2.1 Fading Channels and Estimations

For simplicity only frequency-flat fading channels are considered in this dissertation. This

is because dispersive multipath channels can be converted into multiple flat fading channels

by using orthogonal frequency division multiplexing (OFDM).

For a flat fading channel, the discrete-time received signal at time k can be formulated

as

where sk is the transmitted symbol, hk and nk are samples of the fading and noise processes,

respectively. Without loss of generality the channel gain is normalized such that E[|hk | 2 ]

1. The noise power is E[|nk|2] = N0. For Rayleigh fading and Gaussian noise, the channel

gains and noise samples are distributed as hk ~ C (0, 1) and nk ~ CN (0, N 0) ,respec-

tively. The noise process is assumed to be white.

It is assumed that data are transmitted over the channel in blocks of symbols of length

L, and that the fading between different blocks is independent. This model is similar to the

one used in [1] and it might apply to a TDMA system, where the user does not have access

to contiguous blocks.

In order for the receiver to obtain an estimate of the channel gains, pilot symbols

are inserted into the data sequences. In each L-symbol block, the pilot symbols occupy

Lp symbols. The power of each pilot symbol is Ep. In the sequel, the pilot symbols

5
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and the corresponding received signals are represented by the Lp x 1 vectors sp and rp,

respectively.

Block-Fading Channels

For a block-fading channel, the channel gain remains constant over the transmission block.

Let h be the channel gain. Then the input-output relationship can be written

where np is the vector of noise samples with the same time indices as rp.

The optimal maximum-likelihood estimate for the channel gain is

The resulting mean-squared error is

It is noted that for a block fading channel, the channel estimation error is inversely propor-

tional to the SNR Ep/N0 and the number of pilot symbols Lp. Thus, for systems with

high SNR, or slow fading (large L), it is possible to obtain a very accurate estimate of the

channel with relatively small amount of training resource. The assumption of perfect CSI

is reasonable for these cases.

Time-Varying Channels

For a time-varying channel, the fading process hk is assumed to be stationary and correlated

in time. The dynamics of the time-varying fading process are characterized by the power

spectral density function (or equivalently, the autocorrelation function) with specified normalized

fading rate, fp, defined as the maximum Doppler spread normalized by the symbol rate.

For mobile communications, Doppler spread is usually determined by motion of the terminals
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and the carrier frequency. For example, at carrier frequency 1800 MHz, a mobile terminal

moving 10 m/s imparts a maximum Doppler spread of 60 Hz. If the symbol rate is 30 x 10 3

symbols/sec, then the normalized fading rate is fD = 0.002.

For Clarke's two-dimensional isotropic scattering model [2], the power spectral density

function of the continuous fading process is

and the corresponding autocorrelation function is given by

where J0 is the zero-order Bessel function of the first kind. For simpler results and more

insight, it is useful to also consider a fading process with an ideal lowpass equivalent

spectrum and with the same cutoff frequency as (2.5):

For the time-varying channel, the input-output relationship can be written

where Sp = diag(sp), hp and np are respectively the vectors of channel gains and noise

samples with the same time indices as rp.

The optimal linear minimum mean squared error estimate for the channel gain hk is
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where σhkhp = E[hkhHp], Σrprp = SPΣ hphpSHP + N0I, with Σ hp hp = E[hPhHp]. The

resulting mean-squared error is

In general, the channel estimation error is dependent on the time index k, and through

σhkh, and Σrprp , is dependent on the positions of the pilot symbols. For simplicity, it is

assumed that at the transmitter of a pilot-aided system, a pilot symbol is inserted after every

block of (Tp — 1) data symbols. The pilot symbol insertion frequency 1/Tp satisfies the

Nyquist criterion 1/Tp ≥  2 fD so that no aliasing is incurred.

Estimation errors are mainly due to the fact that the estimation process utilizes noisy

observations. In addition to that, for a strictly band-limited fading process, the correlation

function is theoretically unlimited in time. The block length L provides the time support

for observations of the fading process. According to [3], for a process with time-bandwidth

product ≈  1, the block length has to be L ≥  f5 1 for adequate time support. A finite

observation time, i.e., L < ∞ , will serve as an additional source of estimation error.

To simplify the analysis, the latter error can be eliminated by assuming that L --> ∞ .

In this case, the sequence of pilot symbols is infinite (although the allocation of power

and bandwidth is finite), the channel estimation error is independent of the position of the

symbol in the block, and therefore time indices are suppressed in the sequel. The actual

channel coefficient h can be expressed as

where h denotes the estimate of h, and h denotes the estimation error. For infinite block

length, the channel estimation error is given by (see, e.g., [4])
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where H (w) is the power spectral density function of the fading process, and

is the transfer function of the optimal Wiener filter used for channel interpolation. For

a lowpass Doppler spectrum, such as given by (2.7), the MMSE of the channel estimate

calculated from (2.12) and (2.13), is given by

2.2 Performance Measures

In this work, the average SNR and average mutual information are used to measure the

average system performance. The outage probability characterizes the worst-case performance.

The average performance measures are useful when the system experiences the ergodic

fluctuations of the channels over a sufficiently long time. The worst-case performance

measure is more important when the delay and complexity constraints of the system prevent

the inherent time diversity of the channels from being exploited.

Average SNR

Let S denote the random variable representing the SNR of the combined received signal.

The statistical average of S over the fading distributions, E [S], provides a simple measure

of average system performance.

Average Mutual Information

The average mutual information measures the maximum achievable rate for reliable commu-

nication. For systems with additive white Gaussian noise (AWGN), Gaussian signaling,

and perfect CSI at the receiver, the mutual information becomes the ergodic capacity of the
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channel

The average mutual information and the average SNR are closely related by Jensen's

inequality. The average SNR provides an upper bound on the ergodic capacity

Outage Probability

The outage probability, which characterizes the worst-case performance, is defined as the

probability that the SNR of the combined signal falls below some pre-specified threshold

t, i.e.,

The threshold SNR t is the required SNR for the system to maintain a certain level of

performance. I

Clearly for a given SNR threshold, the outage probability is a decreasing function

of p. When SNR is high, the relation Pout cc pi' holds for most diversity schemes in the

literature, where n is usually referred to as the diversity order, and in most cases n is an

integer.

2.3 Related Literature

A growing body of literature is available that explores the ultimate limits of achievable rates

of wireless communications systems over fading channels. Results have been published for

a large variety of cases, depending on channel models and on the availability of channel

state information (CSI) at the transmitter and receiver [5].

1 For example, this threshold can be directly tied to the transmission rate R (in bits/symbol), through
R = log2 (1 + t), or equivalently, t = 2R — 1.
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Achievable Rates without Perfect CSI

It is well known that when the CSI is perfectly known to the receiver, the channel capacity is

achieved by independent and identically distributed (i.i.d.) Gaussian signals. If, in addition,

the transmitter also has the CSI, then Gaussian signaling is still optimal, and the capacity

can be achieved by "waterfilling" the transmit power. However, in scenarios where neither

the transmitter nor the receiver have CSI, the channel and capacity achieving signaling are

not as well understood. Considerable attention has been paid to wideband channels with

large number of dimensions in either spectral, temporal, or spatial domains. In the limit,

when the number of channel dimensions is infinite, this capacity is the same as that of

the additive white Gaussian noise (AWGN) channel: the capacity can be attained by any

zero-mean signaling for known channel, and by "flash signaling" for unknown channels.

Stemming from that, for vanishing capacity (in bits per dimension), knowledge of CSI is

useless. Significant differences between known and unknown channels, however, start to

emerge when the number of transmitted bits per channel dimension is not zero [6].

Over unknown wideband channels that decorrelate in frequency and time, the mutual

information for signals with bounded peakiness tends to zero as the number of dimensions

increases to infinity [7,8,9]. The interpretation provided in the references is that each degree

of freedom of the channel needs to be measured, and as the number of degrees of freedom

increases there is less and less energy for each to be estimated accurately. The solution

suggested to this problem is to concentrate the energy in fewer degrees of freedom, which

can then be estimated with high accuracy. This leads to peakiness in time or frequency.

The capacity of the multiple-input-multiple-output (MIMO) channel with block Rayleigh

fading was studied in [10, 11]. It is shown that when the number of transmitter antennas is

large and the channel coherence time is limited, the optimal signaling is peaky in space as

well: the number of transmit antennas used should be no more than half of the coherence

time (in symbols).

The time-varying nature of the channel is challenging since perfect knowledge of
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the state information is not possible regardless of how much effort goes into estimating

the channel. Early on, Viterbi has shown that for M-ary orthogonal signaling, in the

limit when the cardinality of the source alphabet increases to infinity, the mutual infor-

mation representing the channel randomness subtracts directly from the channel capacity

with known CSI [I2]. The capacity problem without CSI has been studied for some

simplified channel models, e.g., memoryless Rayleigh-fading channels [13, I4], block-

fading channels [10, 1, 11, 15, I6, 17], channels with unknown phases [18, 19], and finite-

state Markov channels [20, 21]. Alternatively, in [22], the channel capacity is studied as a

function of channel measurement errors, rather than being tied directly to a channel model.

The unknown channel problem can be solved by joint decoding and channel estimation [4].

However, joint solutions are not affordable for most systems of practical interest, since the

receiver complexity grows exponentially with the block length. A suboptimal, but practical,

approach is to estimate the CSI by training with known pilot symbols inserted in the trans-

mitted data sequence. Due to the presence of noise and the time variation of the channel,

the receiver is provided with imperfect CSI and therefore the system performance depends

on the quality of the CSI [22, 23]. Capacities of pilot-aided systems have been studied

in [24, 25, 26, 27].

Publications referenced above, such as [13, 10], are part of an increasing body of

literature that states that when CSI is not available, the capacity achieving distribution is

discrete with one of the signals located at zero. This is in marked contrast to channels with

perfect CSI for which continuous Gaussian signaling is optimal. However, the exact charac-

terization of the capacity achieving signaling is a difficult problem that has been addressed

mostly numerically and only for a few cases. For example, for fast fading (memoryless)

channels, it is found empirically that binary signaling is optimal for low SNR and that the

required number of signal levels increases monotonically with SNR [13]. Full characteri-

zation of the capacity achieving signaling is a daunting task, which consists of determining

the number of signals in the source alphabet, their levels and their probabilities. Practical
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implementation seems far fetched.

In Chapter 3 the achievable rates are evaluated for Gaussian signals. Optimal system

parameters are determined by maximizing the achievable rates.

Joint Channel Estimation and Detection for MIMO Systems

The use of multiple antennas at both the transmitter and receiver in wireless communi-

cations has been shown to provide significant increase in capacity [28, 29]. In particular,

if the fading between pairs of transmit and receive antenna are independently Rayleigh

distributed, it is known that for high enough signal-to-noise ratio (SNR), the average capacity

grows linearly with the smaller of the number of transmit or receive antennas, provided

that perfect channel state information (CSI) is available at the receiver. However in the real

world perfect CSI is never known a priori. In practice an estimate of CSI is obtained from

known pilot symbols and subsequently used for decoding as if it were exact. Therefore

the performance depends on the quality of the channel estimate and hence the number of

pilot symbols. Estimation of the multiple-input-multiple-output (MIMO) fading channel is

a major challenge for multiple antenna systems. When the number of antennas increases,

accurate channel estimation becomes more difficult because of the increase in the number

of parameters to be estimated. In [26, 24], the effect of the availability of pilot symbols on

MIMO fading channels is determined by information theoretic approaches.

Recently there is increasing interest in joint channel and data decoding [30,31,32,33,

21, 34, 35, 36], where data decision obtained from the decoding, either hard or soft, is used

as additional training to refine the channel estimate. For single transmit antenna systems

the optimal maximum a posteriori (MAP) channel estimate can be obtained by applying

a data-independent Wiener filter to the maximum likelihood (ML) estimate. For multiple

transmit antenna systems, however, the ML channel estimate does not exist, and it can be

shown the computation of the optimal channel estimate involves the inversion of a data-

dependent matrix [30,32,34]. Due to the high computation complexity of matrix inversion
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and the fact that the matrix inversion has to be calculated in each iteration, optimal decision

directed channel estimation for MIMO channels is difficult to implement in practice.

