
UNIVERSITÉ DE MONTRÉAL

USING CONSTRAINT SATISFACTION TECHNIQUES AND VARIATIONAL
METHODS FOR PROBABILISTIC REASONING

MOHAMED IBRAHIM
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)
AOÛT 2015

c© Mohamed Ibrahim, 2015.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée:

USING CONSTRAINT SATISFACTION TECHNIQUES AND VARIATIONAL
METHODS FOR PROBABILISTIC REASONING

présentée par: IBRAHIM Mohamed
en vue de l’obtention du diplôme de: Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de:

M. MULLINS John, Ph. D., président
M. PESANT Gilles, Ph. D., membre et directeur de recherche
M. PAL Christopher J., Ph. D., membre et codirecteur de recherche
M. DESMARAIS Michel C., Ph. D., membre
M. VAN BEEK Peter, Ph. D., membre externe

iii

DEDICATION

To my beloved mother, the memory of my father and to my lovely wife and children, with
endless love and gratitude

iv

ACKNOWLEDGEMENTS

First and foremost, I sincerely offer praise to ALLAH for providing me the health, patience,
and knowledge to complete my thesis.

I would like to express my deepest gratitude to my supervisors, Prof. Gilles Pesant and Prof.
Christopher Pal, whose expertise, understanding, and patience, added considerably to my
graduate experience. I am grateful for everything I learned from them, for their continuous
support throughout my study and research, and for providing me with invaluable insights
which helped me solve many of the problems I encountered in my research. It was simply
impossible producing this thesis without their excellent guidance.

I would like to take this as an opportunity to thank Prof. John Mullins, Prof. Michel Des-
marais, and Prof. Peter Van Beek for assigning part of their time to review this dissertation
and to serve on my thesis committee.

I would like to acknowledge the Ministry of Higher Education, Egypt and my supervisors
for respectively supporting me financially during my Ph.D. which gave me opportunities to
complete this thesis.

I also thank all my colleagues, friends, and all the selfless and active workers serving society
as well.

Last but certainly not least, I am very thankful to my family: To my mother, Hameeda
Ali-Eldin, who somehow convinced me that ‘failure’ is not a dictionary word; to my father,
Hamza Ibrahim to whom I never managed to explain what I do but who is always happy for
my success, my sister, Marwa Ibrahim, my wife, Zolfa Selmi, and my children, Youssef, Seif
and Habiba for their support and encouragement. I love you all so much!

v

RÉSUMÉ

Cette thèse présente un certain nombre de contributions à la recherche pour la création
de systèmes efficaces de raisonnement probabiliste sur les modèles graphiques de problèmes
issus d’une variété d’applications scientifiques et d’ingénierie. Ce thème touche plusieurs
sous-disciplines de l’intelligence artificielle. Généralement, la plupart de ces problèmes ont
des modèles graphiques expressifs qui se traduisent par de grands réseaux impliquant déter-
minisme et des cycles, ce qui représente souvent un goulot d’étranglement pour tout système
d’inférence probabiliste et affaiblit son exactitude ainsi que son évolutivité.

Conceptuellement, notre recherche confirme les hypothèses suivantes. D’abord, les tech-
niques de satisfaction de contraintes et méthodes variationnelles peuvent être exploitées pour
obtenir des algorithmes précis et évolutifs pour l’inférence probabiliste en présence de cycles
et de déterminisme. Deuxièmement, certaines parties intrinsèques de la structure du modèle
graphique peuvent se révéler bénéfiques pour l’inférence probabiliste sur les grands modèles
graphiques, au lieu de poser un défi important pour elle. Troisièmement, le re-paramétrage
du modèle graphique permet d’ajouter à sa structure des caractéristiques puissantes qu’on
peut utiliser pour améliorer l’inférence probabiliste.

La première contribution majeure de cette thèse est la formulation d’une nouvelle approche
de passage de messages (message-passing) pour inférer dans un graphe de facteurs étendu
qui combine des techniques de satisfaction de contraintes et des méthodes variationnelles.
Contrairement au message-passing standard, il formule sa structure sous forme d’étapes de
maximisation de l’espérance variationnelle. Ainsi, on a de nouvelles règles de mise à jour des
marginaux qui augmentent une borne inférieure à chaque mise à jour de manière à éviter le
dépassement d’un point fixe. De plus, lors de l’étape d’espérance, nous mettons à profit les
structures locales dans le graphe de facteurs en utilisant la cohérence d’arc généralisée pour
effectuer une approximation de champ moyen variationnel.

La deuxième contribution majeure est la formulation d’une stratégie en deux étapes qui utilise
le déterminisme présent dans la structure du modèle graphique pour améliorer l’évolutivité du
problème d’inférence probabiliste. Dans cette stratégie, nous prenons en compte le fait que si
le modèle sous-jacent implique des contraintes inviolables en plus des préférences, alors c’est
potentiellement un gaspillage d’allouer de la mémoire pour toutes les contraintes à l’avance
lors de l’exécution de l’inférence. Pour éviter cela, nous commençons par la relaxation des
préférences et effectuons l’inférence uniquement avec les contraintes inviolables. Cela permet
d’éviter les calculs inutiles impliquant les préférences et de réduire la taille effective du réseau

vi

graphique.

Enfin, nous développons une nouvelle famille d’algorithmes d’inférence par le passage de mes-
sages dans un graphe de facteurs étendus, paramétrées par un facteur de lissage (smoothing
parameter). Cette famille permet d’identifier les épines dorsales (backbones) d’une grappe qui
contient des solutions potentiellement optimales. Ces épines dorsales ne sont pas seulement
des parties des solutions optimales, mais elles peuvent également être exploitées pour inten-
sifier l’inférence MAP en les fixant de manière itérative afin de réduire les parties complexes
jusqu’à ce que le réseau se réduise à un seul qui peut être résolu avec précision en utilisant
une méthode MAP d’inférence classique. Nous décrivons ensuite des variantes paresseuses
de cette famille d’algorithmes.

Expérimentalement, une évaluation empirique approfondie utilisant des applications du monde
réel démontre la précision, la convergence et l’évolutivité de l’ensemble de nos algorithmes et
stratégies par rapport aux algorithmes d’inférence existants de l’état de l’art.

vii

ABSTRACT

This thesis presents a number of research contributions pertaining to the theme of creating ef-
ficient probabilistic reasoning systems based on graphical models of real-world problems from
relational domains. These models arise in a variety of scientific and engineering applications.
Thus, the theme impacts several sub-disciplines of Artificial Intelligence. Commonly, most
of these problems have expressive graphical models that translate into large probabilistic
networks involving determinism and cycles. Such graphical models frequently represent a
bottleneck for any probabilistic inference system and weaken its accuracy and scalability.

Conceptually, our research here hypothesizes and confirms that: First, constraint satisfaction
techniques and variational methods can be exploited to yield accurate and scalable algorithms
for probabilistic inference in the presence of cycles and determinism. Second, some intrinsic
parts of the structure of the graphical model can turn out to be beneficial to probabilistic
inference on large networks, instead of posing a significant challenge to it. Third, the proper
re-parameterization of the graphical model can provide its structure with characteristics that
we can use to improve probabilistic inference.

The first major contribution of this thesis is the formulation of a novel message-passing
approach to inference in an extended factor graph that combines constraint satisfaction tech-
niques with variational methods. In contrast to standard message-passing, it formulates the
Message-Passing structure as steps of variational expectation maximization. Thus it has new
marginal update rules that increase a lower bound at each marginal update in a way that
avoids overshooting a fixed point. Moreover, in its expectation step, we leverage the local
structures in the factor graph by using generalized arc consistency to perform a variational
mean-field approximation.

The second major contribution is the formulation of a novel two-stage strategy that uses
the determinism present in the graphical model’s structure to improve the scalability of
probabilistic inference. In this strategy, we take into account the fact that if the underlying
model involves mandatory constraints as well as preferences then it is potentially wasteful
to allocate memory for all constraints in advance when performing inference. To avoid this,
we start by relaxing preferences and performing inference with hard constraints only. This
helps avoid irrelevant computations involving preferences, and reduces the effective size of
the graphical network.

Finally, we develop a novel family of message-passing algorithms for inference in an extended
factor graph, parameterized by a smoothing parameter. This family allows one to find the

viii

“backbones” of a cluster that involves potentially optimal solutions. The cluster’s backbones
are not only portions of the optimal solutions, but they also can be exploited for scaling MAP
inference by iteratively fixing them to reduce the complex parts until the network is simplified
into one that can be solved accurately using any conventional MAP inference method. We
then describe lazy variants of this family of algorithms. One limiting case of our approach
corresponds to lazy survey propagation, which in itself is novel method which can yield state
of the art performance.

We provide a thorough empirical evaluation using real-world applications. Our experiments
demonstrate improvements to the accuracy, convergence and scalability of all our proposed
algorithms and strategies over existing state-of-the-art inference algorithms.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF SYMBOLS AND ABBREVIATIONS . xviii

LIST OF APPENDICES . xix

CHAPTER 1 INTRODUCTION . 1
1.1 Overview and Motivations . 1
1.2 Problem Statement and Limitations . 1

1.2.1 Problem 1 . 2
1.2.2 Problem 2 . 4
1.2.3 Problem 3 . 4

1.3 Research Questions and Objectives . 6
1.4 Summary of the Contributions . 7
1.5 Organization of the Dissertation . 9

CHAPTER 2 BACKGROUND . 11
2.1 Basic Notation and Definitions . 11
2.2 Probabilistic Graphical Models . 14

2.2.1 Ising Models . 15
2.2.2 Markov Logic Networks . 16
2.2.3 Factor Graphs . 17

2.3 Probabilistic Reasoning over Graphical Models 19
2.3.1 Message-Passing Methods . 20

x

2.3.2 Markov Chain Monte Carlo Methods 22
2.3.3 Local Search Methods . 23

2.4 Constraint Satisfaction Techniques for Analyzing Constraint Problems 25
2.4.1 Constraint Satisfaction Problems . 25
2.4.2 Clustering Phenomenon and Geometry of the Solution Space 27
2.4.3 The Survey Propagation Model of Satisfiability 29
2.4.4 Decimation Based on Survey Propagation 30

2.5 Variational Approximation Methods . 31
2.5.1 Variational Expectation Maximization 31
2.5.2 Variational Mean Field approximation 32

CHAPTER 3 LITERATURE REVIEW . 33
3.1 Message-Passing Techniques for Computing Marginals 33

3.1.1 Studying Message-passing’s convergence 33
3.1.2 Damped Message-passing . 35
3.1.3 Re-parameterized Message-passing 35
3.1.4 Message passing and variational methods 35
3.1.5 Scalable Message Passing . 36

3.2 Integrating Constraint Satisfaction techniques with Message Passing 37
3.2.1 Constraint Propagation Based Methods 37
3.2.2 Survey Propagation Based Methods 38

3.3 Solving Maximum-A-Posteriori Inference Problems 38
3.3.1 Systematic and Non-Systematic Search Methods 39
3.3.2 Message-Passing-Based Methods . 40
3.3.3 Scalable MAP Methods . 41

CHAPTER 4 IMPROVING INFERENCE IN THE PRESENCE OF DETERMINISM
AND CYCLES . 42
4.1 GEM-MP Framework . 42
4.2 GEM-MP General Update Rule for Markov Logic 56

4.2.1 Hard-update-rule . 57
4.2.2 Soft-update-rule. 64

4.3 GEM-MP versus LBP . 68
4.4 GEM-MP Algorithm . 69
4.5 GEM-MP Update Rules for Ising MRFs . 70
4.6 Experimental Evaluation . 71

4.6.1 Datasets . 73

xi

4.6.2 Metrics . 74
4.6.3 Methodology and Results . 75

4.7 Discussion . 91

CHAPTER 5 EXPLOITING DETERMINISM TO SCALE INFERENCE 95
5.1 Scaling Up Relational Inference via PR . 95

5.1.1 The PR Framework . 96
5.2 PR-based Relational Inference Algorithms 98

5.2.1 PR-BP . 98
5.2.2 PR-MC-SAT . 99

5.3 Combining PR with Lazy Inference . 99
5.4 Experimental Evaluations . 100

5.4.1 Metrics . 101
5.4.2 Methodology . 101
5.4.3 Datasets . 102
5.4.4 Results . 103

5.5 Discussion . 111

CHAPTER 6 IMPROVING MAP INFERENCE USING CLUSTER BACKBONES 113
6.1 WSP-χ Framework . 113

6.1.1 Factor Graph Re-parameterization 113
6.1.2 WSP-χ Message-Passing . 117
6.1.3 A Family of Extended Factor Graphs 118
6.1.4 Derivation of WSP-χ’s Update Equations 120

6.2 Using WSP-χ for MAP Inference in Markov Logic 126
6.3 Combining WSP-χ with Lazy MAP Inference 129
6.4 Experimental Evaluation . 129

6.4.1 Methodology . 131
6.4.2 Metrics . 132
6.4.3 Results . 132

6.5 Discussion . 146

CHAPTER 7 CONCLUSION AND FUTURE WORK 148
7.1 GEM-MP Inference Approach . 148
7.2 Preference Relaxation Scaling Strategy . 149
7.3 WSP-χ Family of Algorithms . 149
7.4 Note on some of the thesis’s applications . 150

xii

7.5 Future Work . 150

REFERENCES . 153

APPENDICES . 167

xiii

LIST OF TABLES

Table 2.1 An excerpt of the knowledge base for the Cora dataset. The atoms
SameBib and SameAuthor are unknown. Ar() is an abbreviation for
atom Author(), SAr() for SameAuthor(), and SBib() for SameBib().
a1, a2 represent authors and r1, r2, r3 represent citations. 11

Table 4.1 Factor f1 in the original factor graph (left). Its corresponding extended
factor f̂1 in the extended factor graph (right). When the activation
node O1 = 1, the bold values are cases in which the extended factor f̂1

preserves the same value of f1. Otherwise it assigns a value 0. When
the activation node O1 6= 1, the matches between Y1 and (X1, X2) are
cases in which f̂1 assigns a value 1. Otherwise it assigns a value 0. . . 46

Table 4.2 General update rules of GEM-MP inference for Markov logic. These
rules capture relationships between ground atoms with each other, and
therefore it does not necessitate explicitly passing messages between
atoms and clauses. 67

Table 4.3 Average F1 scores for the GEM-MP, MC-SAT, Gibbs, LBP, LMCSAT,
and L-Im inference algorithms on Cora, Yeast, and UW-CSE at the
end of the allotted time. 79

Table 5.1 Average Construction (with and without PR) and Inference times (mins.),
memory (MB) and accuracy (CLL) metrics of Propositional grounding
and PR-based MC-SAT inference algorithms on the Yeast data set over
200 objects, the UW-CSE data set over 150 objects, and the Cora data
set over 200 objects. 112

Table 6.1 (Left) The joint probabilities of complete assignments {1, 0, 1} and
{1, 1, 1} in the original factor graph. (Right) The (solution cluster-
based) joint probabilities of their corresponding configurations ρX in
the extended factor graph, where ŵc (resp. ŵd) are the weights associ-
ated with the factors fc (resp. fd) that are satisfied by the underlying
complete assignments. 117

Table 6.2 The percentage of the frozen ground atoms (i.e., cluster backbones)
that are fixed (fixed%) and the average cost of unsatisfied clauses (Cost)
for a family of WSP-Dec at different choices of smoothing pairs (χ,γ)
on Cora, Web-KB, and Yeast. The cooling parameter y assigned a
value 2 and the threshold takes a value 0.2. 145

xiv

LIST OF FIGURES

Figure 1.1 A preliminary experiment illustrates the effects of cycles and deter-
minism on the convergence behaviour of LBP in Cora dataset (Singla
and Domingos, 2006a) (left) and Yeast dataset (Singla and Domingos,
2006a) (right). These datasets and their models are publicly available
at the alchemy website: http://alchemy.cs.washington.edu/data/ . . . 3

Figure 2.1 A 2D lattice represented as undirected graphical model. The red node
X8 is independent of the other black nodes given its neighbors (blue
nodes) . 15

Figure 2.2 Grounded factor graph obtained by applying clauses in Table 2.1 to
the constants: {Gilles(G), Chris(C)} for a1 and a2; {C1, C2} for r1,
r2, and r3. The factor graph involves: 12 ground atoms in which 4
are evidence (dark ovals) and 8 are non-evidence (non-dark ovals); 24
ground clauses wherein 8 are hard (Fh = {f1, · · · , f8}) and 16 are soft
(F s = {f9, · · · , f24}). 18

Figure 2.3 A depiction of the LBP’s message-passing process on a simple factor
graph consists of four variables {X1, . . . , X4} and four factors {f1, . . . , f4}.
It shows how LBP passes two types of messages: from variables to fac-
tors (in red) and from factors to variables (in blue). 21

