6 research outputs found

    Lifted graphical models: a survey

    Get PDF
    Lifted graphical models provide a language for expressing dependencies between different types of entities, their attributes, and their diverse relations, as well as techniques for probabilistic reasoning in such multi-relational domains. In this survey, we review a general form for a lifted graphical model, a par-factor graph, and show how a number of existing statistical relational representations map to this formalism. We discuss inference algorithms, including lifted inference algorithms, that efficiently compute the answers to probabilistic queries over such models. We also review work in learning lifted graphical models from data. There is a growing need for statistical relational models (whether they go by that name or another), as we are inundated with data which is a mix of structured and unstructured, with entities and relations extracted in a noisy manner from text, and with the need to reason effectively with this data. We hope that this synthesis of ideas from many different research groups will provide an accessible starting point for new researchers in this expanding field

    Coarse-to-Fine Inference and Learning for First-Order Probabilistic Models

    No full text
    Coarse-to-fine approaches use sequences of increasingly fine approximations to control the complexity of inference and learning. These techniques are often used in NLP and vision applications. However, no coarse-to-fine inference or learning methods have been developed for general first-order probabilistic domains, where the potential gains are even higher. We present our Coarse-to-Fine Probabilistic Inference (CFPI) framework for general coarse-to-fine inference for first-order probabilistic models, which leverages a given or induced type hierarchy over objects in the domain. Starting by considering the inference problem at the coarsest type level, our approach performs inference at successively finer grains, pruning highand low-probability atoms before refining. CFPI can be applied with any probabilistic inference method and can be used in both propositional and relational domains. CFPI provides theoretical guarantees on the errors incurred, and these guarantees can be tightened when CFPI is applied to specific inference algorithms. We also show how to learn parameters in a coarse-to-fine manner to maximize the efficiency of CFPI. We evaluate CFPI with the lifted belief propagation algorithm on social network link prediction and biomolecular event prediction tasks. These experiments show CFPI can greatly speed up inference without sacrificing accuracy

    Graphical Models and Symmetries : Loopy Belief Propagation Approaches

    Get PDF
    Whenever a person or an automated system has to reason in uncertain domains, probability theory is necessary. Probabilistic graphical models allow us to build statistical models that capture complex dependencies between random variables. Inference in these models, however, can easily become intractable. Typical ways to address this scaling issue are inference by approximate message-passing, stochastic gradients, and MapReduce, among others. Exploiting the symmetries of graphical models, however, has not yet been considered for scaling statistical machine learning applications. One instance of graphical models that are inherently symmetric are statistical relational models. These have recently gained attraction within the machine learning and AI communities and combine probability theory with first-order logic, thereby allowing for an efficient representation of structured relational domains. The provided formalisms to compactly represent complex real-world domains enable us to effectively describe large problem instances. Inference within and training of graphical models, however, have not been able to keep pace with the increased representational power. This thesis tackles two major aspects of graphical models and shows that both inference and training can indeed benefit from exploiting symmetries. It first deals with efficient inference exploiting symmetries in graphical models for various query types. We introduce lifted loopy belief propagation (lifted LBP), the first lifted parallel inference approach for relational as well as propositional graphical models. Lifted LBP can effectively speed up marginal inference, but cannot straightforwardly be applied to other types of queries. Thus we also demonstrate efficient lifted algorithms for MAP inference and higher order marginals, as well as the efficient handling of multiple inference tasks. Then we turn to the training of graphical models and introduce the first lifted online training for relational models. Our training procedure and the MapReduce lifting for loopy belief propagation combine lifting with the traditional statistical approaches to scaling, thereby bridging the gap between statistical relational learning and traditional statistical machine learning

    Using Constraint Satisfaction Techniques and Variational Methods for Probabilistic Reasoning