In [37, 38] an iterative method is proposed to reduce the complexity by avioding the

data-depedent matrix inversion. This method is presented in Chapter 4.

Noncoherent Detection

For noncoherent modulation and detection, no attempt is made to estimate the channels

parameters. Noncoherent detection is an attractive solution particularly when the phase

of the channel cannot be tracked accurately. There are two major approaches to detect

signals with unknown parameters. The first is the Bayesian approach, which considers

the unknown parameters as realizations of random variables with known statistics. The

second is the generalized likelihood ratio test (GLRT), which uses the maximum likelihood

estimate (MLE) of the unknown parameter in a likelihood ratio test (LRT) [39]. The

Bayesian-based noncoherent detector receives much of the attention in the literature because

it exploits the prior information of the channel and is optimal in the maximum-likelihood

(ML) sense. It is also noted that for the case of unitary signals and independent and

identically distributed Rayleigh fading, the Bayesian-based detector and the GLRT-based

detector are equivalent. With the Bayesian approach the unknown channel parameters

are averaged out with respect to the known statistics, leading to the optimal maximum-

likelihood detection techniques such as square-law detection of orthogonal signals or ML

sequence detection of differential phase-shift keying (DPSK) signals [40,41,42]. However,

for general channels, Bayesian-based detector may be difficult to implement since multiple

integration is involved. In Chapter 6 two noncoherent detection algorithms are derived for

multichannel receivers using the GLRT approach, which do not require knowledge of the

channel statistics at the receiver.
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Cooperative Relaying

Cooperative relaying has been introduced in recent literature as an efficient means for

spatially dispersed nodes in wireless networks to relay signals for one another in order

to exploit spatial diversity (referred to as cooperative diversity [43, 44,45,46, 47]) in fading

channels, and to transmit information with minimum power [48, 49].

For a more efficient use of the power resources, the problems of optimally distributing

power among nodes have been considered in [50, 5I, 52, 53]. When instantaneous channel

gains are known at the transmitters, adaptive allocations are used to optimize the performance

for amplify-and-forward (AF) diversity in [50, 51]. In [52] the optimal allocation are

developed that minimizes the outage probability for decode-and-forward (DF) diversity and

used as an approximate solution for AF diversity. Simple power allocation strategies with

mean channel gain information are presented for DF and AF diversity in [53,54]. In Chapter

5 power allocations are developed to optimize both average and outage performance.

Among various cooperative diversity schemes, fixed AF relaying [44] has been shown

to be promising. Besides its simplicity, it achieves full second-order diversity, provided

that global knowledge of the channel state information (CSI) is available and the optimal

maximal-ratio combining (MRC) is employed at the destination. By contrast, fixed DF

relaying does not achieve full diversity. More complicated protocols, which exploit feedback

from the destination, are required for the DF relaying to achieve full diversity [44, 47].

Most work in the literature on AF diversity focuses on the case that global CSI is

known [44, 55, 56, 57, 58, 59]. While the availability of perfect knowledge of global CSI

simplifies the performance analysis, this may not be true in practice. For example, the

source-relay channel cannot be explicitly measured at the destination, and it may take too

much overhead to obtain this information. Therefore it is appealing to consider systems

without CSI or with more realistic knowledge of CSI [60, 61, 62]. In Chapter 6 GLRT-

based noncoherent detectors are considered for AF diversity, for which the optimal ML

noncoherent detector is difficult to implement.



CHAPTER 3

ACHIEVABLE RATES OVER TIME-VARYING CHANNELS

This chapter considers a channel subject to a continuous flat fading process, i.e., the fading

changes during a block of symbols rather than remaining constant. This channel model has

received less attention in the literature (exceptions to that are recent work [26, 63, 64]). In

particular, information rates of time-varying, Rayleigh fading channels are studied under

the assumption that no a priori knowledge of the CSI is available at either the receiver

or the transmitter. The dynamics of the fading channel are characterized by its Doppler

spectrum with specified normalized fading rate fD, known to the receiver [65]. Since little

is known about the exact structure of optimal signaling under those conditions, and due

to the difficulty of implementing signals for which the alphabet size, levels and proba-

bilities depend on channel conditions, it is of interest to evaluate what information rates are

achievable by applying, and possibly modifying, familiar modulation formats. In particular

Gaussian signaling is focused since it is optimal when the CSI knowledge is perfect, and is

asymptotically optimal even in the absence of CSI, when the fading is very slow. Gaussian

signaling also makes it possible to obtain closed-form expressions that afford insight and

intuition into the problem of information rates over channels without CSI. Finally, it is

noted that it is not difficult to carry out the analysis presented in the chapter for other

signaling formats (on-off keying, binary antipodal, orthogonal). However in those cases it

does not seem possible to obtain closed-form solutions.

This chapter is organized as follows. The system and channel models are briefly

described in Section 3.1. Section 3.2 contains the derivation of the penalty on information

rate and a lower bound on capacity. The performance of pilot-aided systems and the optimal

resource allocation are presented in Section 3.3. The asymptotic behavior in the high and

16
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low SNR regimes are analyzed in Section 3.4. Section 3.5 provides the treatment on the

low-duty-cycle signaling in the low SNR regime. Conclusions are given in Section 3.6.

In the sequel, 7-1 and I are used to denote the differential entropy and mutual infor-

mation, respectively. The function In is the natural logarithm so that information rates and

entropies are expressed in natural units (nats, 1 nat = 1/ (in 2) bits).

3.1 System and Channel Model

The channel between the transmitter and receiver is modeled as a flat fading process. The

discrete time received signal is given by (2.1). The average transmitted signal power is

Es = E[|sk| 2]. Let p denote the average signal-to-noise ratio (SNR) per symbol at the

receiver, i.e., p= Es / N0 .

The fading process hk is stationary, with normalized fading rate fD. The effects on

achievable information rates are analyzed in the next section, for the fading processes with

Clarke's spectrum (2.5) and the low pass sprectrum (2.7).

3.2 A Lower Bound on Mutual Information

Let the transmitted block consist of L symbols. Let s = [S i s2 . . .sLITbe the sequence of

transmitted symbols. The received sequence, denoted by an L x 1 vector r = [r 1 r2 . . . r L]T

is of the form

r = Sh + n, (3.1)

where S = diag(s1 , s2 , . . . , s L ) , h = [h 1 h2 . . . hL ]T, and n = [n1n2 . . . n L ]T . The noise

sample vector n is complex Gaussian, distributed in L dimensions with zero mean vector

0, and covariance matrix N01. The channel parameter vector h is complex Gaussian with

zero mean vector and Toeplitz positive semidefinite covariance matrix Rh, whose elements

are determined by the normalized fading rate. Under these assumptions, one can readily
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show that given S, r has an L-dimensional complex Gaussian distribution with mean vector

0 and covariance matrix SR h SH + N0I  (see, e.g., [66]).

The mutual information between r and {s, h} can be expanded by using the chain

rule as follows (see [67]):

Thus, T(r, s), the mutual information between channel input s and channel output r,

without CSI, can be expressed

Note that T(r, s|b) in (3.3) is the mutual information with perfect CSI. Therefore, (T(r; h|s) — /(r; h))

is the penalty in information rate due to unknown CSI. Since T(r; h) is nonnegative,

T(r; his) can be interpreted as an upper bound on the penalty due to unknown CSI and

since 0 ∞  T(r; h) ≤  T (r, h|s), there is always a cost due to unknown CSI. The cost

vanishes if and only if T(r; h|s) = T(r; h) = 0, i.e., the CSI is known.

In (3.3), the information rate without CSI, T(r; s), is dependent on the distribution

of the input s. In the sequel, first an upper bound on the penalty T(r, h|s) is derived. This

penalty is a function of the symbols s. For any specific signaling format a lower bound

on T(r; s) can be obtained by starting from (3.3), neglecting the nonnegative term T(r; h),

evaluating T(r, s|h) and using the upper bound on T(r;h|s).Asymptotic results will be

provided for long block lengths. It is noted that it is also possible to derive upper bounds

on the achievable information rates by evaluating T(r, h|s), upper bounding T(r; s, h), and

using the first relation in (3.3) [68].
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3.2.1 An Upper Bound on Information Rate Penalty

The mutual information term .T(r; h|s) was previously introduced as an upper bound on the

penalty due to lack of CSI. Expressing T(r; h|s) as a difference of conditional differential

entropies of the L dimensional vector r,

where for white Gaussian noise

and

where the expectation is with respect over S.

For general input distributions, the computation of H(r|s) (and hence T(r; h|s)) is

intractable. Instead, one can develop an upper bound on T(r, h|s).

Application of Jensen's inequality to (3.6) gives

where equality holds if and only if the input symbols have constant power, i.e., |s1||2 = Es ,

l = 1, 2, .,., L, (e.g., M-ary phase-shift keying). Continuing the upper bounding of H-(r|s),
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where λ,  l = 1, 2, ..., L, are the eigenvalues of Rh. Substituting (3.5) and (3.8) into (3.4)

yields

As mentioned earlier, T(r; has) is interpreted as the upper bound on the penalty due to the

lack of CSI at either the transmitter or receiver. The penalty attains its maximum value

given by the right-hand side (RHS) of (3.9) for constant power signals. For future use, this

value of the penalty normalized to the number of symbols is denoted by

Notice that PΔ  is a function of the SNR ρ , the frame length L, and, through the assumed

known channel covariance matrix Rh, of the channel normalized fading rate fD . Moreover,

through the eigenvalues of channel covariance matrix, the penalty function is also dependent

on the spectrum of the channel fading process.

It is noted that for fixed fD and ρ , PΔ  is a nonincreasing sequence in L. This is a

consequence of the fact that the matrix I + ρRh is Toeplitz positive definite and Theorem

16.8.6 in [67]. This observation confirms the intuition that the channel dynamics can be

learned better with an increasing sequence of observations, leading to a reduced loss in

information rate.

3.2.2 Large Block Length

Since PΔ  is a nonincreasing sequence in L and is bounded below (P Δ  ≥  0), it has a limit

as block length L goes to infinity. In the sequel, this limit is denoted by P~Δ, i.e.,

By Szegö's theorem ( [69], pp. 64-65), one can obtain the following asymptotic

relation between the eigenvalues of the correlation matrix of the fading process and its
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power spectral density:

where H(w) is the power spectral density function of the fading process hk.

For Clarke's model with autocorrelation function (2.6), and power spectral density

(2.5), the asymptotic value P~Δc can be evaluated analytically as shown in Appendix A.1,

and is given by

where the function 0 is defined as

Expression (3.13) looks fairly complicated. For a simpler expression that yields

better insight, one can also consider a fading process with an ideal lowpass equivalent

spectrum with the same cutoff frequency as (2.7). Substitution of (2.7) into (3.11) leads to

This result indicates that the penalty for not knowing the channel is upper-bounded by the

information contained in the fading process.

Fig. 3.1 shows (3.10), the upper bound on the information rate penalty due to

unknown CSI, versus block length L for an SNR per symbol p = 10 dB, and for normalized

fading rates ID = 0.01 and 0,05. As expected, the penalty decreases in opposite direction
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Figure 3.1 Upper bound on information rate penalty versus block length for Clarke's
Doppler spectrum (p = 10 dB).

of the block length L, and it approaches the asymptotic bound in (3.12) as L goes to

infinity. Conversely, short blocks do not allow observation of the channel over a period

of time sufficient for learning the channel dynamics, and hence carry a higher penalty due

to unknown CSI. The information rate penalty for block fading is also shown in the figure.

It can be observed that to the extent that the block fading model is used as an approximation

to continuous fading, it underestimates the loss in information rate.