Figure 2.4 A notional depiction of the clustering phenomenon. It shows how the
space between solutions varies as Γ increases. Solutions are depicted
as solid circles, while unsatisfying assignment or near-solution (which
satisfy almost all, but not all, of the clauses) appear as fainter circles.
Within the limitations of a two-dimensional representation, the place-
ment of assignments represents their Hamming distances. Thus, two
assignments are considered adjacent if they have very small Hamming
distance (e.g., they differ by a single variable). In addition, dotted
outlines group adjacent assignments into arbitrary clusters of interest,
while solid outlines group assignments into metastable clusters (Kilby
et al., 2005; Chavas et al., 2005), which have no solutions. Finally, un-
der each phase transition of the solution space, the solving technique
that is widely used in the literature to find a solution relatively quickly,
is indicated. 28

xv

Figure 4.1 An example factor graph G (left) which is a fragment of the Cora
example in Figure 2.2, that involves factors F = {f1, f2, f3, f4} and
three random variables {X1, X2, X3} representing query ground atoms
{SBib(C2, C2), SBib(C2, C1), SBib(C1, C2)}. The extended factor graph
Ĝ (right) which is a transformation of the original factor graph after
adding auxiliary mega-node variables Y = {y1, y2, y3, y4}, and auxiliary
activation-node variables O = {O1, O2, O3, O4}, which yields extended
factors F̂ =

{
f̂1, f̂2, f̂3, f̂4

}
. 43

Figure 4.2 Illustrating message-passing process of GEM-MP. (left) Eq(X)-step mes-
sages from variables-to-factors; (right) Eq(Y)-step messages from factors-
to-variables. 52

Figure 4.3 Illustrating how each step of the GEM-MP algorithm is guaranteed to
increase the lower bound on the log marginal-likelihood. In its “Mq(Y)-
step”, the variational distribution over hidden mega-node variables is
maximized according to Eq. (4.15). Then, in its “Mq(X)-step”, the
variational distribution over hidden X variables is maximized according
to Eq. (4.16). 55

Figure 4.4 Average CLL as a function of inference time for GEM-MP, MC-SAT,
LBP, Gibbs, LMCSAT, and L-Im algorithms on Cora. 76

Figure 4.5 Average CLL as a function of inference time for GEM-MP, MC-SAT,
LBP, Gibbs, LMCSAT, and L-Im algorithms on Yeast. 77

Figure 4.6 Average CLL as a function of inference time for GEM-MP, MC-SAT,
LBP, Gibbs, LMCSAT, and L-Im algorithms on UW-CSE. 78

Figure 4.7 The impact of gradual zones of determinism on the accuracy of GEM-
MP, MC-SAT and LBP algorithms for Cora dataset. 81

Figure 4.8 The impact of gradual zones of determinism on the accuracy of GEM-
MP, MC-SAT and LBP algorithms for Yeast dataset. 82

Figure 4.9 The impact of gradual zones of determinism on the accuracy of GEM-
MP, MC-SAT and LBP algorithms for UW-CSE dataset. 83

Figure 4.10 Inference time vs. number of objects in Cora. 84
Figure 4.11 Inference time vs. number of objects in Yeast. 85
Figure 4.12 Inference time vs. number of objects in UW-CSE. 86
Figure 4.13 The results of 20× 20 grids of Ising model: The cumulative percentage

of convergence (Convergence %) vs. number of iterations at determin-
ism Zone1 [0% − 20%] (Top) and at determinism Zone2 [20% − 40%]
(Bottom). 89

xvi

Figure 4.14 The results of 20×20 grids of Ising model: The average KL-divergence
(KL) metric vs. number of iterations at determinism Zone1 [0%−20%]
(Top) and at determinism Zone2 [20%− 40%] (Bottom). 90

Figure 4.15 From Top to middle: The average CLL of GEM-MP-random (x-axis)
vs. the average CLL of GEM-MP-Uniform (y-axis) for Cora (red),
Yeast (green) and UW-CSE (magenta) at two determinism zones, re-
spectively. Bottom: the average KL-divergence of GEM-MP-random
vs. the average KL-divergence of GEM-MP-Uniform for 20× 20 grids
of Ising model at determinism zone1 [0%− 20%] (left-blue) and at de-
terminism zone2 [20%− 40%] (blue) during iterations. 92

Figure 5.1 a) Propositional-BP. b) From left to right, the steps of PR-BP inference
algorithm. 100

Figure 5.2 Inference time (secs) vs. number of objects in Yeast at 25% amount of
determinism. 104

Figure 5.3 Inference time (secs) vs. number of objects in Yeast at 37.5% amount
of determinism. 105

Figure 5.4 Inference time (secs) vs. number of objects in UW-CSE at 9.7% amount
of determinism. 106

Figure 5.5 Inference time (secs) vs. number of objects in UW-CSE at 38.9%
amount of determinism. 107

Figure 5.6 Inference time (secs) vs. number of objects in Cora at 12.5% amount
of determinism. 108

Figure 5.7 Inference time (secs) vs. number of objects in Cora at 25% amount of
determinism. 109

Figure 5.8 Inference memory space (bytes) vs. number of objects in Cora at 25%
amount of determinism. 110

Figure 5.9 Inference memory space (bytes) vs. number of objects in UW-CSE at
25% amount of determinism. 111

Figure 6.1 (Left) An example factor graph G that involves grounding clauses F =
{fa, fb, fc, fd}, and three ground atoms {X1, X2, X3}, where dashed and
solid lines represent “-” and “+” appearance of the atoms, respectively.
(Right) The extended factor graph Ĝ, after adding auxiliary mega-node vari-
ables P = {P1, P2, P3} and auxiliary factor nodes Φ = {ϕ1, ϕ2, ϕ3}, which
yields a set of extended factors F̂ =

{
f̂a, f̂b, f̂c, f̂d

}
. 114

Figure 6.2 Cost vs. Time: average cost of unsatisfied clauses (smaller is better)
against time for Cora at 50 objects. 133

xvii

Figure 6.3 Cost vs. Time: average cost of unsatisfied clauses (smaller is better)
against time for Cora at 250 objects. 134

Figure 6.4 Cost vs. Time: average cost of unsatisfied clauses (smaller is better)
against time for Cora at 1000 objects. 135

Figure 6.5 Cost vs. Time: average cost of unsatisfied clauses (smaller is better)
against time for WebKB at 50 objects. 136

Figure 6.6 Cost vs. Time: average cost of unsatisfied clauses (smaller is better)
against time for WebKB at 250 objects. 137

Figure 6.7 Cost vs. Time: average cost of unsatisfied clauses (smaller is better)
against time for WebKB at 1000 objects. 138

Figure 6.8 Cost vs. Time: average cost of unsatisfied clauses (smaller is better)
against time for Yeast at 50 objects. 139

Figure 6.9 Cost vs. Time: average cost of unsatisfied clauses (smaller is better)
against time for Yeast at 250 objects. 140

Figure 6.10 Cost vs. Time: average cost of unsatisfied clauses (smaller is better)
against time for Yeast at 1000 objects. 141

Figure 6.11 Cost vs. cooling parameter: average cost of unsatisfied clauses (smaller
is better) against different values of cooling parameter y of WSP-Dec
algorithm for Cora. 142

Figure 6.12 Cost vs. cooling parameter: average cost of unsatisfied clauses (smaller
is better) against different values of cooling parameter y of WSP-Dec
algorithm for WebKB. 143

Figure 6.13 Cost vs. cooling parameter: average cost of unsatisfied clauses (smaller is
better) against different values of cooling parameter y of WSP-Dec algorithm
for Yeast. 144

xviii

LIST OF SYMBOLS AND ABBREVIATIONS

BP Belief Propagation
CCC Double loop (Concave-Convex) Procedure
CLL average Conditional Log marginal-Likelihood
CS Constraint Satisfaction
GAC Generalized arc Consistency
GEM-MP Generalized arc consistency Expectation Maximization Message Pass-

ing
Gibbs MCMC (Gibbs Sampling)
KL The average Kullback-Leibler divergence
LBP Loopy Belief Propagation
L-IM Lifted MCMC (Importance Sampling)
L2-Convex Sequential Message Passing on the Convex-L2 Bethe Free Energy
MAP Maximum-A-Posteriori Inference
MAR Marginal Inference
MAX-SAT Maximum Satisfiablility Problem
MRF Markov Random Field
MF Mean Field Approximation
MLN Markov Logic Network
ML Machine Learning
pAc Probabilistic Arc-Consistency
PR Preference Relaxation
PGAC Probabilistic Generalized Arc-Consistency
PGM Probabilistic Graphical Model
PG Propositional Grounding
SAT Propositional Satisfiability Problem
SP Survey Propagation
SRL Statistical Relational Learning
RBP Residual Belief Propagation
VEM Variational Expectation Maximization
WSP-χ Family of Weighted Survey Propagation Algorithms
WSP-Dec WSP-χ Inspired Decimation

xix

LIST OF APPENDICES

Appendix A Proofs of Theorems and Propositions 167

1

CHAPTER 1 INTRODUCTION

We provide here an overview of our research and the motivation behind it. Next, we explain
our research problems and formalize our objectives through some concise research questions.
We then summarize our contributions and conclude with an outline of this thesis.

1.1 Overview and Motivations

Graphical models that involve cycles and determinism are applicable to a growing number of
applications in different research communities, including machine learning, statistical physics,
constraint programming, information theory, bioinformatics, and other sub-disciplines of ar-
tificial intelligence. Accurate and scalable inference within such graphical models is thus
an important challenge that impacts a wide number of communities. Inspired by the sub-
stantial impact of statistical relational learning (SRL) (Getoor and Taskar, 2007), Markov
logic (Richardson and Domingos, 2006) is a powerful formalism for graphical models that has
made significant progress towards the goal of combining the powers of both first-order logic
and probability. This allows one to address relational and uncertain dependencies in data.
However, for the second part of the goal, and in practice, inference always tends to give poor
results in the presence of both cycles and determinism and can be problematic for learning
when using it as a subroutine.

Furthermore, commonly in SRL models it has been convenient to convert formulas to conjunc-
tive normal form (CNF) and to propositionalize the theory to a grounded network of clauses
wherein any probabilistic inference can be applied for reasoning about uncertain queries. In
such cases, the logical structure within the network can be problematic for certain inference
procedures and often represents a major bottleneck when faced with instances close to the
satisfiability threshold. This situation in fact frequently occurs in SRL instances of real-world
applications. In addition, this approach can be very time consuming: the grounded network
is typically large, which slows down inference, and this also can be problematic, especially
for the scalability of inference.

1.2 Problem Statement and Limitations

Our dissertations here revolve around improving the accuracy and scalability of inference for
three problems related to computing marginal probabilities (marginals for short) and MAP
assignments on graphical models that involve cycles and determinism within an underlying

2

probabilistic network of a size such that inference in the network poses problems for all known
methods.

1.2.1 Problem 1

To compute marginals, loopy belief propagation (LBP) is a commonly used message-passing
algorithm for performing approximate inference in graphical models in general, including
models instantiated by an underlying Markov Logic. However, LBP often exhibits erratic
behavior in practice. In particular, it is still not well understood when LBP will provide
good approximations in the presence of cycles and when models possess both probabilistic
and deterministic dependencies. Therefore, the development of more accurate and stable
message passing based inference methods is of great theoretical and practical interest. Per-
haps surprisingly, belief propagation achieves good results for coding theory problems with
loopy graphs (Mceliece et al., 1998; Frey and MacKay, 1998). In other applications, how-
ever, LBP often leads to convergence problems. In general LBP therefore has the following
limitation:

Limitation 1. In the presence of cycles, LBP is not guaranteed to converge.

From a variational perspective, it is known that if a factor graph has more than one cycle,
then the convexity of the Bethe free energy is violated. It is known that the local optima of
the Bethe free energy correspond to fixed points of LBP, and it has been proven that violating
the uniqueness condition for the Bethe free energy generates several fixed points in the space
of LBP’s marginal distributions (Heskes, 2004; Yedidia et al., 2005). A graph involving a
single cycle has a unique fixed point and usually guarantees the convergence of LBP (Heskes,
2004). From the viewpoint of local search, LBP performs a gradient-descent/ascent search
over the marginal space, endeavoring to converge to a fixed point (i.e., local optimum, see
Heskes, 2002). Heskes viewpoint is that the problem of non-convergence is related to the
fact that LBP updates the unnormalized marginal of each variable by computing a coarse
geometric average of the incoming messages received from its neighboring factors (Heskes,
2002). Under Heskes’ line of analysis, LBP can make large moves in the space of the marginals
and therefore it becomes more likely to overshoot the nearest local optimum. This produces
an orbiting effect and increases the possibility of non-convergence. Other lines of analysis
are based on the fact that messages in LBP may circulate around the cycles, which can lead
to local evidence being counted multiple times (Pearl, 1988). This, in turn, can aggravate
the possibility of non-convergence. In practice, non-convergence occasionally appears as
oscillatory behavior when updating the marginals (Koller and Friedman, 2009). The solid
black curves in Figure 1.1 are empirical examples that depict the non-convergence of LBP

3

due to cycles.

Figure 1.1 A preliminary experiment illustrates the effects of cycles and determinism on the
convergence behaviour of LBP in Cora dataset (Singla and Domingos, 2006a) (left) and Yeast
dataset (Singla and Domingos, 2006a) (right). These datasets and their models are publicly
available at the alchemy website: http://alchemy.cs.washington.edu/data/

Determinism also plays a substantial role in reducing the effectiveness of LBP (Heskes, 2004).
It has been observed empirically that carrying out LBP on cyclic graphical models with
determinism is more likely to result in a two-fold problem of non-convergence or incorrectness
of the results (Mooij and Kappen, 2005; Koller and Friedman, 2009; Potetz, 2007; Yedidia
et al., 2005; Roosta et al., 2008). A second limitation of LBP could thus be formulated as:

Limitation 2. In the presence of determinism (a.k.a. hard clauses), LBP may deteriorate
to inaccurate results.

In its basic form LBP also does not leverage the local structures of factors, handling them
as black boxes. Using Markov logic as a concrete example, LBP often does not take into
consideration the logical structures of the underlying clauses that define factors (Gogate and
Domingos, 2011). Thus, if some of these clauses are deterministic (e.g., hard clauses) or
have extreme skewed probabilities, then LBP will be unable to reconcile the clauses. This,
in turn, impedes the smoothing out of differences between the messages. The problem is
particularly acute for those messages that pass through hard clauses which fall inside dense
cycles. This can drastically elevate oscillations, making it difficult to converge to accurate
results, and leading to the instability of the algorithm with respect to finding a fixed point
(see pages 413-429 of Koller and Friedman, 2009, for more details). The solid red curves in
Figure 1.1 illustrate empirically the increase in the non-convergence of LBP due to cycles
and determinism. On the flip side of this issue Koller and Friedman point out that one can

4

prove that if the factors in a graph are less extreme — such that the skew of the network is
sufficiently bounded — it can give rise to a contraction property that guarantees convergence
(Koller and Friedman, 2009).

Although LBP has been scrutinized both theoretically and practically in various ways, most
of the existing research either avoids the limitation of determinism when handling cycles, or
does not take into consideration the limitation of cycles when handling determinism.

1.2.2 Problem 2

It is common for many real-world problems to have expressive graphical models that combine
deterministic and probabilistic dependencies. In the world of SRL, the former often appear
in the form of mandatory (i.e. hard) constraints that must be satisfied in any world with a
non-zero probability. The latter are typically formulated as preferences (i.e. soft constraints),
and dissatisfying them is not impossible, but less probable. Thus, if a query atom X which
is involved with a set of constraints C = {H,S} (where H and S are its subsets of hard and
soft constraints respectively) violates one of the hard constraints h in H, then its marginal
probability will be zero, even if it satisfies its other hard and soft constraints in C − {h}. A
variable violates a hard constraint if there is a truth value for that variable such that the
constraint is violated in all possible worlds consistent with that truth value assignment to the
variable and the evidence. Current inference approaches do not exploit the fact that there
is no need to consider irrelevant computations (and memory usage) with soft constraints
S, since using only hard constraints H should be sufficient to compute that its marginal
probability P (X) is zero.

Limitation 3. In relational domains, where we have millions of query atoms each involved
with thousands of constraints, such irrelevant computations greatly weaken the scalability of
the inference, especially if most query atoms have a tendency to violate hard constraints.

Inspired by the sparseness property of relational domains, the marginal probability of the
vast majority of query atoms being true is frequently zero. Potentially this is due to the
violation of hard constraints that have at least one false precondition query atom.

1.2.3 Problem 3

To compute MAP assignments, it has been proven that maximum-a-posteriori (MAP) infer-
ence is equivalent to solving a weighted MAX-SAT problem (i.e., where one finds the most

5

probable truth assignment or “MAP” solution that maximizes the total weight of satisfied
clauses) (Park, 2002). A simple approach to tackle MAP inference is to use off-the-shelf
local search algorithms that are designed to efficiently solve weighted MAX-SAT instances.
For example MaxWalkSAT (Kautz et al., 1997; Selman et al., 1993) was recently applied
as a conventional MAP inference method in probabilistic graphical models (Richardson and
Domingos, 2006). However, it is known that for real world applications, and in relational
domains, models are normally translated into grounded networks featuring high densities.1

From the point of view of satisfiability, if the density of the grounded network is close to
a satisfiability threshold, then the (MAP) assignments in the solution space are clustered
(Mann and Hartmann, 2010). This clustering means that the (MAP) assignments belonging
to the same cluster are close to each other (e.g., in terms of Hamming distance). It has been
shown that such clustering in the solution space exists not only for uniform random satisfi-
ability, but also for some structured satisfiability instances that follow realistic and natural
distributions (Hartmann and Weigt, 2006; Zhang, 2004; Gomes et al., 2002; Parkes, 1997),
similar to real-world problems that are modeled as MLNs (e.g., social networks, as shown by
Kambhampati and Liu (2013)). In general, using local search algorithms for MAP inference
frequently has the following limitations due to the clustering of the solution space:

Limitation 4. Usually, the existence of many clusters is an indication of a rugged en-
ergy landscape, which then also gives rise to many local optima. This often hinders the
performance of most local search algorithms because they can get stuck in a local optimum
(Montanari et al., 2004).