    Get PDF
    RÉSUMÉ Cette thèse présente un certain nombre de contributions à la recherche pour la création de systèmes efficaces de raisonnement probabiliste sur les modèles graphiques de problèmes issus d'une variété d'applications scientifiques et d'ingénierie. Ce thème touche plusieurs sous-disciplines de l'intelligence artificielle. Généralement, la plupart de ces problèmes ont des modèles graphiques expressifs qui se traduisent par de grands réseaux impliquant déterminisme et des cycles, ce qui représente souvent un goulot d'étranglement pour tout système d'inférence probabiliste et affaiblit son exactitude ainsi que son évolutivité. Conceptuellement, notre recherche confirme les hypothèses suivantes. D'abord, les techniques de satisfaction de contraintes et méthodes variationnelles peuvent être exploitées pour obtenir des algorithmes précis et évolutifs pour l'inférence probabiliste en présence de cycles et de déterminisme. Deuxièmement, certaines parties intrinsèques de la structure du modèle graphique peuvent se révéler bénéfiques pour l'inférence probabiliste sur les grands modèles graphiques, au lieu de poser un défi important pour elle. Troisièmement, le re-paramétrage du modèle graphique permet d'ajouter à sa structure des caractéristiques puissantes qu'on peut utiliser pour améliorer l'inférence probabiliste. La première contribution majeure de cette thèse est la formulation d'une nouvelle approche de passage de messages (message-passing) pour inférer dans un graphe de facteurs étendu qui combine des techniques de satisfaction de contraintes et des méthodes variationnelles. Contrairement au message-passing standard, il formule sa structure sous forme d'étapes de maximisation de l'espérance variationnelle. Ainsi, on a de nouvelles règles de mise à jour des marginaux qui augmentent une borne inférieure à chaque mise à jour de manière à éviter le dépassement d'un point fixe. De plus, lors de l'étape d'espérance, nous mettons à profit les structures locales dans le graphe de facteurs en utilisant la cohérence d'arc généralisée pour effectuer une approximation de champ moyen variationnel. La deuxième contribution majeure est la formulation d'une stratégie en deux étapes qui utilise le déterminisme présent dans la structure du modèle graphique pour améliorer l'évolutivité du problème d'inférence probabiliste. Dans cette stratégie, nous prenons en compte le fait que si le modèle sous-jacent implique des contraintes inviolables en plus des préférences, alors c'est potentiellement un gaspillage d'allouer de la mémoire pour toutes les contraintes à l'avance lors de l'exécution de l'inférence. Pour éviter cela, nous commençons par la relaxation des préférences et effectuons l'inférence uniquement avec les contraintes inviolables. Cela permet d'éviter les calculs inutiles impliquant les préférences et de réduire la taille effective du réseau graphique. Enfin, nous développons une nouvelle famille d'algorithmes d'inférence par le passage de messages dans un graphe de facteurs étendus, paramétrées par un facteur de lissage (smoothing parameter). Cette famille permet d'identifier les épines dorsales (backbones) d'une grappe qui contient des solutions potentiellement optimales. Ces épines dorsales ne sont pas seulement des parties des solutions optimales, mais elles peuvent également être exploitées pour intensifier l'inférence MAP en les fixant de manière itérative afin de réduire les parties complexes jusqu'à ce que le réseau se réduise à un seul qui peut être résolu avec précision en utilisant une méthode MAP d'inférence classique. Nous décrivons ensuite des variantes paresseuses de cette famille d'algorithmes. Expérimentalement, une évaluation empirique approfondie utilisant des applications du monde réel démontre la précision, la convergence et l'évolutivité de l'ensemble de nos algorithmes et stratégies par rapport aux algorithmes d'inférence existants de l'état de l'art.----------ABSTRACT This thesis presents a number of research contributions pertaining to the theme of creating efficient probabilistic reasoning systems based on graphical models of real-world problems from relational domains. These models arise in a variety of scientific and engineering applications. Thus, the theme impacts several sub-disciplines of Artificial Intelligence. Commonly, most of these problems have expressive graphical models that translate into large probabilistic networks involving determinism and cycles. Such graphical models frequently represent a bottleneck for any probabilistic inference system and weaken its accuracy and scalability. Conceptually, our research here hypothesizes and confirms that: First, constraint satisfaction techniques and variational methods can be exploited to yield accurate and scalable algorithms for probabilistic inference in the presence of cycles and determinism. Second, some intrinsic parts of the structure of the graphical model can turn out to be beneficial to probabilistic inference on large networks, instead of posing a significant challenge to it. Third, the proper re-parameterization of the graphical model can provide its structure with characteristics that we can use to improve probabilistic inference. The first major contribution of this thesis is the formulation of a novel message-passing approach to inference in an extended factor graph that combines constraint satisfaction techniques with variational methods. In contrast to standard message-passing, it formulates the Message-Passing structure as steps of variational expectation maximization. Thus it has new marginal update rules that increase a lower bound at each marginal update in a way that avoids overshooting a fixed point. Moreover, in its expectation step, we leverage the local structures in the factor graph by using generalized arc consistency to perform a variational mean-field approximation. The second major contribution is the formulation of a novel two-stage strategy that uses the determinism present in the graphical model's structure to improve the scalability of probabilistic inference. In this strategy, we take into account the fact that if the underlying model involves mandatory constraints as well as preferences then it is potentially wasteful to allocate memory for all constraints in advance when performing inference. To avoid this, we start by relaxing preferences and performing inference with hard constraints only. This helps avoid irrelevant computations involving preferences, and reduces the effective size of the graphical network. Finally, we develop a novel family of message-passing algorithms for inference in an extended factor graph, parameterized by a smoothing parameter. This family allows one to find the ”backbones” of a cluster that involves potentially optimal solutions. The cluster's backbones are not only portions of the optimal solutions, but they also can be exploited for scaling MAP inference by iteratively fixing them to reduce the complex parts until the network is simplified into one that can be solved accurately using any conventional MAP inference method. We then describe lazy variants of this family of algorithms. One limiting case of our approach corresponds to lazy survey propagation, which in itself is novel method which can yield state of the art performance. We provide a thorough empirical evaluation using real-world applications. Our experiments demonstrate improvements to the accuracy, convergence and scalability of all our proposed algorithms and strategies over existing state-of-the-art inference algorithms
    corecore