Fig. 3.2 is a graph of the rate penalties for long blocks (L --> ∞) for the two fading

spectra discussed above, (3.12) and (3.14), as a function of the SNR p, for various fading

rates. It can be seen that the penalties for the ideal lowpass fading spectrum are only slightly

higher than those for Clarke's spectrum with the same fading rate. With information rates

seeming to be insensitive to the actual shape of the Doppler spectrum, and due to the

simpler expressions, in the sequel, the ideal lowpass spectrum is used for performance
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Figure 3.2 Asymptotic (large block length) information rate penalty versus SNR.

analysis. Observe that, as expected, the penalty increases with the fading rate and with

SNR. The effect of SNR will be revisited in the next section.

3.2.3 A Lower Bound on Achievable Rate

Since the term /(r; h) in (3.3) is nonnegative, the mutual information for unknown CSI is

lower-bounded by

The second term on the right-hand side (RHS) of (3.15) is upper bounded in (3.9). The first

term on the RHS of (3.I5) is just the mutual information between the input and the output

of the fading known channel and it is maximized by input symbols i.i.d. with Gaussian
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density [67]

where CRayleigh (x) is the ergodic capacity per symbol of a Rayleigh fading channel with

perfect CSI as a function of average SNR. The capacity of the fading channel is given by

(see [70, 71]):

where the expectation is with respect to an exponentially distributed random variable A

with unity mean, and Ei is the exponential-integral function

The lower bound on the achievable information rate without CSI is formulated as the

following proposition:

Proposition 1 The capacity per symbol of a time-varying channel without CSI is lower-

bounded by

As L goes to infinity, the following information rate can be achieved by i.i.d. Gaussian

signaling:

The proof of the proposition follows from (3.9), (3.15) and (3.16).
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The block fading channel is a special case of the time-varying channel addressed

here. The following corollary specializes the proposition to the block fading channel:

Corollary 1 Let L be the number of symbols in the coherence interval of a block fading

channel. Then the capacity per symbol of this channel without CSI is lower-bounded by

The corollary is obtained directly from the observation that for block fading the only

nonzero eigenvalue equals L. As L goes to infinity, this lower bound approaches the capacity

with perfect CSI and that can be achieved with i. i.d. Gaussian signaling.

It is noted that for quasi-static channels, similar results have been derived for a variety

of cases; see, e.g., [I8, 19, 10, 15, 16].

The task of achieving the channel capacity for unknown channels is difficult even

for channels that can be represented by a finite number of states such as the discrete

memoryless channel [72]. It is more so for the continuous fading channel considered

here. A suboptimal approach often adopted in practice is to estimate the channel from

a training sequence referred to as pilot, and to follow that by conventional maximum-

likelihood detection using the estimated channel values as a known channel. The design of

such systems is considered in the next section.

3.3 Pilot-Aided Systems

This section studies achievable information rates for a system using pilot-aided channel

estimation, and determines the optimal resource allocation for the pilot and data symbols

that maximizes the information rate.

Recall that for a time-varying fading with lowpass Doppler spectrum given by (2.7),

the MMSE of the channel estimate is given by (2.14), where Ep is the power of each pilot

symbol, and 1/Tp is the pilot insertion frequency.
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Next, the channel estimation error is regarded as an additive noise term with the

variance given in (2.14), and it is used to evaluate system performance.

Let a and 0 denote the fractions of bandwidth and power devoted to pilot symbols,

respectively. Using ED to denote the average data symbol power, then for the pilot

and

and for the data

In the special case when the pilot symbol and data symbols are constrained to have

the same power, i.e., Ep = ED = Es , the fractions of bandwidth and power that are

allocated to the pilot are equal, α  = β  = 1/Tp.

3.3.1 Effective SNR

By substituting (2.11) in (2.1), the signal model is rewritten

In this equation, sh is the signal term, and z = sh + n as an additive noise term. The

effective SNR can be expressed
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Upon substitution of (3.22), (3.23) and (2.14), and after some manipulations, (3.25) becomes

where 77 is the SNR efficiency due to imperfect CSI:

In (3.27), the SNR efficiency due to the use of pilot symbols is expressed in terms of the

power and bandwidth allocations to the pilot. The expression suggests that suitable choices

of those allocations will optimize performance.

3.3.2 Rates with Optimal Resource Allocation

This section deals with systems with imperfect CSI. As is the case with systems with

unknown CSI, little is known about the capacity and the capacity achieving signaling for

imperfect CSI. Taking the same approach taken for unknown channels, one can seek to

derive a useful lower bound on the capacity by evaluating the information rate achievable

with Gaussian signaling.

The capacity of a system with pilot-aided channel estimation is equivalent to that of

a system with perfect CSI but with a loss in bandwidth and power reflecting the use of the

pilot signals and the CSI estimation errors. The mutual information of the Rayleigh fading

channel with Gaussian signaling serves as a lower bound to the capacity with unconstrained

signaling. The information rate achieved by Gaussian signaling can be expressed as follows

in terms of the capacity with known CSI:

where the subscript denotes "pilot", and CRayleigh is the ergodic capacity of a Rayleigh

fading channel with perfect CSI given by (3.17). The information rate (3.28) is also

expressed in terms of a and 77, which represent the loss in bandwidth and the power
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efficiency, respectively, due to the use of pilot symbols. Clearly, Rp ≤  CRayleigh, with

equality if and only if a = 0, = 1 (i.e., perfect CSI and no pilot). It can be seen, from

(3.27) and (3.28), that the information rate depends on the resources allocated to the pilot

symbols, through the parameters α  and β . In the sequel, the resource allocations a and f3

that optimize the rate (3.28) will be determined, for fixed values of fD and p.

Optimal Pilot Symbol Insertion Frequency It will be shown that for fixed values of fD ,

p, and [3, the achievable information rate (3.28) is a decreasing function of a. The approach

taken below is suggested by [24], where the problem is solved for the block fading channel.

Take the derivative of Rp with respect to a:

where the first inequality holds because

for fD > 0, p > 0, and β  < 1; the second inequality follows from the fact that

for all nonnegative values of x.
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Therefore, the information rate is maximized when a attains its minimum possible

value, which is just the minimum frequency satisfying the Nyquist criterion, i.e.,

Clearly, the optimal pilot insertion frequency does not depend on the SNR p. With

this choice of pilot symbol insertion frequency, the coefficient n can be written as

Optimal Pilot Power Allocation Having established that the optimal fraction of bandwidth

used for pilot symbols is given by (3.29), one can subsequently find the optimal power

allocation for the pilot symbols. That will be the value of /3 that maximizes 77 in (3.30).

Expression (3.30) can be rewritten

with

The value of 3 that maximizes (3.31) is dependent on fD. Assume that fD < 1/4.

This assumption is motivated by the following argument. If the normalized bandwidth of

the transmission is 1, and it is required that less than 50% of the bandwidth be allocated

to the pilot, then from Nyquist sampling considerations fD < 1/4. Conversely, if more

than 50% of the bandwidth needs to be allocated to the pilot, then noncoherent techniques

that do not require channel estimation are probably more desirable. Under the assumption

fD < 1/4, v is positive, and the optimal fraction 0 of power allocated to the pilot symbols,

in the sense that the coefficient 77 given in (3.31) is maximized, can be shown to be
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where the function g (x) is defined as

Setting 13 equal to this optimal value and substituting in (3.31) leads to

with v given by (3.32).

It is not hard to verify the following properties of v, g (x) , and ηopt :

Lemma 1 1. v > 0, if ρ  > 0 and 0 < fD < 1/4;

2. v is an increasing function of fD;

3. v is a decreasing function of p, if < fD < 1/4;

4. g (x) is a nonnegative, increasing function of x for x > 0, and its value tends to 1/2

as x tends to infinity;

5. ηopt is a decreasing function of v for v > 0.

It follows from Lemma I, that the optimal power allocation to the pilot β 0p, is a

decreasing function of p and an increasing function of fD, while ηopt is an increasing

function of p and a decreasing function of fD. In other words, if the fading becomes

slower or the SNR becomes higher, a smaller fraction of the power should be allocated to

pilot symbols, and using pilot symbols becomes more efficient. It can also be shown that

Copt > 2fD for all values of p and all values of fD < 1/4, implying that the power allocated

to pilot symbols should always be greater than the average power.

Since for a fixed fading rate, βopt and ηopt are both functions of the SNR, it is of

interest to examine the limiting behavior at high SNR and low SNR. These results will be

presented in Section 3.4.
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3.3.3 Rates with Constrained Resource Allocation

It have been shown that if it is free to choose the allocations a and 0, then the optimal

solution is given in (3.29) and (3.33), respectively, and the optimal values of a and 0 are

never equal. More specifically, β ct > α opt = 2fD for any SNR p and fading rate fD < 1/4,

implying that the optimal power of pilot symbols always exceeds the average power of the

data symbols.

It is of interest to investigate the special case considered in [26], where the pilot

symbol power and average data symbol power are constrained to be equal. To distinguish

between the unconstrained and constrained cases, quantities associated with the latter are

marked with the superscript With this constraint in effect, the fractions of bandwidth

and power allocated the pilot symbols are equal, i.e., α * = β *. Moreover, the constraint

implies that the powers per symbol for pilot and data are equal. It is possible to find the

optimal resource allocation to the pilot symbols by maximizing the information rate

where the maximization is over β* in the interval 2fD ≤  β* ≤  1. Letting α* β * in (3.27),

the coefficient η* is given by

No simple analytic expression for the optimal value of β* appears to be available. It is

observed, through numerical computations, that the optimal value of β * is always greater

than 2fD [26]. With that, one can write β* α* > 2fp (compare to a = 2fD for the

unconstrained case). The intuition here is that the larger bandwidth required by the pilot,

makes up for the pilot power now constrained to be the same as that of the data symbols

(i.e., the pilot symbols need to be sent more often).
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Although the detailed dependence of the optimal value of /3* on p must be determined

numerically, simple asymptotic approximations do exist for the high or low SNR regimes.

These results are presented in the next section.

3.4 Asymptotic Behavior

This section presents asymptotic approximations for information rates developed in previous

sections, as well as the optimal resource allocation for pilot symbol aided system, in the

high and low SNR regimes.

3.4.1 High SNR

In the high SNR regime, one can use the following approximation for CRayleigh (p) [70, 71]

where γ  = 0.577 . . . is E ü ler's constant.

Mutual Information Lower Bound It can be easily seen from (3.10) that PA is monoton-

ically increasing with ρ , and PΔ  -->∞asρ -->∞.It is of interest to study the asymptotic

behavior of the PA /CRayleigh ratio for high SNR.

For the lowpass spectrum, the information rate penalty is given by

It is shown in Appendix A.2 that the same relation also holds for Clarke's spectrum. It can

readily be seen that in the high SNR regime, the ratios of the capacity lower bound (3.I9)

to CRayleigh equal (1 - 2fD ) for both types of spectra. Therefore, for large blocks and high

SNR, the fractional loss in information rate due to unknown CSI equals twice the channel

normalized fading rate.
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The capacity lower bound (3.19) can be approximated

where the SNR efficiency ηLB can be found by equating the relation above with (3.I9) and

using (3.38), and is

Pilot-Aided System with Optimal Allocation From (3.32) and (3.33), one can obtain

the limiting value for the power allocation to pilot symbols:

It follows from (3.35) that the SNR efficiency

Since 1/2 < limρ-->∞ ηopt  < 1 provided that 0 < ID < 1/4, the loss in effective SNR due to

the use of channel estimation is less than 3 dB when the SNR is high. This result confirms

the intuition that for high SNR the use of a pilot is preferred to techniques that do not use

channel estimates such as noncoherent or differential detection.

Pilot-Aided System with Constrained Allocation From (3.38) and (3.36), for any value

of /3* in the interval 2fD < 13* < 1,

which is decreasing in 0*. It follows that
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and from (3.37) that

Therefore, for constrained bandwidth and power allocations (or equivalently, equal power

pilot and data symbols), the loss in effective SNR is 3 dB in the high SNR regime. From

comparison of (3.43) and (3.45), this loss is always greater than that without the constraint

on the power of pilot and data symbols.