Limitation 5. Another possible consequence of the clustering of the solution space is that the
search space fractures dramatically with a proliferation of ‘metastable’ clusters (Chavas et al.,
2005). This acts as a dynamic trap for local search algorithms, including MaxWalkSAT, since
they can get stuck in one such ‘metastable’ cluster at a local optimum (Kilby et al., 2005;
Chavas et al., 2005). On the flip side of the issue, if the clauses capture complex structures
(e.g., relational dependencies) then the clusters tend to decompose into an exponentially small
fraction of (MAP) assignments (Mann and Hartmann, 2010). So there is not even any
guarantee of getting into a cluster that contains an optimal solution. Clearly, this all greatly
weakens the possibility that a local search can converge to an optimal solution, particularly
for SRL applications (Riedel, 2008).

It is well known that techniques such as marginalization-decimation based on the max-
product BP algorithm (Wainwright et al., 2004; Weiss and Freeman, 2001), can be used
to help local search find an optimal MAP solution, but it is also believed that BP does not

1The density is the ratio of ground clauses to ground atoms.

6

converge due to strong attraction in many directions (Kroc et al., 2009; Khosla et al., 2009).
That is, max-product BP fails because its local computations may obtain locally optimal as-
signments corresponding to different clusters, but these cannot be combined to find a global
MAP solution (Kroc et al., 2009).

Fortunately, it is likely that in each cluster there is a certain fraction of ‘frozen’ ground
atoms (Achlioptas and Ricci-Tersenghi, 2009) that are fixed in all (MAP) solutions within
the cluster, while the others can be varied subject to some ground clauses. These frozen
ground atoms are known as ‘cluster backbones’ (Kroc et al., 2008). Thus, one relatively
crude but useful way to obtain a portion of a solution in the cluster is by finding the cluster
backbones.

1.3 Research Questions and Objectives

We formalize our objectives through some concise research questions as follows:

• To address Limitations 1 and 2 of LBP discussed above, our first objective is to answer
the following research questions:

– (RQ1) Does updating the marginals such that we do not overshoot the nearest
fixed point diminish the threat of non-convergence of LBP?

– (RQ2) Are constraint satisfaction techniques able to help address the challenges
resulting from determinism in the graphical models?

• To address Limitation 3, and avoid irrelevant computations involving preferences when
performing inference, our second objective is to answer the following research question:

– (RQ3) Can relaxing soft constraints or preferences be helpful to avoid irrelevant
computations involving preferences? That is to say, can performing the inference
by using only hard constraints (determinism) be exploited to reduce problem size?

• To address Limitations 4 and 5 of local search algorithms, which are due to search
space clustering, our third objective is to answer the following research questions:

– (RQ4) Can we derive a method to identify backbones in a cluster involving po-
tentially optimal MAP solutions?

– (RQ5) Can the cluster backbones be used to scale MAP inference?

– (RQ6) Can the cluster backbones be helpful to reach optimal MAP solutions?

7

1.4 Summary of the Contributions

Through the research presented in this thesis, we achieve our objectives by answering the
research questions above. This has led to our main contributions summarized as follows:

• Generalized arc-consistency Expectation-Maximization Message-Passing
(GEM-MP), a novel message-passing algorithm for applying variational ap-
proximate inference to graphical models.

In GEM-MP, we first re-parameterized the factor graph in such a way that the infer-
ence task (that could be performed by LBP inference on the original factor graph) is
equivalent to a variational EM procedure. Then, we take advantage of the fact that
LBP and variational EM can be viewed in terms of different types of free energy mini-
mization equations. We formulate our Message-Passing structure as the E and M steps
of a variational EM procedure (Beal and Ghahramani, 2003; Neal and Hinton, 1999).
This variational formulation leads to the synthesis of new rules that update marginals
by maximizing a lower bound of the model evidence such that we never overshoot the
model evidence (Answering research question RQ1). In addition, in the corresponding
Expectation step of GEM-MP, the constructed expected log marginal-likelihood has
been defined according to the posterior distribution over local entries of the logical
clauses that define factors. This enables us to exploit their logical structures by ap-
plying a generalized arc-consistency concept (Rossi et al., 2006), and to use that to
perform a variational mean-field approximation when updating the marginals. This
significantly amends smoothing out the marginals to converge correctly to a stable con-
vergent fixed point in the presence of determinism (Answering research question RQ2).
Our experiments on real-world problems demonstrate the increased accuracy and con-
vergence of GEM-MP compared to existing state-of-the-art inference algorithms such as
MC-SAT, LBP, and Gibbs sampling, and convergent message passing algorithms such
as the Concave-Convex Procedure (CCCP), Residual BP, and the L2-Convex method.

• Preference Relaxation (PR), a new two-stage strategy that uses the deter-
minism (i.e., hard constraints) present in the underlying model to improve
the scalability of relational inference.

The basic idea of PR is to diminish irrelevant computational time and memory, which
are due to preference constraints. To do so, in a first stage PR starts by relaxing
preferences and performing inference with hard constraints only in order to obtain the
zero marginals for the query ground atoms that violate the hard constraints. It then
filters these query atoms (i.e., it removes them from the query set) and uses them to

8

enlarge the evidence database. Then in a second stage preferences are reinstated and
inference is performed on a grounded network that is constructed based on both a
filtered query set and an expanded evidence database obtained in the first stage. PR
substantially reduces the effective size of the constructed grounded network, potentially
with a loss of accuracy. (Answering research question RQ3). Experiments on real-world
applications show how this strategy substantially scales inference with a minor impact
on accuracy.

• Weighted Survey Propagation-inspired Decimation (WSP-Dec), a novel fam-
ily of message passing algorithms for applying MAP inference to graphical
models.

In WSP-Dec, we first describe a novel family of extended factor graphs, specified by
the parameter χ ∈ [0, 1]. These factor graphs are re-parameterized in such a way that
they define positive joint probabilities over max-cores. These max-cores are natural
interpretations of core assignments (Maneva et al., 2007) that satisfy a set of clauses
with maximal weights. We then show that applying BP message-passing to this family
recovers a family of Weighted SP algorithms (WSP-χ), ranging from pure Weighted SP
(WSP-1) to standard max-product BP (WSP-0). The magnetization of the marginals
computed by any WSP-χ algorithm can be used to obtain backbones (i.e., frozen ground
atoms) of a cluster involving potentially optimal MAP solutions (Answering research
question RQ4). The cluster backbones are not only a portion of the optimal solutions
in the cluster, but they can also be used to enlarge the evidence database and shrink
the query set. Therefore, iteratively fixing them results in a reduction of the complex
parts of the grounded network, which afterwards can be simplified to a scalable one
that is then solved accurately using any conventional MAP method (Answering research
question RQ5). Hence, integrating WSP-χ as pre-processing with a MaxWalkSAT al-
gorithm in a decimation procedure produces a family of Weighted Survey Propagation-
inspired decimation (WSP-Dec) algorithms for applying MAP inference to SRL models
(Answering research question RQ6). Our experiments on real-world applications show
the promise of WSP-χ to improve the accuracy and scalability of MAP inference when
integrated with local search algorithms such as MaxWalkSAT.

• Lazy-WSP-χ, a novel lazy variant of weighted Survey Propagation for effi-
cient relational MAP inference.

In Lazy-WSP-χ, we start by grounding the network lazily, and maintaining only active
ground clauses and their active ground atoms that are sufficient to answer the queries.
We then call WSP-χ to scale the lazy ground network, which was built using those

9

active clauses and atoms, by fixing the frozen active atoms. Thus, Lazy-WSP-χ mainly
differs from WSP-χ in both the initial set of underlying query atoms and clauses. Our
experiments on real-world applications show how using the lazy variants of WSP-χ
greatly improves the scalability of MAP inference.

• Lazy-PR-based inference, a hybrid inference approach that combines PR-
based inference with lazy inference to greatly improve the scalability of
marginal inference.

One key advantage of our proposed PR strategy is that it can be combined with other
state-of-the-art approaches which improve the scalability of inference, such as Lazy
and Lifted. In Lazy-PR-based inference, we start by maintaining only the active-awake
hard constraints and their atoms. We then call the relational inference on the ground
network, which was built using those maintained clauses and atoms. After reaching
a fixed point, we filter active-awake query atoms and enlarge the evidence database.
The experimental evaluations on real-world applications show that hybridizing Lazy-
PR-based inference with relational inference algorithms improves their efficiency for
computing marginals.

Through our experimental evaluations in this thesis, we have focused on Markov logic and
Ising models, but it is worth noting that all the main proposed techniques (GEM-MP, PR
and WSP-χ) and their lazy variants are applicable to other representations of SRL models,
including standard graphical models defined in terms of factor graphs.

1.5 Organization of the Dissertation

The remainder of this thesis is organized as follows.

Part I is about the state of the art, and it consists of two chapters:

• Chapter 2 presents the necessary background of the techniques and methods useful
to understand this thesis.

• Chapter 3 presents a thorough discussion for the related work relevant to this thesis.

Part II consists of three chapters in which we present our contributions:

• Chapter 4 demonstrates our Generalized arc-consistency Expectation-Maximization
Message-Passing (GEM-MP) for applying variational approximate inference to graph-
ical models in the presence of cycles and determinism. The contents of this chapter are
largely extracted from our paper:

10

Mohamed-Hamza Ibrahim, Christopher Pal and Gilles Pesant. “Improving Message-
Passing Inference in the Presence of Determinism and Cycles”. Currently under review
in the Machine Learning Journal (MLJ).

• Chapter 5 explains our Preference Relaxation (PR) strategy that uses the determin-
ism present in the underlying model to improve the scalability of relational inference.
It also demonstrates how to combine PR-based inference with lazy inference. The
contents of this chapter are based on our paper:

Mohamed-Hamza Ibrahim, Christopher Pal and Gilles Pesant. “Exploiting determinism
to scale relational inference”. Published in Proceedings of the Twenty-Ninth National
Conference on Artificial Intelligence (AAAI’15) in 2015 (Ibrahim et al., 2015).

• Chapter 6 demonstrates ourWeighted SurveyPropagation-inspired Decimation (WSP-
Dec), a family of algorithms to handle MAP inference in the presence of clustered search
space. It also explains lazy variants of this family of algorithms. The contents of this
chapter are largely extracted from our paper:

Mohamed-Hamza Ibrahim, Christopher Pal and Gilles Pesant. “Exploiting Cluster
Backbones to Improve MAP Inference in Relational Domains”. Submitted to Journal
of Artificial Intelligence Research (JAIR).

Chapter 7 concludes the thesis by revisiting our major contributions and sketching our
possible opportunities for future research directions.

Appendix A presents the proofs of Theorems and Propositions.

11

CHAPTER 2 BACKGROUND

To set the stage for this thesis, in this chapter we review basic concepts and methods that
are necessary to understand our research by using an explanatory example, presented in
Table 2.1. This example is an excerpt of the knowledge base for the Cora dataset (Singla
and Domingos, 2006a). Suppose that we are given a citation database in which each citation
has author, title, and venue fields. We wish to know which pairs of citations refer to the
same citation and the same authors (i.e., both the SameBib and SameAuthor relations are
unknown). For simplicity, suppose that our goal will be to predict the SameBib ground
atoms’ marginals and compute their most probable truth assignment (i.e., MAP solution).
The first part of the goal refers to the marginal inference problem and the second refers to
the maximum-a-posteriori (MAP) inference problem. At this point, let us first express our
prerequisite basic definitions.

Table 2.1 An excerpt of the knowledge base for the Cora dataset. The atoms SameBib and
SameAuthor are unknown. Ar() is an abbreviation for atom Author(), SAr() for SameAu-
thor(), and SBib() for SameBib(). a1, a2 represent authors and r1, r2, r3 represent citations.

Rule First-order Logic Weight

Regularity ∀a1, a2,∀r1, r2, Ar(r1, a1)∧Ar(r2, a2)∧SAr(a1, a2)⇒ SBib(r1, r2) 1.1
Transitivity ∀r1, r2, r3, SBib(r1, r2) ∧ SBib(r2, r3)⇒ SBib(r1, r3) ∞

Clausal Form

Regularity ¬Ar(r1, a1) ∨ ¬Ar(r2, a2) ∨ ¬SAr(a1, a2) ∨ SBib(r1, r2) 1.1
Transitivity ¬SBib(r1, r2) ∨ ¬SBib(r2, r3) ∨ SBib(r1, r3) ∞

2.1 Basic Notation and Definitions

A first-order knowledge base (KB) is a set of formulas in first-order logic (FOL).

Definition 1 (First-Order Logic (FOL)). The set of terms of FOL (also known as first-order
predicate calculus) is defined by the following rules:

• A variable is a term

• If h is a function symbol with t1, . . . , tn terms and n ≥ 0, then h(t1, . . . , tn) is a term.

12

• If P is a predicate symbol with t1, . . . , tn terms and n ≥ 0, then P (t1, . . . , tn) is an
atomic statement.

In FOL, each formula is a sentential formula (e.g., ∀X ∃Z f(X,Z)), where ∀ is the universal
quantifier, and ∃ is the existential quantifier. f(X,Z) is the scope of the respective quantifier,
and any occurrence of variable X or Z in the scope of a quantifier is bound by the closest
∀X or ∃Z.

The set of sentential formulas of first-order predicate calculus is defined by the following rules:

• Any atomic statement is a sentential formula

• If f1 and f2 are sentential formulas, then ¬f1, f1 ∧ f2, f1 ∨ f2, and f1 ⇒ f2 (f1 implies
f2) are sentential formulas.

In formulas of first-order predicate calculus, all variables are object variables serving as ar-
guments of functions and predicates.

Definition 2 (Conjunctive Normal Form (CNF)). A formula is in conjunctive normal form
(or clausal normal form) if it is represented as a conjunction of clauses, where a clause is a
disjunction of literals- a literal represents either a variable or its negation.

For the purpose of probabilistic (and automated) inference, it is often convenient to convert
FOL formulas to a clausal form (CNF).1 For instance, as shown in Table 2.1, we convert
FOL formulas of the explanatory example into a clausal form (CNF).2 This is known as
propositional grounding.

Definition 3 (Propositional grounding (PG)). PG is the process of replacing a first-order
Knowledge Base (KB) by an equivalent propositional one (Richardson and Domingos, 2006).
In finite domains, inference over a first-order KB can be performed by propositional grounding
followed by satisfiability testing. But in order to apply a satisfiability solver we need to
create a Boolean variable for every possible grounding of every predicate in the domain and
a propositional clause for every grounding of every first-order clause.

1This includes the removal of the existential quantiers by Skolemization, which is not sound in general.
However, in finite domains an existentially quantied formula can simply be replaced by a disjunction of its
groundings.

2Note that the weights that are associated with the FOL formulas in Table 2.1 will be used later to extend
the FOL formulation with Markov Logic– one of the most powerful graphical model representations – as will
be discussed in Section 2.2.2

13

After propositional grounding, we get a formula F , which is a conjunction of m ground
clauses. We use fi ∈ F to denote a ground clause which is a disjunction of literals built
from X , where X = {X1, X2, . . . , Xn} is a set of n Boolean random variables representing
ground atoms. Each fi is associated with the pair (ŵi,Xfi

), where ŵi is its weight and the
set Xfi

⊆ X corresponds to the variables appearing in its scope. Both “+” and “−” will
be used to denote the positive (true) and negative (false) appearance of the ground atoms.
A joker “∗” will be used to denote the “don’t care” state of a variable Xj. That is, the
assignment Xj = ∗ means that the variable Xj is free to take either “+” or “−” since the
clauses containing it should be already satisfied by other variables, and the value of Xj does
not matter. We use Yi as a subset of satisfying (or valid) entries of ground clause fi, and
yk ∈ Yi, k ∈ {1, .., |Yi|} denotes each valid entry in Yi, where the local entry of a factor
is valid if it has non-zero probability. We use f si (resp. fhi) to indicate that the clause fi
is soft (resp. hard); the soft and the hard clauses are included in the two sets F s and Fh

respectively. The sets FXj+ and FXj− include the clauses that contain positive and negative
literals for ground atom Xj, respectively. Thus FXj

= FXj+∪FXj− denotes the whole of Xj’s
clauses, and its cardinality as

∣∣∣FXj

∣∣∣. For each ground atom Xj, we use βXj
=
[
β+
Xj
, β−Xj

]
to

denote its positive and negative marginal probabilities, respectively. BX denotes the whole
set of X ’s marginals.