These results are summarized in the following proposition:

Proposition 2 As the SNR goes to infinity, the asymptotic SNR efficiencies for the infor-

mation rates (3.19), (3.28), and (3.36) are given by, respectively,

Correspondingly, for sufficiently high SNR, the information rates (3.19), (3.28), and (3.36)

can be approximated by

Since in the high SNR regime with perfect CSI, the capacity has a slope of 1 bit/symbol/3

dB, it is clear from (3.47) that all the information rates (3.19), (3.28), and (3.36) have the

same slope of (1 — 2fD) bits/symbol/3 dB when the SNR is high.

Fig. 3.3 shows the achievable information rates (3.19), (3.28), and (3.36), as well as

their asymptotic approximations (3.47) for high SNR. The curves are shown as functions

of SNR for normalized fading rate fD 0.01. The capacity with perfect CSI, CRayleigh (ρ )

(given by (3.17)), which serves as a trivial upper bound on the capacity without CSI, is also
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Figure 3.3 Achievable rates versus SNR in the high SNR regime (fD = 0,01).

included. It can be observed that for modestly high SNR, the asymptotic expressions (3.47)

provide good approximations of the achievable information rates.

3.4.2 Low SNR

In the following, the following asymptotic formula for CRayleigh (ρ ) for low SNR [70] will

be used

Mutual Information Lower Bound Using (3.48) and the Taylor series of the infor-

mation rate loss P~Δ, U (3.14) around 0 (ρ/fD << 1), and neglecting higher order terms,

one can obtain the following approximation for the capacity lower bound (3.19) in the low
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SNR regime:

Pilot-Aided System with Optimal Allocation From (3.32), as the SNR p tends to zero,

v tends to infinity. It then follows from Lemma 1 that g (v) --4 1/2 and from (3.33) that

This result indicates that in the low SNR regime with Gaussian signaling, half the power

should be devoted to pilot symbols.

It can be noted that from (3.35),

which for large II can be approximated

where the last expression has been obtained from (3.32). It follows from (3.28) and (3.48)

that the achievable information rate with pilot and optimal bandwidth/power allocation is
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Pilot-Aided System with Constrained Allocation Using (3.37) and (3.48) in (3.36) and

maximizing with respect to β*, it can be shown that for low SNR

where the function g is defined in (3.34) and

It can be seen from (3.32) and (3.55) that δ  < ν  if ρ  < 1/2. It follows from the monotonicity

of the function g that β*opt < βopt. As SNR ρ  --> 0, it follows from (3.55) thatδ-->∞,and

from Lemma 1 that

Hence half of the bandwidth and power should be devoted to pilot symbols when the SNR

is low.

For small values of p, the information rate when pilot symbols are used can be

obtained from (3.37) and (3.48):

where the last relation was obtained with the help of (3.55). It follows that

which is the same result as in (3.53). It is concluded that in the low SNR regime, negligible

additional performance degradation is caused by constraining the pilot to have equal power

and bandwidth allocation.

These results are summarized in the following proposition:
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Figure 3.4 Achievable rates versus SNR in the low SNR regime (fD = 0.01).

Proposition 3 For sufficiently low SNR, the information rates (3.19), (3.28), and (3.36)

can be approximated by

with K, given by

This result indicates that it is ineffective to use Gaussian signaling when the SNR is

low, since the information rates decrease at a quadratic rate with SNR. This conclusion is

not expected to change materially if discrete signaling is used in lieu of Gaussian signaling

since in the low SNR regime differences between signaling formats tend to be de-emphasized.

Fig. 3.4 shows the achievable information rates (3.19), (3.28), and (3.36), as well as

their asymptotic approximations (3.59) in the low SNR regime. The curves are shown on
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Figure 3.5 Optimal fractional power allocation to pilot versus SNR (fD = 0.01).

log-log axes as functions of SNR for normalized fading rate fD = 0,01. It can be observed

that for the pilot-aided system, the loss due to the equal bandwidth-power allocation is

negligible for sufficiently low SNR.

The optimal power allocations for pilot symbols are plotted in Fig. 3.5 as a function

of SNR for normalized fading rate fD = 0.01. The optimal allocations β opt are calculated

from (3.33). For the constrained case, the pilot resource allocations are determined numer-

ically, by optimizing the capacity lower bound (3.36). It can be seen that when the SNR

goes to zero, both β opt and β *opt tend to 1/2, as per (3.50) and (3.56), respectively. Conversely,

when SNR goes to infinity, βopt and β *opt converge to 0.125 and 0.02, as predicated by (3.42)

and (3.44), respectively.
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3.5 Low-Duty-Cycle Signaling in the Low SNR Regime

It is well known that the for vanishing SNR, the capacity can be achieved by on-off signaling

schemes [I3,6]. However the levels of the input symbols and their probabilities are complicated

functions of the SNR that can only be determined by intensive numerical computations

[I3]. Here a simple, but suboptimal approach is investigated that enables closed-form

expressions for the threshold level of signaling and the duty cycle.

It have been seen that using i.i.d. Gaussian signaling is efficient in the high SNR

regime and inefficient in the low SNR regime. Specifically, on one hand, at high SNR, the

ratio of achievable rate to capacity with perfect CSI approaches (1 — 2fD) as per (3.39); on

the other hand, this ratio approaches zero as SNR goes to zero, since in the low SNR regime,

the achievable rates with Gaussian signaling decay quadratically with SNR, whereas the

capacity with known CSI decays linearly. This motivates us to ask the following questions:

Is there a way to use the Gaussian signaling more efficiently? How high need "high SNR"

be for Gaussian signaling to be efficient? To find answers to these questions, a signaling

scheme with duty cycle σ ≤ 1 is considered in this section. That is, the system transmits

blocks of i.i.d. Gaussian signals with average power εs/σ, only a fraction σ of time, so that

the average transmit power remains ε s .

3.5.1 Optimal Duty Cycle

It follows from (3.19) that the following information rate is achievable by this signaling

scheme:

Now turn to optimize the achievable information rate (3.60) over a in the interval

0 < < 1. Note that when the CSI is known, the channel capacity is a decreasing

function of the duty cycle σ at any SNR due to the loss of signal dimensions. For the
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unknown CSI case, the existence of an optimal value for the duty cycle can be motivated

by the following intuitive argument: At one extreme, at high SNR, the information rate

with Gaussian signaling is dominated by the term σ  In (ρ/σ - ) (see (3.47) and (3.38)). Here,

for a decreasing ρ  < 1, the increase in SNR through ρ/σ - is compressed by the log function

and does not make up for the linear loss with σ . Hence, the best solution is σ = 1. At

the other extreme, for low SNR, the information rate is linear with σ (ρ/σ ) 2 (see (3.49)).

Here it can be seen that if the duty cycle decreases at the same rate as SNR, the fall-off in

information rate becomes linear rather quadratic.

It can be shown that R(LDC) is a concave function of σ. The first derivative of R(LDC)

with respect to σ is found to be

which depends on ρ  and σ  only through ρ/σ. Therefore the optimal duty cycle, which

maximizes the achievable rate (3.60), can be expressed as

where pint , called the critical SNR, is the unique solution to the equation

Interestingly, ρcrit is a function of only the fading rate f D, and is plotted in Fig. 3.6.

From the figure, it can be observed that for a specified SNR ρ , a higher channel Doppler

requires a higher ρcrit i.e., a more peaky signal. A similar relation between signal peakiness

and channel coherence time was recently observed for the block-fading channel [73]. This

link between peakiness and fading rate adds to the body of literature (reviewed in the

Introduction) that focuses on the relation between peakiness and SNR or peakiness and
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Figure 3.6 Critical SNR versus normalized fading rate.

bandwidth. Here, the relation to SNR can be observed from (3.62), where for a fixed pent

(i.e., fixed Doppler spread), the optimal duty cycle σ opt decreases linearly with the SNR p.

The critical SNR is the threshold below which a higher information rate than (3.I9)

can be achieved by signaling with duty cycle less than unity. In this sense, the system can

be considered to be operating in the low SNR regime if ρ < ρcrit.

In the low SNR regime, the optimized information rate (3.60) can be written as

which is a linear function of SNR, as opposed to the quadratic function of SNR for the

information rates given in (3.59). Using the approximation for low SNR (3.48), one can

obtain the following proposition.
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Figure 3.7 Ratio of achievable rate to the capacity with perfect CSI versus SNR; σ opt is
given by (3.62).

Proposition 4 In the low SNR regime,

Fig. 3.7 shows the ratios of the information rate (3.60) with optimized duty cycle

and the capacity lower bound (3.19) to the capacity with perfect CSI. The curves are shown

as functions of SNR for normalized fading rates fD = 0,01 and 0,05. It can be seen that

this ratio approaches (1 — 2fD ) as SNR goes to infinity, and approaches the value given by

(3.65) as SNR goes to zero.

3.5.2 An Example for BPSK/QPSK Signals

Finally it is noted that the above system parameters designed for Gaussian signals can

also be used to other signals. As an example, the resource allocations (3.29) and (3.33),
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Figure 3.8 Ratio of achievable rate of a pilot-aided system to the mutual information with
perfect CSI versus SNR for BPSK and QPSK signals (fD = 0.01); resource allocations of
pilot symbols are given by ( 3.29) and (3.33); σopt is given by (3.62).

and the duty cycle (3.62) are applied to a pilot-aided system using binary PSK (BPSK)

and quaternary PSK (QPSK) signals. For BPSK and QPSK signals, the mutual infor-

mation with perfect CSI can be calculated numerically by using the techniques in [74]. The

ratios of achievable rates to those with perfect CSI are plotted in Fig. 3.8. Although these

parameters are generally not optimal for BPSK or QPSK signals, the curves shown in Fig.

3.8 have the same characteristic shapes as those for Gaussian signals. It is clear from the

figure that signaling at duty cycle (3.33) also improves the achievable rates for low SNR.

3.6 Chapter Summary

This chapter investigates the achievable information rates for a wireless communication

system when neither the transmitter nor the receiver has a priori knowledge of the channel

state information (CSI). The dynamics of the continuously fading, flat Rayleigh channel
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are characterized by a Doppler spectrum with fading rate known to the receiver. The infor-

mation rate penalty due to unknown CSI, is expressed in terms of the fading rate, the

transmission block length and the signal-to-noise ratio (SNR). The asymptotic (large block

length) information rate penalty is evaluated for both Clarke's Doppler spectrum and the

ideal lowpass spectrum. The performance of a system using pilot-aided channel estimation

is studied. The allocation of bandwidth and power to the pilot symbols is determined by

optimizing the achievable information rate. Asymptotic approximate expressions of the

achievable rates suggest that using independent and identically distributed (i.i.d.) Gaussian

signals is efficient when the SNR is high and inefficient when the SNR is low. It is demon-

strated that the it is useful to use a simple, low-duty-cycle signaling scheme in the low SNR

regime. The optimal duty cycle is determined as a function of the fading rate. It is shown

that the peakiness of the signaling depends on the fading rate.



CHAPTER 4

DECISION-DIRECTED ITERATIVE CHANNEL ESTIMATION FOR MIMO
SYSTEMS

Due to the high computation complexity of matrix inversion and the fact that the matrix

inversion has to be calculated in each iteration, optimal decision directed channel estimation

for MIMO channels is difficult to implement in practice. In this chapter, an iterative method

is proposed for decision directed channel estimation in MIMO systems. The resulting

estimator can be interpreted as applying a data-independent filter to the weighted sum of the

minimum norm least square (MNLS) estimate and the estimate obtained from the previous

iteration. When the weight parameter is chosen appropriately, for single transmit antenna

systems the proposed iterative method reduces to the optimal estimator.

This chapter is organized as follows. The system and channel models are described

in Section 4.I. Section 4.2 contains the development of the optimal MAP estimate and

an iterative algorithm for its evaluation. Simulation results are provided in Section 4.3 to

illustrate the performance of the proposed method. Conclusions are given in Section 4.4.

4.1 System Model

The MIMO system of interest is equipped with N transmit antennas and M receive antennas.

The channel between each transmit and receive antenna pair is modeled as flat fading

process. The discrete time received signal at the mth receive antenna at time t, rmt, is

given by

where hm,t = [h1m,t h2m,t . . . hNm,t] T is the N x 1 vector whose nth component represents

the complex fading gain between the nth transmit antenna and the mth receive antenna at

time t, st = [s1,t 82,t . . . sN,t] T is the N x 1 vector of symbols simultaneously transmitted

46
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by the N transmit antennas at time t, nm , t is the complex noise sample with variance N0 / 2

per dimension.

Consider the transmission of a block (a frame) of L symbol vectors, si, s 2 , . . . , SL.

The received sequence at the mth receive antenna, denoted by an L x 1 vector rm =

[rm,1 rm,2 . . . rm ,L] T , is of the form

where nm is an L x 1 (possibly colored) complex Gaussian noise vector with zero mean

and covariance matrix Rn = E[nmnHm]. For white noise, the noise covariance matrix is

Rn = N0I The NL x 1 vector hm = [hmT, 1 hmT 2 hrnT,L]T is the vector of channel

parameters. The L x NL data matrix S is defined as

For Rayleigh fading the channel coefficients hnm,t can be modeled as zero mean

complex Gaussian random variables. If the antennas are spaced sufficiently far apart,

the fading is assumed to be uncorrelated across antennas. For two-dimensional isotropic

scattering (Clarke's model), the correlation function can be expressed as

where δn1n2 = 1 if n1 = n2 and δn1n2 = 0 otherwise, J0 is the zeroth order modified Bessel

function of the first kind, fD is the normalized fading rate.

Since the fading is assumed to be uncorrelated across antennas, the observation rm

provides no information for the channel parameter h m , if m ≠ m'. In the sequel the receive
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antenna index m is suppressed so that (4.2) becomes

Given the decision on S (from detector or decoder), it is of interest to estimate the

channel parameter h based on the observation r.

Conditioned on S and h, the received signal vector is distributed as r ~ CN(Sh, Rn ).

Therefore the conditional probability density function (pdf) for r is

For Rayleigh fading channel, the a priori pdf for h is

where the covariance matrix Rh is determined by the normalized fading rate via (4.4).

4.2 Channel Estimation

4.2.1 Optimal Estimate

The optimal minimum mean square error (MMSE) estimate of h based on the received

signal vector r and transmitted data matrix S, is the conditional mean, E[h|r|, S]. Since r

and h are jointly Gaussian, the conditional mean is equivalent to the maximum a posteriori

(MAP) estimate of h, hM AP(S), which maximizes the a posteriori pdf p(h|r, S) with

respect to h. A necessary condition for this maximization is

The a posteriori pdf for h is
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where p(r|h, S) and p(h|S) = p(h) are given in (4.6) and (4.7), respectively. The pdf

p(r |S) does not affect the maximization over h. From (4.6), (4.7) and (4.9),

The MAP estimate of h is found by setting the derivative in (4.10) equal to zero.

Thus,

The computation of (4.11) involves the inversion of an NL x NL matrix A(S). By

application of the matrix inversion lemma, it can be shown that the cannel estimate can be

expressed as

where the dimension of the matrix to be inverted is L x L. Expressions (4.11) and (4.12)

have been employed as the optimal channel estimator in iterative channel estimation and

decoding of space time coded systems [30, 32, 34]. Since computation of (4.12) requires

the inversion of an L x L matrix of complexity 0(L3 ), the computational cost is very high

for practical frame sizes L. Furthermore, the matrix to be inverted is in general dependent

on transmitted data S, which is highly undesirable for practical implementation.

For systems with single transmit antenna (N = 1), in the case of mutiple phase shift

keying (MPSK) modulation (s*n,,tsn,t = 1, n = 1, 2, . . . , N, t = 1, 2, . . . , L) and white

noise (Rn = N01), A(S) in (4.II) is given by A(S) = /711 -.°I + which is independent
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on S. The estimate can be simplified to

Equation (4.13) can be interpreted as a Wiener filter F w applied to the maximum

likelihood (ML) estimate hML(S) [4]. It has been employed as the optimal channel estimator

in iterative channel estimation and decoding for systems with single transmit antenna [35,

36].

4.2.2 Iterative Solution

Instead of carrying out the direct matrix inversion in (4.11), one can use iterative methods

to find an approximate solution of the MAP equation

Let A = Q — P be any decomposition of A such that Q is nonsingular. Let 1:1 (°)

be an arbitrary initial vector, then the vector sequence h (0) , h (1 ), h (2) , . • . generated by the

following iteration

converges to the true solution if and only if the spectral radius of the iteration matrix B =

Q -1 P satisfies p(B) < 1, where the spectral radius p(B) is defined as the modulus of the

largest eigenvalue of B.

Different decompositions of A result in iterative methods given by different names,

such as Jacobi, Gauss-Seidel, and successive overrelaxation (SOR) iteration. Details of

convergence and computation aspects of these methods can be found in mathematical
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literature [75] [76]. In order to avoid calculating the inverse of a data dependent matrix

in decision directed channel estimation, one can decompose A(S) into data independent

part Q and data dependent part —P (S), i.e., A (S) = Q — P(S). One straightforward way

to do so is

where C is some constant.

With Q and P difined in (4.I6) and (4.17), the iteration becomes

A sufficient condition for the convergence of (4.18) is given in the following propo-

sition:

Theorem 1 If the noise is white, the iteration (4.18) converge to the optimal estimate if

Proof: Since Rh is positive definite, all the eigenvalues of Q are greater than C,

hence ρ (Q -1 ) < 1/C.  Let λ  be any eigenvalue of P, then C -  N/No ≤ λ ≤ C. If C ≥ N/2N0,



Figure 4.1 Symbol error probability versus SNR (fD = 0.001)

then -C ≤  C - N/N0 ≤ λ ≤ C so that p(P) ≤ C. Therefore

where || . 1|2 denotes spectral norm, inequalities (4.20), (4.21) and (4.23) are immediately

clear, equality (4.22) holds because Q' is symmetric and P is Hermitian.	 ■

From the signal model (4.5), one can formulate an underdetermined least-squares

problem for the channel estimate, which affords the following minimum norm solution
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Similar to (4.13), (4.18) can be written as
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It can be seen from (4.25) that the next estimate, h(k+1 ) , is obtained by applying a

filter, F, to the weighted sum of the current estimate, h(k), and the minimum norm least

square estimate, hLs(S).

For systems with single transmit antenna, MPSK modulation and white noise, WLS(S) =

1/C 1/N0 L. In particular, if C = 1/N0, then WLS(S) = I and I - WLS(S) = 0,so that (4.25)c N0

reduces to (4.13).

4.3 Numerical Results

The performance of the proposed iterative decision channel estimation is demonstrated by

a space time code system with joint channel estimation and data decoding. The system

structure is described in [30]. Numerical results were obtained for the 4PSK 8 state space

time code presented in [77] with 2 transmit and 2 receive antennas. Each frame consists

of 14 pilot symbols and 116 data symbols. The pilot symbols are used to obtain the initial

estimate of channel. Soft decision feedback is used to improve the channel after each

iteration. The soft decision of each symbol is obtained by averaging with respect to its a

posteriori probability from the BCJR decoding algorithm [78].

The symbol error probability (SEP) performance versus SNR per symbol (Es/N0 ) is

evaluated for normalized fading rates fD = 0,001 and fD = 0.01 in Fig. 4.1 and Fig. 4.2,

respectively. Performance of the same code with perfectly known channel state information
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Figure 4.2 Symbol error probability versus SNR (fD 0.01).

at the receiver is also included for comparison. Significant performance gain from the

decision feedback from the decoding can be observed. In both cases, the performance with

the decision directed channel estimate at high SNR is within 0,5 dB of that with known

CSI.

Fig. 4.3 shows the normalized mean squared error (MSE) versus the number of

iterations. It can be seen that the performance improves with the increase in the number

of iterations, but the improvement is negligible after 4 and 6 iterations for fD = 0.001 and

= 0.01, respectively.

4.4 Chapter Summary

A simple iterative method for decision directed channel estimation for MIMO systems is

introduced in this chapter. Its application to the joint channel estimation and data decoding

for space time coded system is illustrated. Simulation results suggest that near optimal



Figure 4.3 Normalized mean squared error versus iteration number.

performance can be achieved with reasonable number of iterations.
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CHAPTER 5

COOPERATIVE RELAYING OVER FADING CHANNELS

In this chapter, the average and worst-case performance of cooperative relaying in fading

channels will be investigated in terms of the average signal-to-noise ratio (SNR) and outage

probability. Using the long-term CSI of the channels, the power allocation between the

source and relay will be determined. The SNR optimization can be used to minimize trans-

mitted power when the system experiences the ergodic fluctuations of the channels over a

sufficiently long time. The outage optimization is useful when the delay and complexity

constraints of the system prevent the inherent time diversity of the channels from being

exploited. When only local knowledge of CSI is available, suboptimal combining techniques

can be used at the destination [54].

This chapter is organized as follows. Section 5.1 describes the system and channel

model. Sections 5.2 presents the performance for the optimal receivers when the desti-

nation has global knowledge of CSI. Power allocation is developed in Section 5.3, under

the assumption that the long-term CSI of the channels is available to the source and relay.

Section 5.4 considers suboptimal receivers with only local knowledge of CSI. Conclusions

are given in Section 5.5.

5.1 System Model

Consider a three-node wireless network illustrated in Fig. 5.1. Information is to be trans-

mitted from the source to the destination with the assistance of the relay. The transmissions

are subject to flat fading and additive noise.

56
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Figure 5.1 Illustration of a three-node network.

5.1.1 Channel Model

Assume that the channels are block fading, i.e., the channel coefficients remain constant

for a block of channel uses. In the sequel, gij is the complex gain of the channel from node

i to node j, and nj ,k is the additive noise at node j in the k th block, where i E {1, 2} ,

j E {2, 3} and k E {1, 2}. The mean strength of the channel from node i to node j

is C. The noise power at the receiver of each node is N0 . For Rayleigh fading and

additive white Gaussian noise (AWGN), the channel gains and noise samples are distributed

as gij
 ~ CM (0, G ib ) and nj,k ~ CN(0,N0).Assume thatgijandnj,kare statistically

independent for different values of i, j, and k, and that the channel coefficients and the

noise samples are independent.

5.1.2 Signal Model

In the first block, the source transmits to the relay and the destination. Let x denote the

baseband transmitted signal at the source node, then the received signals at the relay node
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and the destination node are respectively given by

In the second block, for amplify-and-forward relaying, the relay simply amplifies the

received signal from the first block by a factor A, and forwards it to the destination, so that

the destination nodes receives

The signals from the direct path (5.1) and the relay path (5.2) are combined at the

destination, yielding

where w1 and w2 are appropriate weighting coefficients for the direct and relay paths,

respectively. The combined signal (5.3) is then used for detection or decoding.

5.1.3 Relaying Strategies

For channel inversion and constant amplification, the amplification factors A are chosen,

respectively, subject to the short-term (per block) and long-term (average) power constraint

imposed at the relay node. Correspondingly, knowledge of the instantaneous or average

channel gains of the source-relay channel is required at the respective relay node.

Assume that the average power of the signal transmitted at the source is E [|x| 2] =

Es, and that the average transmitted power at the relay node is Er. If α  = Er /Es and

1 Channel-inversion relaying has been studied extensively in [44]. Some variants of this problem
has been treated in the literature without the power constraint at the relay. For example, |A| = 1 is
considered in [61]. In [55,56,57,58,59], the noise at the relay is neglected to facilitate performance
analysis, and correspondingly |A| is simply set to Er / (E3 |912 |) (or |912| -1 ). Another relaying



59

p = Es / N0 , the latter being the average transmit SNR of the source, then the magnitude of

the amplification factor can be expressed as

For performance analysis purposes, it can be assumed Er = E, (a = 1) without

loss of generality, and the discrepancies in power can be lumped into the path strengths,

as in [44]. Here, a is viewed as a power allocation parameter that can be used to optimize

performance under the constraint that the total transmitted power is fixed.

For given values of Gij and a, the instantaneous SNR of the combined signal observed

at the receiver is a random variable parameterized by the average SNR p. In the sequel, the

system performance will be measured by average SNR and outage probability.