Definition 4. For a ground clause fi, we define si,j (resp. ui,j) as the value of a ground
atom Xj ∈ {1, 0} that satisfies (resp. violates) fi. Therefore, fi is satisfied if and only if at
least one of its ground atoms Xj is equal to si,j.

X s
fi
and X u

fi
are used to denote the two disjoint subsets of the ground atoms that are satisfying

and violating fi, respectively. Now from the above definition, we have the following sets:

FXj+ = {fi ∈ FXj
; si,j = 1}, FXj− = {fi ∈ FXj−; si,j = 0} (2.1a)

F s(j) = {fi ∈ FXj
;Xj = si,j}, Fu(j) = {fi ∈ FXj

;Xj = ui,j} (2.1b)

F sfi
(j) = {fk ∈ FXj

\ {fi}; si,j = sk,j}, Fufi
(j) = {fk ∈ FXj

\ {fi}; si,j 6= sk,j} (2.1c)

where we use F s(j), Fu(j) to denote the two disjoint subsets of the ground clauses that are
satisfied and violated by Xj, respectively. We use F sfi

(j) (resp. Fufi
(j)) to denote the subset

of ground clauses that agree (resp. disagree) with fi about Xj.

Definition 5. (Maneva et al., 2007) We say that a variable Xj is the unique satisfying
variable for a clause fi ∈ F if it is assigned si,j whereas all other variables in the clause
are assigned ui,j. A variable Xj is constrained by the clause fi if it is the unique satisfying

14

variable for fi. That is to say, it satisfies an indicator function as follows:

CONi,j(Xfi
) = Ind(Xj is the unique variable satisfying fi) (2.2)

Where Ind(Predicate) returns 1 if the Predicate is true and 0 otherwise. The variable Xj is
said to be unconstrained if it has 0 or 1 value and it violates CONi,j(Xfj

) for each clause
fi ∈ FXj

that involves it, or it has a joker ∗ value.

Definition 6. (Chieu and Lee, 2009) A complete assignment X:

• Satisfies a clause fi if and only if (i) fi contains a constrained variable Xj that is set
to si,j, or (ii) fi contains at least two unconstrained joker variables.

• Violates a clause fi if and only if all its variables Xj ∈ Xfi
are set to ua,i.

• Is invalid for a clause fi if and only if exactly one variable Xj takes a joker value ∗
and all its other variables Xk ∈ Xfi

\Xj are set to ui,k.

The complete assignment X is valid for a F if it is valid for all of its clauses. Note that
the above definition of the invalid complete assignment reflects the interpretation that the
joker value “∗” is a “don’t care” state for variable Xj: clauses involving a variable Xj = ∗
should be already satisfied by other variables, and the value of Xj does not matter. This
in fact means that Xj = ∗ cannot be the last remaining possibility of satisfying any clause.
So, if the other variables violate the clause and the remaining variable Xj is a joker, then
the complete assignment is neither satisfying nor violating the clause because in this case
we have two possibilities for Xj = ∗: one makes the complete assignment satisfying and the
other makes it violating. Thus we say that the complete assignment is invalid. In the case
where a clause contains two variables set to joker, the clause can be satisfied by either one
of these two variables, so the other variable can take the “don’t care” value.

2.2 Probabilistic Graphical Models

Now after expressing the basic notation and definitions, let us recall our goal of solving the
marginal and MAP inference problems in the explanatory example. The first step, before
carrying out the inference, is to represent the problem as a probabilistic graphical model
(PGM). PGM is a graphical model that efficiently defines and describes a probabilistic model
(e.g., joint distribution of the variables). PGMs are often classified into two major classes:
Bayesian networks (BNs) and Markov random fields (MRFs).

15

Markov random fields (MRFs), also known as undirected graphical models, compactly rep-
resent a joint distribution over X as a product of potentials defined on subsets of variables
(see Koller and Friedman, 2009). In order to motivate the use of MRFs, below we describe
briefly two MRFs’ models that will be used frequently throughout the thesis:

• Ising Models (Ising)

• Markov Logic Networks (MLNs)

2.2.1 Ising Models

The Ising model is an example of an MRF that arose from statistical physics. It was originally
used for modeling the behavior of magnets. In particular, let Xi ∈ {1, 0} represents the spin
of an atom, which can either be spin down (i.e., 0 ↓) or up (i.e., 1 ↑). In some magnets, called
ferro-magnets, neighboring spins tend to line up in the same direction, whereas in other kinds
of magnets, called anti-ferromagnets, the spins want to be different from their neighbors. We
can model this as an MRF by creating a graph in the form of a 2D or 3D lattice, and connect
neighboring variables, as in Figure 2.1, by using a set of pairwise clique potentials:

φij(Xi, Xj) =

e
θij if Xi = Xj

e−θij Otherwise
(2.3)

Figure 2.1 A 2D lattice represented as undirected graphical model. The red node X8 is
independent of the other black nodes given its neighbors (blue nodes)

The 2D Ising models with arbitrary topology are a specific subset of the canonical (pairwise)
MRFs. Assume that X = {X1, . . . , Xn} is a set of binary random variables (representing

16

the spins) that are Bernoulli distributed. In a 2D Ising model I = ((X , E); θ) we have an
undirected graph consisting of the set of all variables X , a set of edges between variables E ,
and a set of parameters θ = {θi, θij}. The model can be given as

p(X = x) = Z−1
θ

energy function︷ ︸︸ ︷
e

[∑
(Xi,Xj)∈E θij ·XiXj+

∑
Xi∈X

θi·Xi

]
(2.4a)

= Z−1
θ

[∏
(Xi,Xj)∈E

φij(Xi,Xj)︷ ︸︸ ︷
e
θij ·1(Xi,Xj)

]
×
[∏
Xi∈X

φi(Xi)︷ ︸︸ ︷
eθi·Xi

]
(2.4b)

where Zθ is the normalizing constant. 1(Xi,Xj) is an indicator function that equals one when
Xi = Xj. Otherwise it is equal to zero. Both {θi} and {θij} are the parameters of uni-
variate potentials {φi(Xi)} and pairwise potentials {φij(Xi, Xj)}, respectively. Typically,
the parameters {θi} are drawn uniformly from U [−df , df], where df ∈ R. For pairwise
potentials, the parameters {θij} are chosen as η ·C where we sample η in the range [−df , df]
having some nodes to agree and disagree with each other. C is also a chosen constant. Higher
values of C impose stronger constraints, leading to a harder inference task.

2.2.2 Markov Logic Networks

A Markov Logic Network (MLN) (Richardson and Domingos, 2006) is a set of first-order logic
formulas (or CNF clauses), each of which is associated with a numerical weight w. Larger
weights w reflect stronger dependencies, and thereby deterministic dependencies have the
largest weight (w →∞), in the sense that they must be satisfied. We say that a clause has
deterministic dependency if at least one of its entries has zero probability. With finite sets
of constants that are domains to atoms, we can build a Markov logic network that has the
following:

• One binary node for each possible grounding of each atom appearing in each clause.
The value of the node is 1 if the ground atom is true, and 0 otherwise.

• One feature for each possible ground clause fi. The value of this feature is 1 if the
ground formula is true, and 0 otherwise. The weight of the feature is the weight wi
associated with fi, where the weight attached to each ground clause reflects its strength
dependency.

The power of MLNs appears in their ability to bridge the gap between logic and probability
theory. Thus it has become one of the preferred probabilistic graphical models for repre-

17

senting both probabilistic and deterministic knowledge, with deterministic dependencies (for
short we say determinism) represented as hard clauses, and probabilistic ones represented as
soft clauses.

To understand the semantics of Markov logic, recall the explanatory example in Table 2.1. In
this example, Markov logic enables us to model the KB by using rules such as the following:
(1) Regularity rules of the type that say “if the authors are the same, then their records are
the same.” This rule is helpful but innately uncertain (i.e., it is not true in all cases). Markov
logic considers this rule as soft and attaches it to a weight (say, 1.1); and (2) Transitivity rules
that state “If one citation is identical to two other citations, then these two other citations
are identical too.” These types of rules are important for handling non-unique names of
citations. Therefore, we suppose that Markov logic considers these rules as hard and assigns
them an infinite weight.3

2.2.3 Factor Graphs

For the purpose of solving inference problems, it is often convenient to convert MRFs into a
different representation called factor graph.

Definition 7 (Factor Graphs (FG)). A factor graph is a bipartite graph involving two types
of nodes: variables and factors (i.e., constraints or clauses). Associated with each such node
is a variable or a factor over variables, respectively. Typically, we will denote a factor graph
G = (X ;F) in terms of its variables X and factors F .

Note that FG introduce additional nodes for representing the potentials of MRFs. This allows
the model to be more explicit about the factorization when defining its joint distribution,
which can be written as a product of factors as follows:

P (X1, · · · , Xn) = 1
Z

∏
fi∈F

fi(Xfi
) (2.5)

Where Z is a normalization constant that enforces the factorization to represent a probability
distribution that sums to one. Factor graphs unify directed and undirected graphs with the
same representation. Thus they can be used to represent undirected graphs such as MRFs,
where the factors will be the potential functions. If the factor graphs are being used to
represent directed graphs like BNs, then the factors will be the local conditional distributions
of each node, and here the extra normalization term in the joint distribution is not needed.

3In practice, the transitivity rules are assigned very high weights, which complicates the inference.

18

Figure 2.2 Grounded factor graph obtained by applying clauses in Table 2.1 to the constants:
{Gilles(G), Chris(C)} for a1 and a2; {C1, C2} for r1, r2, and r3. The factor graph involves: 12
ground atoms in which 4 are evidence (dark ovals) and 8 are non-evidence (non-dark ovals); 24
ground clauses wherein 8 are hard (Fh = {f1, · · · , f8}) and 16 are soft (F s = {f9, · · · , f24}).

19

For instance, the Ising models in Eq. (2.4b) can be represented as factor graphs, where vari-
ables Xi ∈ X are represented as variable nodes and potentials {φi(Xi)} and {φij(Xi, Xj)}
are represented as factor nodes. Also, Markov logic can be represented as a factor graph.
For clarity, let us represent Markov logic for the explanatory example, in Table 2.1, as
a factor graph after grounding it using a small set of typed constants (say, for exam-
ple, a1, a2 ∈ {Gilles(G), Chris(C)}, and r1, r2, r3 ∈ {Citation1(C1), Citation2(C2)}). The
output is a factor graph that is shown in Figure 2.2, which is a bipartite graph (X ,F),
where F =

{
Fh,F s

}
. This factor graph has a variable node (oval) for each ground atom

Xj ∈ X (here X includes the ground atoms: SBib(C1, C1), SBib(C2, C1), SBib(C2, C2),
SBib(C1, C2), Ar(C1, G), Ar(C2, G), Ar(C1, C), Ar(C2, C), SAr(C,C), SAr(C,G), SAr(G,C),
and SAr(G,G)). If the truth value of the ground atom is known from the evidence database,
we mark it as evidence (dark ovals). It also involves a factor node for each hard ground clause
fhi ∈ Fh (bold square) and each soft ground clause f si ∈ F s (non-bold square), with an edge
linking node Xj to factor fi, if fi involves Xj. This factor graph compactly represents the
joint distribution over X as:

P (X1, · · · , Xn) = 1
λ

|Fh|∏
i=1

fhi (Xfh
i
) ·
|Fs|∏
i=1

f si (Xfs
i
) (2.6)

Where λ is the normalizing constant, f si and fhi are soft and hard ground clauses respectively,
and |Fh| and |F s| are the number of hard and soft ground clauses, respectively. Note that,
typically, the hard clauses are assigned the same weight (w → ∞). But, without loss of
accuracy, we can recast them as factors that allow {0/1} probabilities without recourse to
infinity.

2.3 Probabilistic Reasoning over Graphical Models

We now turn to the problem of inference in factor graphs, in which some of the variables are
observed (ex. with evidence), and we wish to compute the posterior distributions of one or
more subset of other unobserved variables, called query or non-evidence. Hence, the objective
of the inference task can be classified into two categories:

• Computing the marginal probability of the query given others as evidence. This is
known as aMarginal inference problem. For instance, given the factor graph represented
in Figure 2.2, the marginal inference problem can be how to compute the marginal
probability of the query atoms X = {SameBib} given some others as evidence E =
{Author}:

20

P (X) =
∑
E

P (X , E) (2.7)

• Computing the maximum a-posteriori probability (MAP) assignment (or the most prob-
able explanation (MPE) as a special case of MAP) for the query given others as evi-
dence. This is known as a MAP inference problem. For example, given the factor graph
represented in Figure 2.2, the MAP inference problem could be how to find the most
probable truth assignment of X = {SameBib} that maximizes the sum of the weights
of satisfied clauses, given evidence E = {Author}:

XMAP = argmax
X

P (X|E) (2.8)

In the following subsections, we explain briefly some state-of-the art methods for solving each
of these inference categories.

2.3.1 Message-Passing Methods

Loopy Belief Propagation

One widely used approximate inference is loopy belief propagation (LBP) (Yedidia et al.,
2005). LBP is a message-passing method that provides exact marginals of query atoms
conditional on evidence atoms when the factor graph is a tree or a forest, and approximate
marginals if the factor graph has cycles. LBP proceeds by alternating the passing of messages
between variable (ground atom) nodes and their neighboring factor (ground clause) nodes
(as shown in Figure 2.3).

The message from a variable Xj to a factor fi is:

µXj→fi
=

∏
fk∈FXj

\{fi}
µfk→Xj

(2.9)

The message from a factor fi to variable Xj is:

µfi→Xj
=
∑
X1

..
∑

Xj−1

∑
Xj+1

..
∑
Xl

fi(X1, .., Xj−1, Xj, Xj+1, ..Xl)
∏

Xk∈Xfi
\{Xj}

µXk→fi

 (2.10)

The messages are frequently initialized to 1, and the unnormalized marginal of a single
variable Xj can be approximated by computing a coarse geometrical average of its incoming

21

Figure 2.3 A depiction of the LBP’s message-passing process on a simple factor graph consists
of four variables {X1, . . . , X4} and four factors {f1, . . . , f4}. It shows how LBP passes two
types of messages: from variables to factors (in red) and from factors to variables (in blue).

messages4:
βXj
∝

∏
fi∈FXj

µfi→Xj
(2.11)

While there are different schedules for passing messages in graphs with loops, one of the most
commonly used is synchronous scheduling, wherein all messages are simultaneously updated
by using the messages from the previous iteration.

Now consider the atoms that we are interested in as a query (SBib(C1, C1), SBib(C2, C1),
SBib(C1, C2), and SBib(C2, C2)) on the factor graph represented in Figure 2.2. Remarkably,
these query atoms are involved in many cycles. This emphasizes, at least theoretically, the
existence of more than one local minimum (or fixed point) which raises the threat of non-
convergence (Limitation 1). In addition, six of these cycles (i.e., those represented with
dashed orange lines) such as SBib(C1, C1) - f5 - SBib(C2, C1) - f4 - SBib(C1, C2) have no
evidence (i.e., all the atoms in the cycles are queries). Therefore, the double counting problem
is expected to happen (Limitation 1). Moreover the six cycles contain only hard clauses, which
hinders the process of smoothing out the messages to converge to accurate results (Limitation
2). These two limitations of LBP can be addressed by using our GEM-MP inference approach
(as will be explained in Chapter 4).

4i.e. Note that a geometrical average of values {ai}n
i=1, is computed as n

√∏
i ai. Without n

√
., it becomes

a coarse geometric average because the result would be an extreme value.

22

2.3.2 Markov Chain Monte Carlo Methods

Gibbs sampling

Gibbs sampling (Gibbs) (Geman and Geman, 1984) is a commonly used Markov Chain Monte
Carlo (MCMC) algorithm for computing marginals. The applicability of Gibbs relies on the
ease with which samples can be drawn from the conditional distributions. Each conditional
distribution is a function defined over states of the nodes in the Markov blanket. In MRFs,
the Markov blanket compromises the set of neighboring nodes. Starting from a random initial
state for the Markov chain, the Gibbs procedure proceeds by applying a set of sampling steps
for computing marginals until convergence or exceeding the maximum number of samples.
At each step, Gibbs replaces the value of one of the variables by a value drawn from the
distribution of that variable conditioned on the values of the other remaining variables. We
repeat this step either by cycling through the variables in a specific order or by selecting
them at each step at random from some distribution.

Consequently, the basic idea of Gibbs is that after creating a series of samples according
to the decomposed joint probability distribution, the proportion of such samples contain-
ing a specific variable Xj assigned a value can be used to estimate the variable’s marginal
probability. Note that as the series length approaches infinity, the central limit theorem can
guarantee that our estimate approaches the true marginal distribution. However, it is known
that MCMC techniques, including Gibbs, require an irreducible sample space guaranteeing
“ergodicity”, which is non-trivial (Andrieu et al., 2003) and could be limited in the presence
of determinism (Poon and Domingos, 2006). In addition, MCMC methods essentially can
take random walks biased toward the most likely portions of the search space over samples,
and this, generally speaking, makes them very similar to local search algorithms when solving
inference problems.