5.2 Optimal Receiver with Global CSI

When knowledge of all the channel coefficients is available at the destination, the optimal

(in the sense that the instantaneous SNR is maximized) combining method is the maximal-

ratio combining (MRC), where the weighing coefficients are given by

with C being some arbitrary constant. The SNR of the combined signal equals the sum of

the SNRs in individual paths, i.e.,

strategy, constant power (CP), is considered Chapter 6. CP relaying does not require any channel
information, but is difficult to analyze.
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where S i and S2 are the SNR of the direct and relay path, respectively. From (5.1) and

(5.2),

5.2.1 Average SNR

It is apparent that the average SNR for the optimal MRC receiver is

It can be shown that constant amplification relaying performs better than channel

inversion relaying, when average SNR is the performance measure.

Proposition 5 Let S? and S? be the SNR of the relay path for CI and CA relaying, respec-

tively, then

where the first equality holds if and only if the source-relay link is not fading, and the

second equality holds if and only if the relay-destination is not fading.

Proof: Let U = |g12| 2 , V = 1923| 2 , then from (5.4) and (5.6), the SNR of the relay

path, S2 (p), can be rewritten as

and

for constant-amplification and channel-inversion relaying, respectively.
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Since the function f (x) = x/ (x + c) is a concave function of x for positive values

of c, it follows from Jensen's inequality that

where the equality holds if U is deterministic, i.e., the source-relay link is not fading.

Hence

The upper bound of E [S A (p)] can be obtained by applying Jensen's inequality

again,

where the equality holds if V is deterministic, i.e., the relay-destination link is not fading.

Combining (5.10) and (5.11) completes the proof.

■

For Rayleigh fading and constant-amplification relaying, the average SNR is evaluated

in Appendix B.1 and is given by the expression

with
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and E1 denoting the first order exponential integral function (see (B.4) in Appendix B.1).

For a simpler expression, the average SNR of the relay path can be further upper-

bounded by

It is noted that the effect of dropping the term 1 in the denominator is negligible when the

SNR is high.

Since

it follows from (5.7) and (5.14) that the average SNR is upper-bounded by

Fig. 5.2 shows the SNR gain versus the total SNR, for a = 1, G 1 3 = 1, G12 = 8,

and G23 = 8 (this corresponds to the case that the relay is located halfway between the

source the relay for a path loss exponent of 3). The SNR gain is defined as the ratio of

average output SNR E [S c (ρ )] to the total transmit SNR (1 + a) p. Only simulation results

are given for CI relaying, since the analytic expression of the average SNR is intractable.

It can be observed that the SNR gain is not sensitive to the transmit SNR when SNR is

modestly large. From this figure it is observed that the SNR gain for constant amplification

exceeds (for the conditions shown) that for channel inversion by approximately 0.6 dB.

5.2.2 Outage Probability

For CA relaying, the outage probability is evaluated in Appendix B.2. At high SNR, the

outage probability is given in (B.7), in which the first term is on the order of p- 2 In p, and

the second term is on the order of p-2 . Hence the first term dominates the outage probability



63

Figure 5.2 Average SNR gain versus total SNR for optimal receivers (a	 1, G13 =
1, G12 = 8, and G23 = 8). Dashed curves are obtained via Monte-Carlo simulations.
The upper bound is computed from the expression (5.16). The analytic result for constant
amplification and Rayleigh fading is computed from (5.12).

when the SNR is sufficiently high. Specifically, it can be shown that

where the sign ~ indicates that the ratio of the two sides tends to unity as ρ --> ∞ .

For channel-inversion relaying, it is shown in [44] that

where the last relation is obtained from (5.14) and (5.15).

The outage probability can be lower-bounded by assuming that the relay knows the

message of the source a priori, in which case the outage probability can be approximated
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at high SNR by

A comparison of (5.I7) and (5.18) with (5.19) reveals that the outage probability

exceeds the lower bound by a factor of (1 + αG23/G12) for CI relaying, and by a factor of In p

for CA relaying. These asymptotic expressions also indicate that second order diversity is

achieved for CI relaying, and is not achieved for CA relaying.

It can be seen from (5.I4), (5.15), and (5.18), that for high SNR and channel-inversion

relaying, the outage probability is inversely proportional to the product of the average SNR

of the direct link, S i , and the upper bound to the average SNR of the relay link, SrB . In the

next section, the optimal power allocation by maximizing this product will be determined.

Fig. 5.3 shows the outage probabilities as functions of total SNR, (1 + c) p, for

a = 1 and statistically symmetric network (G = 1). The threshold SNR is set to t = 0

dB, the minimum SNR to maintain a rate above R = 1 bit/transmission. From (5.17) and

(5.18), for each 10 dB increase in SNR, the outage probability decreases by a factor 100 for

channel inversion and by a factor of 100/ (In 10) for constant amplification, and this factor

is 10 for direct transmission. However, this comparison only applies to large SNR. It can

be seen from Fig. 5.3 that the high SNR approximation is accurate only when the SNR is

much higher (say, 20 dB) than the threshold SNR. For an outage probability of 10 -3 , the

difference in required SNR between channel inversion and constant amplification is less

than 2 dB.

5.2.3 The Amount of Fading

It have been seen that although the constant-amplification relaying has a higher average

output SNR than channel-inversion relaying, it performs worse in terms of outage performance

when the SNR is high. This suggests that the SNR for the CA relaying has a higher

variance. To see this, one can analyze the amount of fading (AF), which is defined as
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Figure 5.3 Outage probabilities versus total SNR for optimal receivers ( α  = 1, Gij = 1,
t 0 dB). Solid curves are obtained via Monte-Carlo simulation. The dashed curve is
computed from expression (B.7).

the ratio of the variance to the square of the first moment of SNR, and serves as a simple

measure of severity of the fading [79] [80]. The AF associated with the relay link is

For CA relaying and Rayleigh fading, the amount of fading is evaluated in Appendix B.1

and is given by the expression

with μ  given by (5.13) and

where En is the exponential integral function (Appendix B.1, (B.4)).
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Figure 5.4 The amount of fading for the relay link (a = 1, p = 10 dB).

Fig. 5.4 shows the amount of fading for the relay link, for a = 1 and p = 10 dB.

Again, only simulation results are provided for CI relaying because the analytic expression

is not available. It can be seen from this figure that CA relaying has a higher AF value than

CI relaying. For CA relaying, the AF decreases as the relay moves towards the destination,

but is always greater than 1. For CI relaying, the AF appears to be less than 1, and the

minimum is attained when the relay is located halfway between the source and relay, i.e.,

the source-relay and relay-destination links are balanced. Since both the source-relay and

relay-destination links are Rayleigh fading and have AF values of 1, the end-to-end relay

link is more fading than each individual link for CA relaying, but the fading is mitigated by

using CI relaying.
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5.3 Power Optimization

In this section the power allocation (the value of a) will be determined that is optimal in

some sense. To do so, one can fix the total transmitted power (Es + Er ) and exploit the

knowledge of the mean strengths of the channels, which are assumed to be available to the

source and relay. Let ρT = (E5 + Er) /N0 , then

In the following, first the upper bound to average SNR of combined signal (5.16)

is maximized, which is just the sum of S1 and S2 B . Then the product of S1 and S2 B is

maximized. As observed before, this also minimizes the outage probability for high SNR

in the case of channel-inversion relaying.

5.3.1 Power Optimization of SNR Gain

Upon substitution of (5.22), the upper bound on the average SNR, (5.16), can be rewritten

as

The optimal value of a that maximizes (5.23) is found to be

with

With this power allocation, the average output SNR upper bound (5.23) is given by
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Since √δ  > G13 for G23 > G13, it follows from (5.25) that

This result agrees with the intuition that the SNR can be enhanced, by using cooperative

relaying, only if the relay-destination link is stronger than the source-destination link (or

G23 > C13), and that the resulting power gain can never exceed G23/G13.

For CA relaying, the optimal power allocation can also be obtained by maximizing

the exact average SNR (per (5.I2) and (5.15)) rather than the upper bound (5.23). However,

the resulting allocation factor a depends on the SNR, and must be determined numerically

since no simple analytical solution seems to be available.

Fig. 5.5 shows the SNR gain versus the normalized distance d between the source and

relay, for ρ = 10 dB. The relay is assumed to be located on the line that passes through the

source and destination, and the mean strengths of the channel are determined by G13 = 1,

G12 = d-3 , G23 = (1 - d) -3 . It can be seen that power optimization has a significant

impact on the SNR gain mainly when the relay gets closer to the destination. It is noticed

that there are crossovers between the curves for a = 1 and a = a l . This is because for

a = a l it is not the exact average SNR that is maximized, but its upper bound. However,

the difference is very small, as can be observed for CA relaying, for which the exact average

SNR can be optimized using (5.12) and (5.15).

5.3.2 Power Optimization of Outage

Now consider the optimization of the product S, S2 B , which according to (5.18), minimizes

the outage probability at high SNR. From (5.I5), (5.14) and (5.22),

The optimal value of a that maximizes (5.26) is given by
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Figure 5.5 SNR gain versus normalized distance for optimal receivers (ρ = 10 dB); a l is
given by (5.24).

where

Interestingly, this power allocation does not depend on the strength of the direct source-

destination link. It can be shown that a2 is an increasing function of λ , limλ --> ∞ α 2 = 1,

and a2 < 1 for A < oo, implying that the source is always allocated more power than

the relay, and that less fractional power needs to be allocated to the relay when the relay-

destination channel becomes relatively weaker.

Now compare the total transmitted power required for a system with and without

power optimization. Let ρT|α=1 and ρT|α=α2, respectively, denote the required transmitted

SNR for α  = 1 and α  = α 2 to maintain the same level of outage performance, and assume

that the outage probability depends on the SNR only through S
1

gr, then from (5.26) and
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after some algebraic manipulations, it can be shown that

where

It can be further shown that g (A) is an increasing function of λ , with g (0) = 1/2,

and limλ-->∞ g(λ ) = 1. Therefore the power saved by using optimal allocation α2 is at most

3 dB. This occurs when A 0, or the relay-destination link is too weak so that half of the

power allocated to the relay is wasted.

Fig. 5.6 shows the outage probabilities versus (1 + a) ρ, for G13 = 1, C12 = 64/27,

G23 = 64 (or normalized distance d = 0.75). The threshold SNR is t = 0 dB. It can be

observed that for high SNR, the savings due to power optimization are, respectively, about

2 dB and 1 dB, for CI and CA relaying. In this case λ  = 1/27, α 2 = 0.1271, and the saving

for CI relaying predicted by (5.28) is 2.01 dB .

5.4 Suboptimal Receiver with Local CSI Only

When the destination node knows only the channel coefficients of local links, i.e., knowledge

of g12 is not available, maximal-ratio combining can not to employed. It is noted that

coherent combining is still possible if the phase uncertainty of the source-relay is taken

care of at the relay: the relay can just set the phase of the amplification factor A opposite

to that of g12. At the destination, the phases of the weighting coefficients w 1 and w2 are set

opposite to those of g13 and g23, respectively. Without loss of generality, let tw i t = 1, and

determine |w2 | without requiring the knowledge of g12 . The SNR of the combined signal is

then given by
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Figure 5.6 Outage probabilities versus total SNR for optimal receivers (G13 = 1, G12 =

64/27, G23 = 64, t = 0 dB); a2 is given by ( 5.27).

5.4.1 Equal-Gain Combiner (EGC)

Probably the simplest suboptimal combining method is equal-gain combining, for which

the magnitude of the weighing coefficients w 1 and w2 are set equal, i.e., |w 2 | = |w i| = 1.

In this case, the SNR of the combined signal is given by

EGC requires only knowledge of the phase of local CSI and can be applied with both

CI and CA relaying.

5.4.2 Maximal-Average-SNR Combiner (MASC)

Without global knowledge of CSI at the receiver, although the instantaneous SNR can not

be maximized it is possible to design a combiner that maximizes the average SNR for CA
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relaying, conditioned on 9 13 and 923 , assuming that the first two moments of |912 | is known

at the destination. The SNR of the combined signal is a function of the random variable

912 . For CA relaying, averaging (5.29) over 9 12 yields the following conditional average

SNR:

The optimal magnitude of w2 that maximizes the average SNR is given by the expression

with

5.4.3 Selective EGC (SEGC)

Unlike MRC, the inclusion of the relay link in EGC does not always strengthen the signals

due to lack of knowledge of the source-relay channel. Now consider a simple combiner

that only uses the signals in the relay link only when the direct link is weak, specifically

For either CA or CI relaying, the distribution functions of the suboptimal combiners

discussed above are intractable. Instead, performance can be examined by resorting to

numerical simulations.

In Fig. 5.7 the SNR gains for receivers with global and local CSI are plotted as

functions of the normalized distance for a = 1 and ρ = 10 dB. It can be seen that the gap

between the curves for MRC (global CSI) and EGC (local CSI) receivers becomes wider

when the relay moves closer to the destination. For CA relaying, the SNR gain for the

MRC receiver is only slightly greater (within 0.5 dB) than for MASC (local CSI).
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Figure 5.7 Average SNR versus normalized distance for optimal and suboptimal receivers
(a = 1, ρ = 10 dB).

Fig. 5.8 compares the outage probabilities for the optimal and suboptimal receivers

for a statistically symmetrical network. The threshold SNR is t = 0 dB. It is observed that,

due to lack of global knowledge of CSI and the use of EGC, the second-order diversity

is completely lost for channel-inversion relaying, while the loss is less significant for

constant-amplification relaying. As expected, the outage performance of SEGC is better

than EGC.

5.5 Chapter Summary

This chapter investigates the performance of amplify-and-forward cooperative relaying

schemes in Rayleigh fading channels, in terms of average signal-to-noise ratio (SNR) and

outage probability and for various cases of available channel state information (CSI). For

optimal receivers with global knowledge of CSI, it is shown that constant-amplification
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Figure 5.8 Outage probabilities versus total SNR for optimal and suboptimal receivers
(a = 1, Gij = 1, t = 0 dB).

relaying has a higher average SNR gain and a lower diversity order than channel-inversion

relaying. Optimal power allocation strategies are developed that optimize the average SNR

and outage performance, respectively. When only local knowledge of CSI is available, it

is demonstrated through simulations that suboptimal coherent receivers can still achieve

substantial power and diversity gains.



CHAPTER 6

MULTICHANNEL NONCOHERENT DETECTION WITH APPLICATIONS TO
COOPERATIVE DIVERSITY

It appears that the Bayesian-based noncoherent detector can not be easily applied to systems

with cooperative diversity. First, Bayesian-based noncoherent detector requires the statistical

information of the channels, which may not be available since each relayed channel depends

on the source-relay and relay-destination channels and the operation of the relay nodes.

Second, even if the prior distribution of the channels is available, the Bayesian-based

detection may be too complicated to implement since multiple integration is involved. For

example, even the statistics of both the source-relay and relay-destination channels are of

very simple forms, say Rayleigh, the distribution of end-to-end source-destination can only

be expressed in integral functions. Third, because of noise amplification at the relay nodes,

the noise powers in a cooperative diversity depend on the gains of the relay-destination

channels and the amplification factors of the relay nodes. In [81], a suboptimal noncoherent

detection, inspired by the ML nondetection of decode-and-forward cooperative diversity, is

suggested for amplify-and-forward cooperative diversity.

In this chapter two noncoherent detection algorithms are derived for multichannel

receivers using the GLRT approach, which do not require knowledge of the channel statistics

at the receiver. When the noise powers are known, the GLRT-based detector chooses the

signal that minimizes the weighed sum of squared errors; otherwise the detector chooses

the signal that maximizes the product of squared errors. These detectors are used for the

noncoherent detection of systems with AF cooperative diversity.

The remainder of this chapter is organized as follows. Section 6.1 briefly describes

the multichannel system model and related results on noncoherent detection. Section 6.2

contains the development of two noncoherent detection algorithms based on the GLRT

75
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rules. In Section 6.3 the developed algorithms are used for noncoherent detection for

amplify-and-forward cooperative diversity. Conclusions are given in Section 6.4.

6.1 Multichannel System Model

This section presents the signal model of multichannel reception and briefly summarizes

related detections algorithms.

In a wireless communication system operating over L independent flat-fading branches,

the discrete-time received signal of the lth branch at time k is given by

where sk is the transmitted symbol, h1 is the channel gain of the lth branch, and nl,k is

sample of the additive Gaussian noise. It is assumed that the channel coefficient remains

constant over a duration of K symbol periods (block fading). Then the vector notation for

the signal model is

where r1 = (rl,1,rl,2, . . . ,rl,K) T , S = (S1, S2, . . . , SK) T , and n1 = (nl,1, nl,2, . .  ,nl,K) T .

Assume the noise samples are independent with respect to l and k. Specifically,

Here the noise powers cr? are not necessarily equal, although the assumption of

equal noise powers are reasonable in most diversity systems. For example, in a system

with amplify-and-forward cooperative diversity, the noise powers are in general not equal

because of the noise amplification at the relay nodes. The case of unequal noise powers

may also happen in systems with interference cancellation [82].
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The conditional probability density function (pdf) of the received signal can be expressed

as

where p (ri|s, hl, σ2l) is the conditional pdf of the received signal in the lth branch.

The optimal noncoherent ML detector chooses the transmitted symbol sequence that

maximizes the noncoherent likehood function, which can be obtained by integrating the

conditional probability (6.2) over the unknown channel parameters {h i }/ 1 :

Evaluation of the likehood functions (6.3) requires knowledge of the channel statistics

(p ({hsl}L l=1)) and knowledge of the noise powers ({σ? }I 1 ). For independent Rayleigh

fading, it is shown that the maximizing (6.3) is equivalent to maximizing the metric [42,82]

where Ωl is the mean strength of the lth diversity branch.

For more general channels, noncoherent ML detection is complicated [42]. When

the mean strengths 72 / of the channel branches are know, the detector using Rayleigh (6.4)

serves as a suboptimal detector for general channels. This detector is referred to as the

suboptimal likelihood-ratio test (SLRT) detector in the sequel.

Another suboptimal detector is the noncoherent Equal-Gain Combining (NEGC)

(also called postdetection EGC) detector, whose decision metric is given by
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6.2 Noncoherent Detection without Knowledge of Channel Statistics

In this section, detection algorithms are developed using the GLRT rules, in which no

knowledge of the channel statistics is required.

6.2.1 Known Noise Powers

When the noise powers {σ2l}L l=1 are known, the GLRT detector is given by

where iii) is the maximum-likelihood estimate of hsl under the assumption that s i is trans-

mitted, i.e.,

Substitution of (6.7) into (6.6) leads to

Therefore, the GLRT detector chooses the signal s i that minimizes

where
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is just the squared error of fitting the received signal vector I./ by another signal vector shi.

Therefore this detector is called the minimum weighted sum of squared errors (MWSE)

detector.

Minimization of (6.8) is equivalent to the maximization of the following weighted

sum of the correlations

which simplifies to the following decision matric for signals with constant power (|si|2

Equations (6.4) and (6.I0) indicate that the knowledge of channel statistics becomes

less useful as the observation duration K increases. In the limit when K approaches infinite,

the two detectors coincide. It can also be seen that the two detectors are equivalent for a

uniform power profile and equal noise powers per branch.

6.2.2 Unknown Noise Powers

When the noise powers {σ2ll}L l=1 are known, the GLRT detector is given by

where hl(i ) and σ2l(i) are the maximum-likelihood estimate of hl and al under the assumption

that sl is transmitted, which are respectively given by (6.7) and



Figure 6.1 Structure of noncoherent receiver for an L-branch channel.

Table 6.1 Noncoherent Detectors with Various Available Information 

It follows from (6.7), (6.11), and (6.12) that the GLRT detector chooses the signal s l that

minimizes

which, according to (6.9), is just the product of squared errors.

If follows from (6.4), (6.5), (6.8), (6.9) and (6.I3) that all the above detectors discussed

above can be implemented using the same structure shown in Fig. 6.1. The difference lies

in the required knowledge of the channel statistics and noise powers and the combining

functions, which is summarized in Table 6.1. It is noted that all these detectors coincide for

a single-channel system (L = 1).
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6.3 Application to Noncoherent Detection for Amplify-and-Forward Cooperative

Diversity

This section considers the noncoherent detection for systems with amplify-and-forward

cooperative diversity.

6.3.1 Signal Model for AF Cooperative Diversity

Consider an N-node wireless network consisting of a source, a destination, and N — 2

relay nodes (N > 3), as illustrated in Fig. 6.2. Information is transmitted from the source

to the destination with the assistance of the relay nodes. Without loss of generality, assume

that node 1 is the source, node N is the destination, and nodes 2, 3, . . . , N — 1 are relay

nodes. In the sequel, gij is the complex gain of the channel from node i to node j, and

nij is the additive noise vector at node j corresponding to the channel g23 , where i E

{1, 2, . . . , N — 1} , j E {2, 3, . . . , N}. The mean strength of the channel from node i to

node j is C. Assume that gij and n23 are statistically independent for different values of i

and j, and that the channel coefficients and the noise samples are independent. The noise

power at the receiver of each node is N0.

Cooperative diversity schemes consist of two-stage transmissions. In the first stage,

the source transmits and all the other nodes including the destination and relay listen. Let

s denote the K x 1 baseband transmitted signal vector at the source node,then the received

signal vector at node i is given by

In the second stage, the relay nodes process and send the received signals to the

destination node using mutually orthogonal channels. For amplify-and-forward relaying,

relay node i simply amplifies the received signal yli by a factor A l , and forwards it to the



Figure 6.2 Illustration of an N-node wireless network.

destination, so that the destination nodes receives

The signals received at the destination node can be formulated as the (N — 1)-fold

signal model (6.1), with r1 = YIN, l = 1, 2, . . . , N —1,and the equivalent channel gains

and noise variances respectively given by
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and

It becomes clear from (6.15) that, unlike conventional diversity systems where the

noise powers are usually fixed, the noise powers in the relay links in a amplify-and-forward
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cooperative diversity system depend on the instantaneous relay-destination channel gain.

The amplification factors A, are chosen subject to the average power constraint imposed

at the relay node. Let the average transmitted power at node i be E2 . There are several

relaying strategies with different choices of amplification factors, e.g., the amplification

factor at relay node i is can be given by

Note that at the relay nodes, instantaneous channel information is needed for the

channel-inversion (CI) relaying, mean channel information is need for the constant-amplification

(CA) relaying, and no channel information is required for constant-power (CP) relaying. In

this work, CI relaying is not considered since instantaneous channel information is required

at the relay nodes.

The remainder of this section investigates the performance of the detectors developed

in Section 6.2. The MPSE and NEGC detectors can be used in systems with any of the

diversity schemes, since decisions are made based solely on the received signals. The

MWSE detectors are suitable for constant-amplification diversity only, and requires infor-

mation of the noise power N0 , the mean strengths of the source-relay channels G 1 ,, and the

instantaneous amplitude of the the relay-destination channels |giN|2, = 2, 3, . . , N - 1.

A suboptimal detector for constant-amplification cooperative diversity, inspired by

the decision metric of decode-and-forward diversity, is suggested in [81]. It is observed

that for equal-energy signaling, this detector has the same form of an SLRT detector (6.4),
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Figure 6.3 Bit error probability for CA relaying (uniform power allocation, binary DPSK,
ET/N0 = 13 dB).

with Q and a? replaced by

and

The SLRT detector requires knowledge of the the noise power N0 and the mean strengths

of the source-relay channels G li and the relay-destination channels G iN, i = 2, 3, . . . ,

N — 1.

In the network considered in this section, all the relay nodes are assumed to be

located on the straight line that passes through the source and destination. Without loss of
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Figure 6.4 Bit error probability versus normalized distance (uniform power allocation,
binary DPSK, ET/N0 = 13 dB).

generality the distance between the source and relay is normalized to be 1. The location of

relay node i is determined by the normalized distance d, between the source and the relay.