MC-SAT

MC-SAT (Poon and Domingos, 2006) is designed to overcome the limitation of irreducible
sampling in MCMC due to determinism. By adding an auxiliary variable uk for each factor
fk, MC-SAT applies slice sampling to Markov logic by using SampleSAT (Wei et al., 2004)
to sample a new state given the auxiliary variables.

Algorithm 1 gives the pseudo-code for MC-SAT. The algorithm starts from an initial state
that is found by applying a satisfiability solver to the set of all hard clauses in the network
(if this set is unsatisfiable, the output of MC-SAT is undefined). Then it applies a set of
iterative sampling steps until convergence or exceeding the maximum number of samples. At

23

each iteration, if fk is not satisfied by the current state, uk is drawn uniformly from [0, 1], and
there is no requirement that it will be satisfied in the next state. If fk is satisfied, uk is drawn
uniformly from [0, ewk], and with probability 1 − e−wk it will be greater than 1, in which
case the next state must satisfy fk. Thus, sampling all the auxiliary variables determines a
random subset (say M) of the currently satisfied clauses that must also be satisfied in the
next state. We then take as the next state a uniform sample from the set of states that
satisfy M . Notice that the set (M) is never empty, because it always contains at least the
current state.

Algorithm 1 MC-SAT

1: X (0) ← Satisfy (Hard clauses);
2: for i← 1 to num_samples do
3: M ← ∅;
4: for all fk ∈ hard clauses satisfied by X (i−1) do
5: with probability 1− e−wk add fk to M ;
6: end for
7: Sample X (i−1)∼ USAT(M); //call SampleSAT
8: end for

MC-SAT provides accurate marginals in the presence of determinism compared to Gibbs.
However, MC-SAT relies on SampleSAT to obtain nearly uniform samples, and it is known
that SampleSAT may fail to find a satisfying solution (Wei et al., 2004), when in fact there
is always one. Thus, in practice, MC-SAT is still not guaranteed to be sound in the presence
of determinism.

2.3.3 Local Search Methods

A major class of methods that have been applied to MAP inference are methods that ex-
plore the space of assignments, searching for a high-weight (or low-cost) assignment. In this
context, local search became the predominant method for solving MAP inference.

Furthermore, Park (2002) showed that MAP inference corresponds to an instance of solv-
ing the weighted maximum satisfiability problem. Hence, taking into account the logical
structures of PGMs such as those instantiated as MLNs, MAP inference can be carried out
efficiently using a weighted satisfiability solver like MaxWalkSAT (Kautz et al., 1997), which
is currently the state-of-the-art MAP inference algorithm for MLNs (Sarkhel et al., 2014).

24

MaxWalkSAT

The MaxWalkSAT (Kautz et al., 1997) algorithm extends WalkSAT (Selman et al., 1993)
to the weighted satisfiability problem, where each clause has a weight and the goal is to
maximize the sum of the weights of satisfied clauses. (Systematic solvers have also been
extended to weighted satisfiability, but tend to work less well.)

Algorithm 2 gives a pseudo-code for MaxWalkSAT. The algorithm starts from a random
initial state, then it repeatedly performs a stochastic local search by picking an unsatisfied
clause at random and flipping the truth value of one of the atoms in it. With a certain
probability, the atom is chosen randomly; otherwise, the atom is chosen to maximize the sum
of satisfied clauses’ weights when flipped. MaxWalkSAT can solve problems with hundreds
of thousands of ground atoms in a fraction of a second, and hard ones in minutes. However,
it cannot distinguish between an unsatisfiable CNF and one that takes too long to solve.

Algorithm 2 MaxWalkSAT.

Input: weighted clauses, max flips, max tries, target, p
Output: MAP solution XMAP

1: vars ← variables in weighted clauses
2: for i← 1 to max tries do
3: X ← a random truth assignment to vars
4: cost ← sum of weights of unsatisfied clauses in X
5: for i← 1 to max flips do
6: if cost ≤ target then
7: Return XMAP

8: end if
9: f ← a randomly chosen unsatisfied clause

10: if U(0, 1) < p then
11: X ← a randomly chosen variable from f
12: else
13: for each variable X in f do
14: compute DeltaCost(X)
15: end for
16: XMAP ← X with lowest DeltaCost(X)
17: end if
18: X ← X with XMAP flipped
19: cost ← cost + DeltaCost(X)
20: end for
21: end for

25

2.4 Constraint Satisfaction Techniques for Analyzing Constraint Problems

Starting from describing the constraint satisfaction problem (CSP) and Boolean satisfiability
problem (SAT), our goal here is to state the conjecture of the clustering phenomenon —
which is also known as phase transition — and illustrate its effects on the solution space of
SAT problems within the transition area. Taking this as a motivation, we will next explain
survey propagation as a successful application for SAT in the presence of the clustering
phenomenon.

2.4.1 Constraint Satisfaction Problems

Definition 8. (Rossi et al., 2006, Chapter 2)[Constraint Satisfaction Problem (CSP)] A
CSP is a triple

〈
X ,D, C

〉
where X is an n-tuple of variables X =

〈
X1, . . . , Xn

〉
, D is a

corresponding n-tuple of domains D =
〈
D1, . . . , Dn

〉
such that Xj ∈ Dj, and C is a m-

tuple of constraints C =
〈
c1, . . . , cm

〉
. A constraint ci is a pair

〈
RXci

,Xci

〉
where RXci

is a
relation on the variables Xci

= scope(ci). A solution to the CSP is a complete assignment
(or a possible world) s =

〈
v1, . . . , vn

〉
where vj ∈ Dj and each ci ∈ C is satisfied in that RXci

holds on the projection of s onto the scope Xci
. S denotes the set of solutions to the CSP.

Constraint Programming (CP) is an appropriate paradigm to model and solve CSPs. In CP,
solving a CSP requires a combination of constraint propagation (or constraint filtering) and
search. Constraint propagation (see Rossi et al., 2006, Chapter 3) is the process of removing
inconsistent values in the domains that violate some constraint in C. One form of constraint
propagation is to apply generalized arc consistency for each constraint c ∈ C until a fixed
point is reached.

Definition 9 (Generalized arc Consistency (GAC)). A constraint c ∈ C which is defined
over the subset of variables Xc, is generalized arc consistent (GAC) if and only if for each
variable Xj ∈ Xc and for each value d ∈ DXj

in its domain, there exists a value dk ∈ DXk
for

each variable Xk ∈ Xc \ {Xj} that constitutes at least one valid tuple (or valid local entry)
that satisfies c.

We can extend this CSP formalism to Weighted CSPs (see Rossi et al., 2006) to include
soft constraints. This, too, requires extending GAC to soft generalized arc consistency (soft
GAC) to tackle the soft constraints (see Hoeve et al., 2006). At a high level, one can view
GAC (or soft GAC) as a function that takes any variable Xj ∈ X and returns all other
consistent variables’ values that support the values of Xj with respect to the constraints
c ∈ C. For instance, in our example of Cora in Figure 2.2, applying GAC to variable

26

(SBib(C1, C1) = true) with a hard constraint (or clause) f6 : ¬SBib(C1, C1)∨¬SBib(C1, C2)
implies maintaining only the truth value “false” in the domain of SBib(C1, C2). This is
because the only valid local entry of f6 that supports SBib(C1, C1) = true is {(true, false)}.

We can also apply GAC in a probabilistic form. For instance, probabilistic arc consistency
(pAC) (Horsch and Havens, 2000) performs BP in the form of arc consistency to compute the
relative frequency of a variable taking on a particular value in all solutions for binary CSPs
(see Horsch and Havens, 2000, for more details). pAC can be summarized as follows. We
start by initializing all variables to have uniform distributions. At each step, each variable
stores its previous solution probability distribution, then incoming messages from neighbour-
ing variables are processed, and the results are maintained locally so that there is no need
to send messages to all neighbours when no changes are made in the distribution. The new
distribution is approximated by multiplying all information maintained from the recent mes-
sage received from all neighbours. If the variable’s solution distribution has changed then a
new message is sent to all neighbours.

Now, as aforementioned, in SRL models, we convert formulas to a typical clausal form (CNF).
This indeed makes the Boolean satisfiability (SAT) problem of interest to our work in this
thesis. SAT problems can be thought of as a certain form of the CSP (i.e., a special case of
constraint satisfaction).

Definition 10 (Boolean Satisfiability (SAT)). A general Boolean satisfiability (SAT) problem
is a constraint satisfaction problem where all variables have the Boolean domain D = {−,+}.
A SAT problem in conjunctive normal form (CNF) represents a conjunction of clauses, with
each clause representing a disjunction of literals, and a literal represents either a variable or
its negation. A SAT can also be called a “theory”, as suggested by its interpretation as a
set of rules constraining any model of some system (Hopcroft et al., 2006). Given a CNF
formula, the SAT is satisfiable if we determine a solution (i.e., a truth assignment that satisfy
the CNF formula).

Further, an important property of any problem in CNF is its density. In the world of satisfi-
ability, the density is determined by computing the clause-to-variable ratio. It is commonly
used to measure, intuitively, the constrainedness of a problem. As it will be explained in the
next subsection, when the density is high there are probably few solutions that are apart
from each other, and when it is low the solutions are likely numerous and easy to find.

27

2.4.2 Clustering Phenomenon and Geometry of the Solution Space

For clarity, we will explain the clustering phenomenon for random SAT problems. The clus-
tering phenomenon of these problems has been widely explored in the literature (Semerjian
and Monasson, 2003; Biroli et al., 2002; Altarelli et al., 2009). Let us use Γ = m/n to denote
the density (or clause-to-variable ratio) of a SAT instance, where m and n are the number
of clauses and variables defining the problem, respectively.

Hence, consider the likelihood that a random SAT instance is satisfiable, given varying values
of Γ. If the clause-to-variable ratio is extremely low, then the problem is under-constrained
and very likely to be satisfiable; further, it is presumable that a solver of almost any design
will be able to find a solution easily. Likewise, if Γ is extremely high then we can presume
not only that the problem is likely to be unsatisfiable, but also that solvers will be able
to make this determination efficiently. Specifically, as Γ increases so does the probability
that the problem is unsatisfiable–but, the transition is not gradual. Rather, much as water
abruptly becomes ice at a certain temperature point, random SAT instances undergo a phase
transition in satisfiability across values of Γ. It was observed that there is a jump in the
probability of producing an unsatisfiable problem, around the neighborhood of Γ = 4.267
for random k-SAT problems (Friedgut, 2005) – a k-SAT problem restricts SAT such that
each clause disjoins exactly k literals. A standing conjecture in theoretical computer science
and statistical physics is that for a given k, this phase transition occurs at a fixed clause-to-
variable ratio Γ, for sufficiently large n.

The clustering phenomenon has attracted interest as an explanation for the performance
limits of various SAT-solving approaches. The explanation is in terms of the geometry of
solution space, where we consider the set of solutions to a satisfiable problem in terms of the
Hamming distances between the complete assignments.

As depicted in Figure 2.4, we can see various thresholds occurring just below the unsatis-
fiability threshold Γu, corresponding to abrupt changes in the geometry of the solution set,
along with limits on the applicability of various solving methodologies. For extremely low
values of Γ, almost any complete assignment is a solution or near-solution — thus solutions
are likely to cover the whole space of assignments and to be tightly interconnected, forming
a single cluster. Accordingly, any conceivable and reasonable solving technique should find
a solution relatively quickly. As Γ rises beyond a “submodularity” threshold ΓSub, the space
of solutions narrows; but all solutions are still likely lie, for the most part, in a single large
cluster of solutions and near-solutions. Thus, local search algorithms can continue to do well
in this region because near-solutions are very likely to be near actual solutions. And as for
marginal estimation, BP is still likely to do well –– it is unlikely to build its estimates from

28

Figure 2.4 A notional depiction of the clustering phenomenon. It shows how the space be-
tween solutions varies as Γ increases. Solutions are depicted as solid circles, while unsatisfying
assignment or near-solution (which satisfy almost all, but not all, of the clauses) appear as
fainter circles. Within the limitations of a two-dimensional representation, the placement
of assignments represents their Hamming distances. Thus, two assignments are considered
adjacent if they have very small Hamming distance (e.g., they differ by a single variable). In
addition, dotted outlines group adjacent assignments into arbitrary clusters of interest, while
solid outlines group assignments into metastable clusters (Kilby et al., 2005; Chavas et al.,
2005), which have no solutions. Finally, under each phase transition of the solution space,
the solving technique that is widely used in the literature to find a solution relatively quickly,
is indicated.

solution-impoverished regions of the space. The approximate location of the submodularity
threshold for k-SAT is Γ = 3.86 (Braunstein et al., 2005).

Importantly, as Γ continues to increase, but still before reaching unsatisfiability, the space
of solutions has been observed to shatter into an exponentially large number of solution
and near-solution clusters, where each such cluster is in turn exponentially small and where
clusters that contain exclusively near-solutions exponentially outnumber those that contain
solutions (Semerjian and Monasson, 2003; Chavas et al., 2005; Mann and Hartmann, 2010).
This impedes both local search and BP alike. In the first case, there are exponentially many
local optima to entrap the search process, and in the latter, marginals will include information
about exponentially many near-solution clusters, instead of solution clusters.

At this time, there is no known way to calculate Γ for arbitrary CSP instances, or to even
express the threshold in general. However, there exists a proof for a strong version of the gen-

29

eral conjecture that proves the existence of a clustering phenomenon (Mann and Hartmann,
2010; Friedgut et al., 1999; Hartmann and Weigt, 2006).

The survey propagation (SP) model described in the next section was designed to extend the
feasibility of marginal estimation into the shattering region, and has done so with good success
(Braunstein et al., 2005). The main idea of SP is to compute marginals over generalized
assignments that represent solution clusters. In this context, Maneva et al. (2007) proposed
the concept of core as a combinatorial representative of valid complete assignments of a
cluster.

Definition 11. (Maneva et al., 2007) A core is a valid complete assignment X ∈ {0, 1, ∗}n

that satisfies all the clauses, and contains no unconstrained variables equal to 0 or 1.

When a variable takes a fixed value 0 or 1 in the core X, then it is said to be frozen with
respect to the core X (i.e., fixed in all the valid assignments of the cluster represented by
core X) (Achlioptas and Ricci-Tersenghi, 2009). Otherwise it is unfrozen. A frozen variable
is also called a backbone variable (Kilby et al., 2005), and it can be extended for optimization
problems (Slaney and Walsh, 2001).

Definition 12. (Achlioptas and Ricci-Tersenghi, 2009) Cluster backbones refer to the set of
frozen variables in a core X. In other words, it is the set of backbone variables in all valid
complete assignments (i.e., solutions) within the cluster represented by X (Kroc et al., 2008).

While a number of incomplete accounts attempt to explain why SP continues to work well
beyond the shattering threshold (Battaglia et al., 2004; Maneva et al., 2007; Chieu and Lee,
2009), perhaps the most compelling explanation is that solution clusters in this region tend
to have many frozen variables (or cluster backbones), and the more sophisticated survey
propagation model is more sensitive to this fact.

2.4.3 The Survey Propagation Model of Satisfiability

From the message-passing perspective, SP (Maneva et al., 2007) can be viewed as a LBP
algorithm on a factor graph that defines non-zero probabilities over cores (Maneva et al.,
2007) representing solution clusters. Unlike standard BP, SP passes the messages as follows:

• Each factor fi ∈ F passes a survey message containing a real number ηfi→Xj
to each

of its neighboring variables Xj in the factor graph. This survey is the probability that
the factor fi warns the variable Xj against violating it. That is, if the survey message
is close to 1, then the factor fi is warning the variable Xj against taking a value that

30

will violate the factor; if the survey is close to 0, then the factor fi does not care about
the value taken by Xj since it is satisfied by other variables in Xfi

\ {Xj}.

• Each variable Xj sends to a neighboring factor fi, a message [µsXj→fi
, µuXj→fi

, µ∗Xj→fi
],

where the three components of the message correspond to the probability that Xj will
be warned by other factors to take a value that will satisfy fi, violate fi, or freely take
any value (i.e., joker).

2.4.4 Decimation Based on Survey Propagation

As was shown above in section 2.4.3, the variables’ marginals obtained from SP correspond to
surveys over the clusters in the solution space. These marginals in fact provide information
about the fraction of clusters in which each variable is free or frozen (Chieu et al., 2007;
Braunstein et al., 2005; Battaglia et al., 2004). Thus one efficient way to exploit the SP’s
marginals (also called biases) is to apply a marginalization-decimation algorithm based on
SP (Braunstein et al., 2005; Kroc et al., 2009), which can be summarized in the following
steps:

1. Run SP on the underlying model.

2. Extract the fraction of frozen variables with the largest biased marginals, and fix them
to their most likely values.

3. Simplify the model, and return to Step 1.

4. Once we obtain all the biased variables based on a pre-specified threshold, the Walk-
SAT algorithm is applied to find the remainder of the assignment (if there are still some
variables not assigned).