Assume a path-loss exponent of 3, then the mean strengths of the channels are determined

by GiN = 1, Gli = (1 -3 , and GiN (1 — d) -3 , for i = 2, 3, . , N — 1.

6.3.2 Uniform Power Allocation

First consider the cases that all the nodes use the same average transmit power Es . Fig.

6.3 shows the the bit error probability for a three-node network. Blocks of binary DPSK

symbols of length K = 4 are transmitted. The total SNR is ET/N0 = 13 dB. The curves

are shown as a function of the normalized distance d 2 between the relay and source, for the

case of CA relaying, in which all the algorithms discussed in previous sections can be used.

It can be observed that all the noncoherent detection algorithms performs reasonably well
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Figure 6.5 Bit error probability versus total SNR for noncoherent MPSE detection of
binary DPSK (uniform power allocation).

when the relay is close to the source, but the NEGC and SLRT detectors are more sensitive

to the location of the relay. In particular, the MPSE and MWSE detectors outperform the

NEGC and SLRT detectors when the relay is close to the destination.

It is of interest to compare the performance of the MPSE and NEGC detectors, since

both detectors can be used in any diversity systems since no knowledge of the channel

statistics or noise powers is required. Fig. 6.4 compares the performance of these two

detectors for CA and CP relaying schemes. These curves indicate that good performance is

achieved by the MPSE detector in conjunction with CP relaying over a wide range of relay

locations. For this reason the MPSE detection for CP diversity is focused in the following.

Now examine the performance of the MPSE detector in networks with multiple

relays. Fig. 6.5 shows the bit error probability versus total SNR in a random network. The

normalized distance d i of relay location nodes are independently, uniformly distributed on
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Figure 6.6 Block error probability versus total SNR for noncoherent detection of
orthogonal signals (uniform power allocation, Walsh-Hadamard sequences).

the interval (0, 1). It is clear from these curves that the diversity gain for the noncoherent

detection manifests only when the SNR is high enough. When the SNR is low, the diversity

gain is overwhelmed by the noncoherent combining penalty. For the example considered

here, the SNR beyond which using more number of relays is about 9 dB.

The same results are observed in Fig. 6.6 for noncoherent detection of orthogonal

signals in a random network. The transmitted signals are Walsh-Hadamad sequences of

length 4. For purpose of comparison, the performance of NEGC detector is also shown

in this figure. It can be observed that the performance for NEGC detector becomes even

worse with increasing number of relays.
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Figure 6.7 Bit error probability versus normalized distance (binary DPSK, ET/N0 = 13
dB); o 2 is given by (5.27).

6.3.3 Nonuniform Power Allocation

So far it have been supposed that all the nodes use the same transmit power. The extension

of our results to account for nonuniform power allocation among nodes is straightforward.

However, it is noted that determination of the optimal power allocation for the noncoherent

case is very challenging. The power allocation for AF diversity is very difficulty even

for coherent cases, and most analytical solutions are approximate or suboptimal, since the

exact solutions generally depends on the metrics of interest, the value of SNR, and the

relaying strategies. Here no attempt is made to find the optimal power allocation strategies,

rather, it is intended to show whether the power strategies developed for the coherent cases

could bring in some performance gain when used in systems with noncoherent detection.

Similar to [53], assume that all the relay nodes use the same average transmit power,

i.e., E2 = E3 = . . . EN-1. Let us denote the ratio of power of each of the relay node to
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Figure 6.8 Bit error probability versus total SNR for noncoherent MPSE detection of
binary DPSK; a3 is given by ( 6.16).

that of the source node by a = E2/Ei.

For a three-node network, the value of a that minimizes the outage probability at

high SNR is given by (5.27).

For the case of multiple relays (N > 3), a suboptimal power allocation is suggested

in [53], in which all the relay nodes take half of the total transmit power, i.e.,

As shown in Fig. 6.7, the performance for using power allocation (5.27) is better

than that for uniform allocation. The same results are obtained in Fig. 6.8 in systems with

multiple relays. In this figure a performance gain of about 1 dB is observed for power

allocation (6.I6).
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6.4 Chapter Summary

Based on the generalized likelihood ratio rules, two algorithms (MWSE and MPSE) were

developed for noncoherent detection without requiring knowledge the channel statistics.

The detector chooses the signal that minimizes the weighted sum or product of error

squares, depending on the availability of the noise powers. The detection algorithms were

used for the detection of DPSK in systems with amplify-and-forward cooperative diversity.

It was shown that the proposed algorithm is robust to the location of the relay node. When

the total transmit power is distributed uniformly among nodes, it was also illustrated that

using multiple relay nodes with noncoherent detection is only beneficial when the SNR is

high. It is demonstrated that some performance improvement can be obtained by directly

applying simple power allocation developed for the coherent cases to the noncoherent

cases.



CHAPTER 7

CONCLUSIONS

This chapter summarizes the contribution of this work and points to some topics for future

research.

7.1 Contributions

The principal results obtained in the dissertation are summarized below:

In Chapter 3 the achievable rates were investigated for i.i.d. Gaussian signaling over

time-varying fading channels with CSI unknown to either the transmitter or the receiver.

A lower bound on mutual information obtained by upper-bounding the penalty due to

unknown CSI, and the achievable rates for pilot-aided systems with optimized resource

allocations, are presented. Asymptotic expressions for the achievable rates provide quanti-

tative measures on well-known properties of Gaussian signaling, namely, that it is efficient

for slowly fading channels when the SNR is high and inefficient when the SNR is low.

Specifically, when the SNR is high, the loss in bandwidth efficiency is twice the normalized

fading rate, typically a small number for channels of practical interest; the loss in power

efficiency depends only on the fading rate, and is less than 3 dB for pilot-aided systems.

Conversely, when the SNR goes to zero, the achievable rates decrease quadratically with

SNR, rather than linearly with SNR as capacity does. This conclusion is not expected to

change materially if PSK signals are used in lieu of Gaussian signals since in the low SNR

regime differences between signaling formats tend to be vanish.

A simple, low-duty-cycle signaling was suggested for improving information rates

in the low SNR regime. The critical SNR, identified as the threshold between the low and

high SNR regimes, is a function of only the fading rate. At SNR's below the critical SNR,

low-duty-cycle signaling restores the linear relation between capacity and SNR. The duty
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cycle is formulated as a function of the SNR and, through the critical SNR, as a function of

the fading rate. At the optimal duty cycle, as the SNR goes to zero, the ratio of achievable

rate to capacity with perfect CSI approaches a constant that depends only on the normalized

fading rate.

Although the system parameters (resource allocations and duty cycles) were optimized

for Gaussian signaling, it was shown that they can also be applied to systems using other

signaling formats.

In Chapter 4 an iterative algorithm was proposed to avoid the inversion of a data-

dependent matrix in decision-directed channel estimation for systems with multiple transmit

antennas. Convergence conditions were found as a function of the number of transmit

antennas and the noise power.

In Chapter 5 it was shown that constant-amplification relaying outperforms channel-

inversion relaying in terms of average output SNR, when global knowledge of CSI is

available and maximal-ratio combining is employed at the destination. However, if outage

probability is concerned, channel-inversion relaying achieves full second-order diversity

in Rayleigh fading channels, while constant-amplification relaying does not (the diversity

order is between 1 and 2). Specifically, when the average SNR ρ is large, the outage proba-

bility decays as ρ -2 for channel-inversion relaying and as ρ -2 In ρ for constant-amplification

relaying. To show that the SNR for CA relaying is more fluctuating, the amount of fading of

the relay link was examined. It was found that if both the source-relay and relay-destination

links are Rayleigh fading, then the end-to-end relay link is more fading than Rayleigh for

CA relaying, and is less fading than Rayleigh for CI relaying. Although the outage proba-

bilities of CI and CA relaying behave significantly different at high SNR, it was observed

that for modestly large SNR, CI relaying only slightly outperforms CA relaying.

Power allocation strategies were developed under the constraint imposed on the total

transmitted power of the source and relay. Using the knowledge of mean strengths of the

channels, the sum and product of the average SNR of the direct link and the upper bound
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to the average SNR of the relay link were optimized. It was shown the improvements in

average and outage performance resulting from these allocation strategies. It was demon-

strated through simulation that when only knowledge of local CSI is available, substantial

power and diversity gains are still achievable by employing suboptimal coherent combiners.

Multichannel noncoherent detection was investigated in Chapter 6. Two detection

algorithms were formulated based on the generalized likelihood ratio test rules. Depending

on the knowledge of the noise powers of the diversity branches, the proposed detector

chooses the signal that produces the minimum weighed sum or product of error squares.

Numerical results are presented for noncoherent detection of differential phase-shift keying

and orthogonal signals in systems with amplify-and-forward cooperative diversity. It was

observed that good performance was achieved over a wide range of relay locations by the

constant-power relaying in conjunction with the detector based on the minimum product

of squared error. Although the optimal power allocation for the systems using noncoherent

detection is difficult to determine, numerical results demonstrated that performance gains

can be achieved by using power allocation strategies developed for the coherent cases.

7.2 Future Work

Some possible avenues for further research could be:

• Power allocation for cooperative diversity with noncoherent detection. It has been

seen that the system benefits from the diversity gains of using multiple relays at high

enough SNR, but suffers from the noncoherent penalties at low SNR. It would be

useful to determine the optimal number of relays for a particular SNR. It was also

observed that the simple power allocation designed for the coherent cases can also be

used for noncoherent cases. Determination of the optimal power allocation among

nodes is an interesting problem that needs further investigation.
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• General Channel Models. Rayleigh fading channels was focused through this disser-

tation. It would be interesting to extend this work to more general channels models,

for example, Nakagami fading or Rician fading.



APPENDIX A

ASYMPTOTIC INFORMATION RATE PENALTY FOR CLARKE'S DOPPLER
SPECTRUM

A.1 Evaluation of PΔ

Here the asymptotic (large block length) PΔ for Clarke's Doppler spectrum (2.5) is shown

to be given by (3.12) and (3.13).

Substitution of (2.5) into (3.11) gives

Change of variables sin θ = f/fD  yields

where

Let K(θ , x) denote the integrand defined for all pairs (θ , x) E [0, π/2) x [0, ∞), then,

clearly,
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is continuous over the region [0, 2) x [0, oo). Therefore,
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where the integral ( [83, 2.553.3]) has been used.

Since φ (x) = ∫d/dxφ(x)dx + C, where C can be determined directly from (A.3),

OM = 2 — In 2, and the indefinite integrals

resulting in the expression (3.I3).
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A.2 Evaluation of Asymptotic Ratio P~Δ/CRayieigh

In this section the ratio P~Δ/CRayleigh is evaluated for Clarke's Doppler spectrum for large

SNR.

From (3.12), (3.38) and (A.5),

where the 1'Hospital's rules have been used in (A.9c) and (A.9g).



APPENDIX B

PERFORMANCE OF CONSTANT-AMPLIFICATION RELAYING OVER
RAYLEIGH FADING CHANNELS

B.1 Average SNR and Amount of Fading

For Rayleigh fading, ||gij|2 are exponentially distributed with parameter 1/G ij . Therefore

the probability density functions of U and V are respectively

Let a = G12/a + 1/ (aρ). Then it follows from (5.8) and (B.1) that

and

where En, is the exponential integral function

Substitution of a 	 G 12 1 a +11 (aρ) into (B.2) leads to the expression of average

SNR (5.12). The amount of fading (5.21) follows directly from (5.20), (B.2), and (B.3).
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B.2 Outage Probability

The distribution function for S, is

where for constant-amplification relaying Pr [S2 < x] can be evaluated by using (5.8) and

(B.1):

where the last equality follows from the integral in [83, 3.324.1], and where the function

Kl denotes the first order modified Bessel function of the second kind.

To find an approximation expression that provides more insight on the behavior at

high SNR, the following series representations can be used [83, 8.446, 1.2I1.1]

where γ  = 0,577 . . . denotes Eiiler's constant. It follows from (B.5) and (B.6) (for large ρ)
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