In this process, the results of the initial phases of the decimation are partially assigned to
variables, which determine a particular solution cluster. So the goal of the initial phases is
really to use SP to find a cluster. Once the cluster is found, the problem is relatively easy to
solve. Thus an assignment to the rest of the variables can be found using any conventional
algorithm that works well within a given cluster such as the Walk-SAT algorithm (Kautz
et al., 1997; Selman et al., 1993). This mechanism has shown to be one of the best incomplete
solvers in solving hard k-SAT instances efficiently (Chieu et al., 2007; Braunstein et al., 2005;
Battaglia et al., 2004; Kroc et al., 2009).

31

2.5 Variational Approximation Methods

To derive a method with enhanced algorithmic behavior and theoretical semantics for LBP,
we shall be interested in both variational EM (Beal and Ghahramani, 2003; Neal and Hinton,
1999) and variational mean-field (Saul et al., 1996; Koller and Friedman, 2009). Thus, let
us review these techniques in a setting which is suitable for the purpose of our GEM-MP
presented in chapter 4.

2.5.1 Variational Expectation Maximization

Suppose that we have a model structureM with parameters θ, observed dataO = {O1, . . . , On}
and hidden variables H = {H1, . . . , Hn}. If we assume a prior distribution over parameters
P (θ|M) conditional on M then the model defines a log marginal likelihood of the form
P (H|M). By introducing distributions over both hidden variables, qH(H) and parameters,
qθ(θ), we can leverage Jensen’s inequality to obtain a lower bound FM on the log marginal
likelihood with the following form:

FM =
∑
θ

qθ(θ)qH(H) log P (O,H, θ|M)
qθ(θ)qH(H) (2.12)

The role of the variational Expectation Maximization (EM) is that it serves as an iterative
optimizing algorithm for the lower bound FM in Eq. (2.12) (i.e., estimating the parameters
from the observed data in the presence of hidden variables) by performing the following
updates:
VBE-step:

q(t+1)
Hi

(Hi) = Z−1
Hi

exp
[∑

θ

q(t)
θ (θ) logP (Oi,Hi, θ|M)

]
(2.13)

where q(t+1)
H (H) is approximated as:

q(t+1)
H (H) =

∏
i

q(t+1)
Hi

(Hi) (2.14)

VBM-step:

q(t+1)
θ (θ) = Z−1

θ P (θ|M) exp
[∑
H
q(t+1)
H (H) logP (O,H|θ,M)

]
(2.15)

The derivations and proofs for Eqs. (2.12), (2.13), (2.14), and (2.15) are given in more detail in
(Beal and Ghahramani, 2003). Now, at a high level one can see variational EM as two iterative

32

steps for maximizing the lower bound FM: the VBE-step uses information about parameters
to maximize the expectation of the log marginal likelihood with respect to q(t+1)

H (H), and
the VBM-step takes advantage of the new obtained information about hidden variables to
maximize the expectation of the log marginal likelihood with respect to q(t+1)

θ (θ). In addition,
one can simply reduce variational EM to the ordinary EM by restricting the parameter
estimation in the M-step to be a point estimation that involves re-estimating θ (see Beal and
Ghahramani, 2003, for more detail).

2.5.2 Variational Mean Field approximation

Variational Mean Field (MF) (Koller and Friedman, 2009) is a variational algorithm that
approximates an intractable distribution q(X) with a fully factorized distribution as follows:

q(X) =
∏
Xj∈X

q(Xj) (2.16)

where the q(X) distribution is selected to minimize the distance to P (X), which is the
true (or exact) joint probability. The distance is measured as the Kullback-Leibler diver-
gence KL(q(X)||P (X)). To reach a local minimum, MF updates the marginal distributions
{q(Xj)}Xj∈X as follows (see Koller and Friedman (2009), for more details):

q(Xj) = 1
λj

exp
 ∑
fi∈F :Xj∈Xf

E∼q(Xj)[log q(Xfi
\ {Xj}, Xj)]

 (2.17)

Where λj is normalizing constant and E∼q(Xj) is the expectation of factor f in which Xj

appears. According to MF’s updating rule in Eq. (2.17), the marginal distribution q(Xj) of
each variable Xj has to be consistent with the expectation of the factors fi ∈ F that involve
Xj, and the resulting value of the marginal q(Xj) is the optimal value given the choice of
all other marginals of its consistent variables values in fi. This intuitively means that MF
updates the marginal distribution q(Xj) using the set of marginals of other variables’ values
that are locally consistent with respect to the factors that involve Xj. At a high level, this
could be seen as a kind of application of local consistency enforcing (such as GAC) to obtain
those consistent variables’ values required for updating the marginal of Xj. In chapter 4,
we take advantage of this relationship between MF and GAC to develop a new probabilistic
GAC, denoted as (pGAC).

33

CHAPTER 3 LITERATURE REVIEW

In this chapter, we discuss relevant work to our research in this thesis. Three main topics were
selected for the literature review. First, in Section 3.1, we examine various significant infer-
ence methodologies for computing marginals using message-passing. Second, in Section 3.2,
we discuss previous important work that integrates constraint satisfaction techniques with
message-passing to improve the accuracy and scalability of marginal inference. Finally, in
Section 3.3, we survey some worthy work related to improving MAP inference.

3.1 Message-Passing Techniques for Computing Marginals

Belief propagation (BP) was developed by Pearl (1988) as an inference procedure for singly
connected belief networks. Pearl was the first to observe that running LBP leads to incorrect
results on multi-connected networks. Conversely, several works (such as Mceliece et al., 1998;
Frey and MacKay, 1998) have shown success with LBP on loopy networks for turbo code
applications. Further, Murphy et al. (1999) reported that LBP can provide good results on
graphs with loops. These promising results shed light on evaluating the performance of BP
in other applications and suggest the value of a closer study of its behavior to understand
the reasons for this success. Accordingly, several formulations of LBP have appeared, such as
the direct implementation in a factor graph by Kschischang et al. (2001), tree-weighted BP
(Wainwright et al., 2003) and the generalized cluster graph method of Mateescu et al. (2010).
All such formulations were inspired by the admirable analysis of Yedidia et al. (2003) who
proved a relationship between LBP and Bethe approximation such that the local minima
of Bethe free energy are the fixed points of LBP. Complementing this, further analysis has
also demonstrated that LBP is related to variational approximations (Yedidia et al., 2005).
This pioneering work outlined new research directions for a deeper understanding of and
improvements to LBP.

3.1.1 Studying Message-passing’s convergence

The first area of research is the investigation of the convergence of LBP by studying the
sufficient conditions to ensure the existence and the uniqueness of its fixed point. Early on,
Heskes (2004) pointed out that if a graph involves a single cycle, then we have a unique fixed
point, and the convergence of LBP can be all but guaranteed. Supplementing Heskes (2004),
Yedidia et al. (2005) showed that if a factor graph has more than one cycle then the convexity

34

of Bethe free energy is violated and thus, the uniqueness of LBP’s fixed points is also violated.
Recently, Shi et al. (2010) discussed new sufficient conditions for the convergence of LBP by
deriving uniform and non-uniform error bounds on the messages. But this research direction
ignores an important observation made by Heskes (2002):

“Still, loopy belief propagation can fail to converge, and apparently for two dif-
ferent reasons. The first rather innocent one is a too large step size, similar to
taking a too large “learning parameter” in gradient-descent learning”

Drawing on this observation, we put forth our first research hypothesis which is: updating
the marginals such that we do not cross the nearest local minimum (or fixed point) could
alleviate the threat of non-convergence of LBP.

Another mainstream work attempts to derive new types of LBP for approximating inference
by directly optimizing the Bethe energy functional, such as the double loop algorithm (Yuille,
2001). However, the main disadvantage of this algorithm is that it requires solving an opti-
mization problem at each iteration, which results in a slower convergence. Another class of
algorithm is known as cluster-graph BP, which runs LBP on sub-trees of the cluster graph.
These algorithms exhibit faster convergence and introduce a new way of characterizing the
connections between LBP and optimization problems based on the energy functional. Con-
sequently, several works appeared which generalized the class of LBP by introducing variants
of the energy functional that improve the convergence of LBP. For instance, Wainwright and
Jordan (2003) and Nguyen et al. (2004) proposed a convexified free energy that provides an
upper bound on the partition functions. But the algorithms that have been built on this
energy functional still cannot guarantee the convergence. Recently, alternative algorithms
have been introduced to guarantee the convergence for such energy functionals (Hazan and
Shashua, 2008; Meltzer et al., 2009; Globerson and Jaakkola, 2007; Hazan and Shashua,
2010).

At a high level, our GEM-MP shares with the previously mentioned approaches the
derivation of new variational inference that minimizes a free-energy functional. But
GEM-MP has different characteristics that enable it to guarantee convergence by mini-
mizing a KL divergence between an approximation to the true posterior distribution of
the model and an approximation at each step when updating marginals such that it never
overshoots the local minimum.

35

3.1.2 Damped Message-passing

Another traditional research area to handle non-convergence has involved dampening the
marginals (see Koller and Friedman, 2009) in order to diminish oscillation. However, in
many cases, the dampening causes LBP to converge but often yields a poor quality result
(Mooij and Kappen, 2005). This is because the correct results are not usually in the average
point (Murphy et al., 1999). The second track of this research direction is to alleviate double
counting by changing the schedule of updating messages (e.g., sequentially on an Euler path,
as per Yeang (2010), residual BP, as per Elidan et al. (2006), among others) besides adapting
the initialization of the marginals (e.g., restart with different initializations, as per Koller
and Friedman (2009)). However, this cannot guarantee convergence since the algorithm still
runs the risk of overshooting the nearest local minimum.

A key of the approach of GEM-MP is to avoid such risks by compelling LBP to never
overshoot the nearest local minimum in the marginal space.

3.1.3 Re-parameterized Message-passing

More recently, Smith and Gogate (2014) introduced a new approach aimed at dealing with
determinism more effectively. The idea of this approach is to re-parameterize the Markov
network by changing the entry in a factor that has zero to any non-negative real value in
such a way that the LBP algorithm converges faster.

Our GEM-MP also addresses the problem of determinism by improving message-passing
inference to deal with determinism and cycles more effectively, but our approach is differ-
ent being rooted in both variational techniques and leveraging generalized arc consistency.

3.1.4 Message passing and variational methods

Another research area combines message passing with other variational methods to produce
new types of LBP that can guarantee convergence. For example, Winn and Bishop (2005)
presented variational message passing as a way to view many variational inference techniques,
and it represents a general purpose algorithm for approximate inference. This algorithm
shows great performance when it applies to conjugate exponential family models network.
Later on, Weinman et al. (2008) proposed a sparse variational message passing algorithm to
dramatically accelerate the approximate inference needed for parameter optimization related
to the problem of stereo vision. Recently, Dauwels et al. (2005) proposed a generic form of
the structure variational message passing and investigated a message-passing formulation of
EM.

36

Our GEM-MP method can be seen as akin to these message-passing inference meth-
ods. But a basic aspect of GEM-MP is the exploitation of ideas from CS to handle the
challenges stemming from determinism.

3.1.5 Scalable Message Passing

Another promising research area that has been recently explored seeks to improve the scal-
ability of inference on large probabilistic networks. Here, mainstream work attempts to
exploit some structural properties in the network like symmetry (see Ahmadi et al., 2013),
determinism (see Papai et al., 2011; Ibrahim et al., 2015), sparseness (see Poon et al., 2008),
and type hierarchy (see Kiddon and Domingos, 2011) to scale Message-passing inference.
For instance, Lifted Inference either directly operates on the first-order structure or uses the
symmetry present in the structure of the network to reduce its size (e.g., Ahmadi et al., 2013).
In this context, the key idea is to deal with groups of indistinguishable variables rather than
individual variables. Poole (2003) was one of the first to show that variable elimination can
be lifted to avoid propositionalization. This has been extended with some lifted variants of
the algorithm proposed by De Salvo Braz et al. (2005) and Milch et al. (2008). Subsequently,
Singla and Domingos (2008) proposed the first lifted version of LBP, which has been extended
by Sen et al. (2009), and generalized with the emergence of the color message-passing algo-
rithm introduced by Kersting et al. (2009) for approximating the computational symmetries.
Subsequently, it was shown by Gogate and Domingos (2011) that to avoid dissipating the
capabilities of first-order theorem proving, we have to take into considerations the logical
structure. Based on that, lifted variants of weighted model counting have been proposed by
Gogate and Domingos (2011), meanwhile variants of lifted knowledge compilation such as
the bisimulation-based algorithm were introduced by Van den Broeck et al. (2011). Later
on, it was observed that in some cases the constructed lifted network can itself be quite
large, making it very close in size to the fully propositionalized one, and yielding no speedup
by lifting the inference. The interesting argument proposed by Kersting (2012) concludes
that the evidence problem could be the reason: symmetries within models easily break down
when variables become correlated by virtue of depending asymmetrically on evidence and
thus lifting produces models that are often not far from propositionalized ones, diminishing
the power of lifted inference. Thus, one can obtain better lifting by performing shattering as
needed during BP inference such as anytime BP proposed by De Salvo Braz et al. (2009), or
exploit the model’s symmetries before we obtain the evidence as demonstrated by Bui et al.
(2012), or shattering a model into local pieces and then iteratively handling the pieces inde-
pendently and re-combining the parameters from each piece as explained in Ahmadi et al.
(2013). Recently, Gogate et al. (2012) show that the evidence problem with lifting infer-

37

ence can be solved when applied to importance sampling algorithms by using an informed
distribution derived from a compressed representation of MLN.

Our GEM-MP approach is different from the above lifted-based message passing algo-
rithms being built on a propositional basis for improving the inference’s accuracy, but
it can be easily incorporated with their benefits for lifting its inference. In addition,
our PR scaling strategy (Ibrahim et al., 2015) is also different from those aforemen-
tioned algorithms because it leverages determinism (i.e., hard constraints) presented in
the structure of the network to reduce its size, but it also can be used in conjunction with
other prominent methods for scaling inference (as it will be shown in Chapter 6, where
we use PR with lazy inference).

3.2 Integrating Constraint Satisfaction techniques with Message Passing

It remains unclear if there is a relationship between determinism and the uniqueness of
fixed points of LBP. However, it is observable that applying LBP on graphical models with
determinism and cycles is more likely to oscillate or converge to wrong results.

3.2.1 Constraint Propagation Based Methods

Horsch and Havens (2000) proposed an algorithm that is a generalization of arc consistency
used in constraint reasoning, and a specialization of the LBP used for probabilistic reasoning.
The idea was to exploit the relationship between LBP and arc consistency to compute the
solution probabilities, which can be then used as a heuristic to guide constructive search
algorithms to solve binary CSPs. The bucket-elimination procedure was proposed by Dechter
and Mateescu (2003). However, such a procedure has a time and space complexity that is
exponential in the tree-width of the graph, which makes it inapplicable to large domains.
Alternatively, Mateescu et al. (2010) presented approaches that are based on constructing a
relationship between LBP and constraint propagation techniques. One idea underlying these
approaches is to transform the loopy graph into a tree-like structure to alleviate the presence
of cycles, and then to exploit constraint propagation techniques to tackle the determinism.

Building on these ideas we explore the second research hypothesis: constraint satisfaction
techniques might be able to help address the challenges resulting from determinism in
the graphical models.

A recent extension of such approaches is the combination of LBP, constraint propagation, and
expectation maximization to derive an efficient heuristic search for solving both satisfiability

38

problems (see Hsu et al., 2008, 2007) and constraint satisfaction problems (see Le Bras et al.,
2009). Although these algorithms perform well in finding solutions, they apply only to
graphical models that have no probabilistic knowledge.

In contrast, our GEM-MP method is able to handle probabilistic knowledge.

3.2.2 Survey Propagation Based Methods

In a complementary context, another fruitful area of research is how to relate Boolean sat-
isfiability and CSP methods to local search for marginal inference, most notably survey
propagation (Braunstein et al., 2005). The SP algorithm has shown a surprising ability to
accurately solve extremely large and hard SAT instances close to the satisfiability threshold
(Braunstein et al., 2005; Kroc et al., 2009). In an attempt to more fully understand the
success of SP, it was first shown that SP can be viewed as belief propagation (BP) on a
factor graph defined over solution clusters represented by covers having positive probability
(Braunstein and Zecchina, 2004). Subsequently, SP has been generalized (Maneva et al.,
2007) to work on extended MRFs, where solution clusters can be elegantly represented as
cores having positive probability. It has also been extended to an algorithm called SP-y
(Battaglia et al., 2004) to handle the maximum satisfiability (Max-SAT) problem. Recently,
relaxed SP (Chieu et al., 2007) has been introduced as an extension to the SP and SP-y for
weighted satisfiability. However, the applicability of these approaches to complex relational
problems is still limited.

Our WSP-χ approach can be seen as akin to these SP-based inference methods. But
WSP-χ is different in being built on different re-parameterized extended factor graphs
that are rooted in relational techniques and used to address relational MAP inference.

3.3 Solving Maximum-A-Posteriori Inference Problems

Developing accurate and scalable MAP inference in probabilistic graphical models (PGMs) is
a key challenge that would affect a wide range of applications in machine learning, constraint
satisfaction, information theory, computational biology, and other sub-disciplines of artificial
intelligence. The iterbi algorithm (Forney, 1973) was first proposed to address MAP inference
— in hidden Markov models — for decoding applications. A generalization was then proposed
to other types of PGMs in other applications (Pearl, 1988), and extended by the appearance
of a clique tree algorithm (Lauritzen and Spiegelhalter, 1988). Since then, several pioneering
research directions in AI have been explored for improving MAP inference.

39

3.3.1 Systematic and Non-Systematic Search Methods

The first research area uses the fact that MAP inference can be cast as the task of minimizing
an energy function — in computer vision applications (Szeliski, 2006), the energy function
defined over terms enforces some kind of spatial coherence; another one penalizes solutions
that are inconsistent with the observed data. Under this line of analysis, hill-climbing meth-
ods such as iterated conditional modes (ICM) (Besag, 1986), or simulated annealing (SA)
(Granville et al., 1994) become directly applicable to solve the MAP inference problem. How-
ever, in practice these algorithms were proven to be inefficient. For example, in computer
vision applications (Szeliski, 2006), this is due to the slowdown that comes from the consid-
erable amount of computation in their early adaptations. Other systematic search methods
such as branch-and-bound have also been applied to solve MAP inference (Marinescu and
Dechter, 2005). However, it is known that the efficiency of these algorithms heavily relies
on both the tightness of the bound used and the branching strategy’s effectiveness; and un-
fortunately, there is no general bounding and branching strategy that performs well for all
MAP problems.

Furthermore, when the PGM features logical structures like those instantiated as SRL models,
finding the MAP solution of the model can be obtained by solving its weighted satisfiability
problem using any satisfiability solver (Huynh and Mooney, 2009). This in fact opens the
way to the use of local search algorithms for MAP inference. For instance, MaxWalkSAT
(Selman et al., 1993) was proposed to tackle the MAP problem in MLNs (Richardson and
Domingos, 2006). However, local search algorithms are non-systematic, and they often come
with no performance guarantees. Additionally, it was observed that if the density of the
underlying graphical model was close to a certain threshold then the search space of MAP
solutions would become clustered (Hartmann and Weigt, 2006; Zhang, 2004; Gomes et al.,
2002; Parkes, 1997; Kambhampati and Liu, 2013). However, none of those approaches took
into consideration the clustering that occurred in the search space when solving the MAP
inference problem, and this makes them vulnerable to getting stuck in a local maximum at
one of the metastable clusters (Kilby et al., 2005; Chavas et al., 2005).

Our WSP-χ approach can serve as a pre-processing step to handle the clustered search
space when solving the MAP problem. Thus it can be used in conjunction with all the
above search algorithms increase the possibility of finding the optimal MAP solution.

40

3.3.2 Message-Passing-Based Methods

Another traditional research area involves the use of message-passing algorithms to tackle
MAP inference. Here the mainstream interest is in max-product loopy BP. From a theoretical
perspective, it was shown that the marginals obtained after the convergence of max-product
BP can be used to derive a MAP solution that is globally optimum for an acyclic network, and
locally optimum for a loopy network (Weiss and Freeman, 2001). Accordingly, parameterized
message passing (Wainwright et al., 2004) has been proposed to obtain beliefs corresponding
to max-marginals. This work then empirically extended by developing a convexified message-
passing algorithm for MAP inference called Tree-reweighted max-product message-passing
(TRW) algorithm (Wainwright et al., 2005). However, TRW does not monotonically increase
its objective function and therefore does not converge in general to accurate results. As a
remedy, a variant of TRW, called TRW-S (Kolmogorov, 2006) — which involved passing
asynchronously — has been proposed to improve the objective monotonically. However,
TRW-S still cannot guarantee convergence to a global optimum since it can get stuck in
local optima. From the optimization perspective, TRW and its variant TRW-S can be in
fact considered the first connection between LP relaxation and message passing algorithms.
This stimulates some other works to extend TRW by using sophisticated LP relaxation
methods. For instance, a general TRW-based approach (Ravikumar and Lafferty, 2006)
has been proposed to iteratively improve the solution by searching the nearest improvements
using a proximal optimization method. However, it was subsequently proven that the use of a
simple LP relaxation (Kumar and Torr, 2008) would produce better (i.e., tighter) relaxation
than the complicated one that is based on a proximal optimization method (Ravikumar
and Lafferty, 2006). Other work has extended TRW to Tree-Reweighted Belief Propagation
(TRBP) that uses the marginals derived from a convex-BP to obtain optimal MAP solutions
(Yanover et al., 2006).

At a high level, our WSP-χ approach shares with the previously mentioned approaches the
derivation of a parameterized BP message passing procedure such that the obtained beliefs
correspond to marginals. However, WSP-χ is different, since its marginals are defined
over max-cores, which are representations of clusters of candidate MAP solutions. In
addition, in WSP-χ, there is a cooling parameter y that plays a similar role to the
temperature parameter in simulated annealing (Granville et al., 1994). This cooling
parameter can be tuned to reduce the strengths of factors. We show empirically how
this greatly improves the convergence of WSP-χ on the associated extended factor graph.
This gives WSP-χ different characteristics that enable it to avoid getting stuck in local
optima and be more likely to convergence to a global optimum.

41

3.3.3 Scalable MAP Methods

In the context of scaling MAP inference, FOVE-P (De Salvo Braz et al., 2006) was proposed
as the first lifted variable elimination, which is a modification of FOVE (De Salvo Braz
et al., 2005) that incorporates partial inversion for lifting MAP inference in SRL models.
Recently, a lifted MaxWalkSAT algorithm (Sarkhel and Gogate, 2013) has been proposed for
MAP inference in Markov logic networks (MLNs). Subsequently, a generalization of lifted
MaxWalkSAT (Sarkhel et al., 2014) has been introduced for lifting MAP inference in MLNs.
However, we could repeal the merit of lifting inference if symmetries break when the variables
become correlated by the virtue of depending asymmetrically on evidence (Kersting, 2012),
since in this case lifted inference becomes close to propositionalized inference. Lazy Inference
is another efficient way to scale MAP inference. Lazy MaxWalkSAT (Singla and Domingos,
2006b) was proposed as the first lazy algorithm for MAP inference in Markov logic networks,
where the sparseness was used to ground the theory lazily for yielding gains in memory and
time. Other work proposed a Cutting Plane Inference (Riedel, 2008) as an efficient and
accurate algorithm for MAP inference. Although CPI avoids grounding the whole MLN, it
works well for some types of MLNs where the separation step of the CPI method returns a
small set of constraints.

Our WSP-χ approach is different from the above scaling algorithms, since it is based
on the use of backbones (or frozen variables) to fix complex parts of the network by
enlarging the evidence database and reducing the set of queries, and thereby simplifying
the network. But it is also orthogonal to their benefits, and thus can be combined with
them (as it will be shown in Section 6.3, where we combine WSP-χ with lazy inference).

42

CHAPTER 4 IMPROVING INFERENCE IN THE PRESENCE OF
DETERMINISM AND CYCLES

In this chapter, our key objective is to bring probabilistic Artificial Intelligence, Machine
Learning and Constraint Programming techniques closer together through the lens of varia-
tional message-passing inference. That is, to address the limitations of LBP, which are due to
the presence of cycles and determinism as discussed in Chapter 1, we introduce Generalized
arc-consistency Expectation-Maximization Message-Passing (GEM-MP), a novel message-
passing algorithm for applying variational approximate inference to graphical models.

We have organized this chapter in the following manner. In Section 4.1, we demonstrate the
framework of GEM-MP variational inference. We then derive GEM-MP’s general update
rule for Markov logic in Section 4.2. In section 4.5, we generalize GEM-MP’s update rules to
be applicable for MRFs. In Section 4.3, we discuss the distinctions between GEM-MP and
standard LBP. In Section 4.6, we conduct a thorough experimental study. This is followed
by a discussion in Section 4.7.

4.1 GEM-MP Framework

Both LBP and variational EM approaches share a similar objective which is to minimize a
corresponding energy equation (Yedidia et al., 2005), the Gibbs free energy and variational
free energy, respectively. Thus, one can hybridize the two approaches for both learning
and inference tasks. A core aspect of GEM-MP is that if we re-express the inference task of
estimating marginals as an instance of the learning task of fitting approximate (or variational)
model parameters, then variational EM can be adapted to guarantee convergence. Intuitively,
we treat the extraction of marginals from a factor graph (which could be computed by LBP
message passing inference) as a maximum marginal-likelihood parameter estimation task
(that can be accomplished by variational EM). This implies transforming marginals into
parameters in a marginal-likelihood space, where the local optima (of variational parameters)
are the local minima (of marginals). In this space, we can guarantee that variational EM
never overshoots the nearest local optimum (i.e., fixed point).

Now, before presenting GEM-MP in detail, let us consider a simple example factor graph
G (Figure 4.1(left)), which is a fragment of the Cora example in Figure 2.2, that involves
factors F = {f1, f2, f3, f4} and three random variables {X1, X2, X3} denoting query ground
atoms {SBib(C2, C2), SBib(C2, C1), SBib(C1, C2)} respectively.

43

Figure 4.1 An example factor graph G (left) which is a fragment of the Cora example in
Figure 2.2, that involves factors F = {f1, f2, f3, f4} and three random variables {X1, X2, X3}
representing query ground atoms {SBib(C2, C2), SBib(C2, C1), SBib(C1, C2)}. The extended
factor graph Ĝ (right) which is a transformation of the original factor graph after adding
auxiliary mega-node variables Y = {y1, y2, y3, y4}, and auxiliary activation-node variables
O = {O1, O2, O3, O4}, which yields extended factors F̂ =

{
f̂1, f̂2, f̂3, f̂4

}
.

44

In our GEM-MP framework the first thing we do is modify the factor graph. Specifically, we
need to re-parameterize the factor graph in such a way that carrying out a learning task on the
new parameterization is equivalent to running an inference task on the original factor graph.
That is, we modify the original factor graph by transforming it into an extended factor graph.
This extended factor graph Ĝ (depicted in Figure 4.1(right)) extends the original factor graph
G as follows:

• We attach an auxiliary mega-node Yi (dashed oval) to each factor node fi ∈ F . Each of
these mega-nodes Yi captures the valid local entries of its corresponding factor fi. Thus,
it has a domain size that equals (at the most) the number of local entries in the factor
fi (i.e., the states of each mega-node correspond to a subset of the Cartesian product
of the domains of the variables that are the arguments to the factor fi). Y = {Yi}mi=1 is
the set of mega-nodes in the extended factor graph, where m = 4 in the example factor
graph.

• In addition, we connect an auxiliary activation node, Oi (dashed circle), to each factor
fi. The auxiliary activation node Oi enforces an indicator constraint 1(Yi,fi) for ensuring
that the particular configuration of the variables that are the argument to the original
factor fi is identical to the state of the mega-node Yi:

1(Yi,fi) =

1 If the state of Yi is identical to local entry of fi.

0 Otherwise
(4.1)

• Now, since we expand the arguments of each factor fi by including both auxiliary
mega-node and auxiliary activation node variables, then we get an extended factor f̂i.
F̂ =

{
f̂i
}m
i=1

is the set of extended factors in the extended factor graph.

• When the activation node Oi equals one, then it activates the indicator constraint in
Eq. (4.1). If this indicator constraint is satisfied, then the extended factor graph f̂i

preserves the same value of fi for the configuration that is defined over the original
input variables defining the factor fi. Thus, clearly, the following condition holds for
each extended factor f̂i when a configuration, (x1, . . . , xn), of fi equals to state, yi, of
mega-node, Yi:

f̂i(X1 = x1, . . . , Xn = xn, Yi = yi, Ōi)
∣∣∣∣
Ōi=1

= fi(X1 = x1, . . . , Xn = xn) (4.2)

But if the indicator constraint in Eq. (4.1) is not satisfied then the extended factor
graph f̂i assigns a value 0. Thus, this condition also holds for each extended factor f̂i

45

when a configuration (x1, . . . , xn) of fi is not equal to state yi of mega-node, Yi:

f̂i(X1 = x1, . . . , Xn = xn, Yi = yi, Ōi)
∣∣∣∣
Ōi=1

= 0 (4.3)

• When the activation node Oi is not equal to one, then it deactivates the indicator
constraint in Eq. (4.1). Here, the extended factor assigns a value 1 when the possible
state of Yi matches the configuration of variables that are the arguments to the factor fi.
Otherwise it assigns a value 0. Note that this assignment implies that the deactivation
of the indicator constraint results in no impact on the distribution from the inclusion
of the factor fi.

Table 4.1 visualizes the expansion of factor f1, in the original factor graph, to its correspond-
ing extended factor f̂1 in the extended factor graph.

Proposition 1. In the extended factor graph Ĝ, reducing each extended factor f̂i by evidenc-
ing its activation node with one, Ōi = 1, and then eliminating its auxiliary mega-node Yi by
marginalization yields its corresponding original factor fi in the original factor graph G.1

∑
Yi

f̂i(X1, . . . , Xn, Yi, Ōi)
∣∣∣∣
Ōi=1

= fi(X1, . . . , Xn), ∀f̂i ∈ F̂ (4.4)

Proof. see Appendix A

Proposition 2. Any arbitrary factor graph G is equivalent, i.e., defining an identical joint
probability over variables X , to its extended Ĝ iff the activation nodes in Ĝ are evidenced with
one:

G ≡ Ĝ iff Ōi = 1, ∀Oi ∈ O in Ĝ

Proof. see Appendix A

To that end, we can recast the process of marginals estimation of variables as a maximum
marginal-likelihood parameters estimation task, which is motivated by the extended factor
graph modelM in the following manner:

• Let O = {Oi}mi=1 be the observed variables, represented as a binary vector (of 1’s),
indicating the observation of the activation node variables Ōi = 1, ∀Oi ∈ O (meaning
that the auxiliary activation nodes are activated).

1Note that we will use the bar notation over the variable Oi (i.e., Ōi) to indicate that the variable Oi is
observed at one of its values (e.g., 1).

46

Table 4.1 Factor f1 in the original factor graph (left). Its corresponding extended factor f̂1
in the extended factor graph (right). When the activation node O1 = 1, the bold values are
cases in which the extended factor f̂1 preserves the same value of f1. Otherwise it assigns a
value 0. When the activation node O1 6= 1, the matches between Y1 and (X1, X2) are cases
in which f̂1 assigns a value 1. Otherwise it assigns a value 0.

X1 X2 f1(X1, X2)
T T 1
T F 0
F T 1
F F 1

X1 X2 Y1 O1 f̂1(X1, X2, Y1, O1)
T T TT 1 1
T F TT 1 0
F T TT 1 0
F F TT 1 0
T T TT 0 1
T F TT 0 0
F T TT 0 0
F F TT 0 0
T T TF 1 0
T F TF 1 0
F T TF 1 0
F F TF 1 0
T T TF 0 0
T F TF 0 1
F T TF 0 0
F F TF 0 0
T T FT 1 0
T F FT 1 0
F T FT 1 1
F F FT 1 0
T T FT 0 0
T F FT 0 0
F T FT 0 1
F F FT 0 0
T T FF 1 0
T F FF 1 0
F T FF 1 0
F F FF 1 1
T T FF 0 0
T F FF 0 0
F T FF 0 0
F F FF 0 1

47

• Let H = {X ,Y} be the hidden variables, where X = {Xj}nj=1 is a set of variables (i.e.,
ground atoms) whose marginals we want to compute, and Y = {Yi}mi=1 is the set of
mega-nodes.

• Now, we can set up our goal to estimate the marginals of variables in X = {Xj}nj=1

that maximize the log marginal-likelihood (i.e., model evidence), logP (O|M), which
can be simply represented as follows:

logP (O|M) = log
∑
H
P (O,H|M) = log

∑
X ,Y

P (O,X ,Y|M) (4.5)

However, to maximize Eq. (4.5), we will face the challenge of marginalizing over hidden mega-
node variables Y , which is intractable because it requires expressing all valid local entries
of the factors (i.e., ground clauses) involved in the model. Instead, we add an auxiliary
distribution q(X ,Y) over the set of hidden variables to the log marginal-likelihood as follows:

log
∑
X ,Y

P (O,X ,Y|M) = log
∑
X ,Y

q(X ,Y)P (O,X ,Y|M)
q(X ,Y) (4.6)

Now, profiting from the fact that “log”2 is a concave function, we can apply Jensen’s inequality
to get a lower bound of the log marginal-likelihood:

log
∑
X ,Y

q(X ,Y)P (O,X ,Y|M)
q(X ,Y) ≥

∑
X ,Y

q(X ,Y) log P (O,X ,Y|M)
q(X ,Y) (4.7)

Note that maximizing the lower bound, in Eq. (4.7), with respect to the free auxiliary distribu-
tion, q(X ,Y) = P (X ,Y|O,M), turns the inequality into an equality, which complicates the
problem since evaluating exactly the true posterior distribution P (X ,Y|O,M) is intractable.
Instead we constrain the auxiliary distribution to be a factorized (separable) approximation:

q(X ,Y) = q(X ;BX) q(Y ; TY) (4.8)

Where q(X ;BX) is an approximation of the true posterior distribution P (X|O,M) over
hidden variables, X . This distribution is characterized by a set of variational parameters,
BX =

{
βXj

}n
j=1

, representing the marginal probabilities of variables Xj ∈ X , which were
supposed to be computed by the standard message-passing inference (e.g., LBP). The distri-
bution q(Y ; TY) is an approximation to the true posterior distribution P (Y|O,M) over hidden

2“Log” plays an important role in maintaining convergences via Jensen’s inequality, as will be explained
further on.

48

mega-nodes, Y , which is characterized by a set of variational parameters, TY = {αYi
}mi=1, for

adapting the weights associated with the particular states of mega-nodes Yi ∈ Y . These
variational parameters, αYi

(fi), can be generally defined as:

αYi
(fi) =

vs if the state of Yi satisfies fi,

vu otherwise.
(4.9)

Where vs (and vu) are the values obtained from fi when a particular state of Yi satisfies (and
dissatisfies) the factor fi respectively. Note that vs and vu can be adapted using both the
variational distributions of argument variables and weights associated with factor fi (as it
will be explained in Subsections 4.2.1 and 4.2.2 for hard and soft factors respectively).

Now from Eqs. (4.6), (4.7) and (4.8), we have that:

log
∑
X ,Y

P (O,X ,Y|M) ≥
∑
X ,Y

q(X ;BX) q(Y ; TY) log P (O,X ,Y|M)
q(X ;BX) q(Y ; TY) (4.10a)

=
∑
X

q(X ;BX)

×
[∑
Y

q(Y ; TY)
(

log P (O,Y , |X ,M)
q(Y ; TY) + log P (X|M)

q(X ;BX)

)]
(4.10b)

=FM(q(X ;BX), q(Y ; TY)) (4.10c)

The lower bound FM, in Eq. (4.10c), is the negative of a quantity that represents the vari-
ational free energy functional of the free distributions q(X ;BX) and q(Y ; TY). We can write
the lower bound FM as follows:

FM = Eq(X ;BX)q(Y;TY)
[

logP (O,X ,Y|M)
]

+H
(
q(X ;BX)q(Y ; TY)

)
(4.11)

Where Eq(X ;BX)q(Y;TY) is the expected log marginal-likelihood with respect to the distribu-
tions, q(X ;BX) and q(Y ; TY), and the negative of the second term, −H

(
q(X ;BX)q(Y ; TY)

)
,

is the entropy (see Neal and Hinton, 1999, for more details).

Now the goal of the GEM-MP algorithm is to iteratively maximize the lower bound FM
(or minimize the negative free energy −FM) with respect to the distributions q(X ;BX) and
q(Y ; TY) by applying two steps. In the first step, q(X ;BX) is used to maximize FM with
respect to q(Y ; TY). Then in the second step, q(Y ; TY) is used to maximize FM with respect

49

to q(X ;BX). That is, GEM-MP maximizes FM by performing two iterative updates

- T ∗Y ∝ argmax
TY

Eq(X ;BX)q(Y;TY)

[
logP (O,X ,Y|M)

]
+H

(
q(X ;BX)q(Y ; TY)

)
(4.12a)

- B∗X ∝ argmax
BX

Eq(X ;BX)q(Y;TY)

[
logP (O,X ,Y|M)

]
+H

(
q(X ;BX)q(Y ; TY)

)
(4.12b)

Note that the entropy term can be re-written as:

H
(
q(X ;BX)q(Y ; TY)

)
= H

(
q(X ,Y)

)
= H

(
q(X ;BX)

)
+H

(
q(Y ; TY)

)
(4.13)

Thus when maximizing FM, with respect to the variational parameters TY and BX , since in
Eqs. (4.12a) and (4.12b), q(X ;BX) does not depend on the entropy H(q(Y ; TY)), and q(Y ; TY)
does not depend on H(q(X ;BX)). We thus have

- T ∗Y ∝ argmax
TY

Eq(X ;BX)q(Y;TY)

[
logP (O,X ,Y|M)

]
+H

(
q(Y ; TY)

)
(4.14a)

- B∗X ∝ argmax
BX

Eq(X ;BX)q(Y;TY)

[
logP (O,X ,Y|M)

]
+H

(
q(X ;BX)

)
. (4.14b)

Therefore, the goal of GEM-MP can be expressed as that of maximizing a lower bound on the
log marginal-likelihood by performing two steps, using superscript (t) to denote the iteration
number:

• GEM-MP “Mq(Y)-step”: (for maximizing mega-nodes’ parameters distributions)

Max. w.r.t q(Y;TY)︷ ︸︸ ︷
T (t+1)
Y = argmax

TY

E-step︷ ︸︸ ︷
Eq(t)(X ;BX)q

(t)
(Y;TY)

[
logP (O,X ,Y|M)

]
+H

(
q(Y ; TY)

)
(4.15)

• GEM-MP “Mq(X)-step”: (for maximizing variable-nodes’ parameter distributions)

Max. w.r.t q(X ;BX)︷ ︸︸ ︷
B(t+1)
X = argmax

BX

E-step︷ ︸︸ ︷
Eq(t)(X ;BX)q

(t+1)
(Y;TY)

[
logP (O,X ,Y|M)

]
+H

(
q(X ;BX)

)
(4.16)

Where here the arguments to Eqs. (4.15) and (4.16) are the Eq(X)-step and Eq(Y)-step corre-
sponding to Mq(Y)-step and Mq(X)-step, respectively.

Now, using a fully factored variational mean field approximation for q(Y ; TY) implies that

50

we create our approximation from independent distributions over the hidden (mega-node)
variables as follows:

q(Y ; TY) =
∏
Yi∈Y

q(Yi;αYi
) (4.17)

where q(Yi;αYi
) is our complete approximation to the true posterior probability distribution

P (Yi|O,X ,M) of a randomly chosen valid local entry of mega-node Yi. Also, the variational
mean-field approximation to q(X ;BX) is similarly defined as a factorization of independent
distributions over the hidden variables in X , and can be expressed as follows:

q(X ;BX) =
∏
Xj∈X

q(Xj; βXj
), (4.18)

where q(Xj; βXj
) is an approximate distribution to the true posterior marginal probability

distribution P (Xj|O,M) of variable Xj.

From Eqs. (4.17) and (4.18), we can write the expected log marginal-likelihood in Eqs. (4.15)
and (4.16), as follows:

Eq(X ;BX)q(Y;TY)

[
logP (O,X ,Y|M)

]
=
∑
Y

∏
Yi∈Y

q(Yi;αYi
)
[∑
X

∏
Xj∈X

q(Xj; βXj
) logP (O,X ,Y|M)

] (4.19)

We now proceed to optimize the lower bound, through the use of Eqs. (4.15) and (4.16),
using our variational mean-field approximations for both q(Y ; TY) and q(X ;BX).

We use Eqs. (4.19), (4.18) and (4.17) in Eq. (4.15). Hence, we have a maximization of the
lower bound on the log marginal-likelihood as

T (t+1)
Y = argmax

TY

∑
Y

∏
Yi∈Y

q(Yi;αYi
)
[∑
X

∏
Xj∈X

q(Xj; βXj
) logP (O,X ,Y|M)

]

+
∑

Yi∈Y

H(q(Yi;αYi
))

(4.20)

One can then separate out the terms related to the updates of the variational parameters
for each mega-node Yi in Eqs (4.20). In addition, updating the parameter distribution of
mega-node Yi requires considering the distributions {q(Xj; βXj

)} of only the variables in X
that are arguments to the extended factor f̂i (i.e., Xj ∈ Xf̂i

)- where Yi is attached to f̂i.

51

That is

α(t+1)
Yi

= argmax
αYi

∑
Yi

q(Yi;αYi
)
[∑
X

f̂i

∏
Xj∈Xf̂i

q(Xj; βXj
) log f̂i(Oi,Xf̂i

, Yi|M)
]

+H(q(Yi;αYi
))

(4.21)

Where f̂i(Oi,Xf̂i
, Yi|M) is the part of P (O,X ,Y|M) in the model with the factor associated

with the mega-node Yi.

This in fact allows optimizing the variational parameters of the distributions of each mega-
node Yi as

q(Yi;α∗Yi
) = 1
ZYi

exp
(Eq(X)-step︷ ︸︸ ︷
E{q(t)(Xj ;βXj

) | Xj∈Xf̂i
}

[
log f̂i(Oi,Xf̂i

, Yi|M)
])

(4.22)

where ZYi
= ∑

E{q(t)(Xk;βXk
) | Xk 6=Xj , Xj∈Xf̂i

}

[
log f̂i(Oi,Xf̂i

, Yi|M)
]
is the normalization factor,

and the expectation part can be written as

E{q(t)(Xj ;βXj
) | Xj∈Xf̂i

}

[
log f̂i(Oi,Xf̂i

, Yi|M)
]

=
∑
X

f̂i

∏
Xj∈Xf̂i

q(Xj; βXj
) log f̂i(Oi,Xf̂i

, Yi|M)
(4.23)

This update is similar in form to the simpler case of fully factored mean field updates in a
model without the additional mega-nodes. See Winn (2004) for more details on the traditional
mean field updates. Note that here by using Eqs. (4.23) and (4.22) in Eq. (4.21), we also
have that

α(t+1)
Yi

= argmax
αYi

∑
Yi

q(Yi;αYi
) log q(Yi;α∗Yi

) +H(q(Yi;αYi
)− logZYi

(4.24a)

= argmax
αYi

−KL
[
q(Yi;αYi

) || q(Yi;α∗Yi
)
]

+ const. (4.24b)

= argmax
αYi

−KL
[
q(Yi;αYi

) || q(Yi;α∗Yi
)
]
, (4.24c)

where KL
[
q(Yi;αYi

) || q(Yi;α∗Yi
)
]
is the Kullback-Leibler divergence. The constant, in

Eq. (4.24b), is simply the logarithm of the normalization factor representing the variables’
{q(Xj; βXj

)} distributions, that are independent of q(Yi;αYi
). Note that, from Eq. (4.24c), we

maximize on the lower bound with respect to q(Yi;αYi
) by minimizing the Kullback-Leibler

52

divergence. This means that the lower bound can be maximized by setting q(Yi;αYi
) =

q(Yi;α∗Yi
).

Now, likewise, when updating the distribution of each variable Xj we only consider the
updated distributions {q(Yi;αYi

)} of mega-nodes attached to the extended factors on which
Xj appears (i.e., f̂i ∈ F̂Xj

). That is

q(Xj; β∗Xj
) = 1
ZXj

exp
(Eq(Y)-step︷ ︸︸ ︷
E{q(t+1)(Yi;αYi

), q(t)(Xk;βXk
) | f̂i∈F̂Xj

}

[
log F̂ (O,Xj,Y|M)

])
(4.25)

where F̂ (O,Xj,Y|M) is the part of P (O,X ,Y|M) in the model with the factors associated
with the node Xj. This part involves only the mega-nodes’ {q(Yi;αYi

)} distributions in the
Markov boundary of each Xj, and the {q(Xk; βXk

)} from the old iteration for the other
variables Xk 6= Xj that are arguments to factors in which Xj appears.

Figure 4.2 Illustrating message-passing process of GEM-MP. (left) Eq(X)-step messages from
variables-to-factors; (right) Eq(Y)-step messages from factors-to-variables.

At this point, we have paved the way for GEM-MP message-passing inference by transforming
the inference task into an instance of an EM style approach often associated with learning
tasks. The GEM-MP inference proceeds by iteratively sending two types of messages on
the extended factor graph so as to compute the updated q distributions needed for the M-
steps above. The Eq and Mq steps are alternated until converging to a local maximum3 of

3This is equivalent to converging to a local minimum of the negative free energy functional −FM, which

53

FM(q(Y ; TY), q(X ;BX)). These messages are different from simply running the standard LBP
algorithm, but their structures are formulated in the form of E (i.e., Eq(X), Eq(Y)) and M (i.e.,
Mq(Y), Mq(X)) steps outlined in Eqs. (4.15), (4.22), (4.16), and (4.25), where the E-steps can
be computed through message passing procedures as outlined below:

• Eq(X)-step messages, {µXj→f̂i
= q(Xj; βXj

)}, that are sent from variables X to fac-
tors F̂ (as depicted in Figure 4.2 (left)). The aim of sending these messages is to
perform the GEM-MP’s Mq(Y)-step in Eq. (4.15). That is, the setting of the distri-
butions, {q(Xj; βXj

)}∀Xj∈X , are used for estimating the distributions, {q(Yi;αYi
)}∀Yi∈Y ,

that maximizes the expected log marginal-likelihood of Eq. (4.15). To do so, each
variable Xj ∈ X sends its current marginal probability βXj

as an Eq(X)-step message,
µXj→f̂i

= q(Xj; βXj
), to its neighboring extended factors. Then, at the factors level,

each extended factor f̂i ∈ F̂ uses the relevant marginals from those received incoming
messages of its argument variables, i.e., {q(Xj; βXj

)}∀Xj∈Xf̂i
, to perform the computa-

tions of the Eq(X)-step of Eq. (4.15). This implies updating the distribution q(Yi;αYi
)

of its mega-node Yi by computing what we call the probabilistic generalized arc consis-
tency (pGAC) (we will discuss pGAC in more detail in section 4.2).

• Eq(Y)-step messages, {µf̂i→Xj
= ∑

Yi:∀yk(Xj) q(Yi;αYi
)}, that are sent from factors to

variables (as depicted in Figure 4.2 (right)). Sending these messages corresponds to
the GEM-MP’s Mq(X)-step in Eq. (4.16). Here, the approximation of the distributions,
{q(Yi;αYi

)}∀Yi∈Y , obtained from the GEM-MP’s Mq(Y)-step will be used to update the
marginals, i.e., {q(Xj; βXj

)}∀Xj∈X , that maximizes the expected log marginal-likelihood
in Eq. (4.16). Characteristically, each extended factor f̂i ∈ F̂ sends a corresponding
refinement of the pGAC distribution - that approximates the q(Yi;αYi

) of its mega-node
- as an Eq(Y)-step message, µf̂i→Xj

= ∑
Yi:∀yk(Xj) q(Yi;αYi

), to each of its argument vari-
ables, Xj ∈ Xf̂i

. Now, at the variables level, each Xj ∈ X uses the relevant refinement
of pGAC distributions from those received incoming messages - which are the outgoing
messages coming from its extended factors f̂i ∈ F̂Xj

- to perform the computations
of the Eq(Y)-step of Eq. (4.16). This implies updating its distribution q(Xj; βXj

) by
summing these messages (as it will be discussed in more detail in section 4.2).

Other work has empirically observed that asynchronous belief propagation scheduling often
yields faster convergence than synchronous schemes (cf. Elidan et al., 2006). In variational
message passing schemes, the mathematical derivations lead to updates that are asynchronous
in nature. In Section 4.2 we will derive a general update-rule for GEM-MP based on vari-

is a stable fixed point with respect to an inference task on the original factor graph.

54

ational principles in more detail and we shall see it leads to an asynchronous scheduling of
messages. However, messages can be passed in a structured form whereby variables X are
able to send their Eq(X)-step messages simultaneously to their factors (or mega-node variables
Y). At the level of factors, the marginals are updated one at a time, then the factors send
back Eq(Y)-step messages simultaneously to their variables. Moreover, it should be noted that
we do the asynchronous updating schedule between variables X and mega-nodes Y in a form
that allows updates to potentially be computed in parallel. Thus the version of GEM-MP
that we present here involves sending messages in parallel from mega-nodes to variables and
variables to mega-nodes. Updates to the q(Xj)s approximations for variables Xj ∈ X could
be computed in parallel, and updates to the q(Yi)s approximations for mega-nodes Yi ∈ Y
could also be performed in parallel.

Theorem 1 (GEM-MPGuarantees Convergence). At each iteration of updating the marginals
(i.e., variational parameters BX), GEM-MP increases monotonically the lower bound on the
model evidence such that it never overshoots the global optimum or until converging naturally
to some local optima.

Proof. In fact, maximizing the lower bound FM(q(X ;BX), q(Y ; TY)) is equivalent to mini-
mizing the Kullback-Leibler (KL) divergence between q(X ;BX) and q(Y ; TY) and the true
posterior distribution, P (X ,Y|O,M), over hidden variables:

log
∑
X ,Y

P (O,X ,Y|M)−FM =
∑
X ,Y

q(X ;BX)q(Y ; TY) log q(X ;BX)q(Y ; TY)
P (X ,Y|O,M) (4.26a)

=KL
[
q(X ;BX)q(Y ; TY) || P (X ,Y|O,M)

]
(4.26b)

Now assume that before and after a given iteration (t), we have q(t)
(X ;BX) and q

(t+1)
(X ;BX) that denote

the settings of BX respectively. Likewise for q(t)
(Y;TY) and q

(t+1)
(Y;TY) with respect to TY , where one

iteration is a run of GEM-MP “Mq(Y)-step” followed by “Mq(X)-step”. By construction, in the
Mq(Y)-step, q(t+1)

(Y;TY) is chosen such that it maximizes FM(q(t)
(X ;BX), q

(t+1)
(Y;TY)) given q(t)

(X ;BX). Then,
in the Mq(X)-step, q(t+1)

(X ;BX) is set by maximizing FM(q(t+1)
(X ;BX), q

(t+1)
(Y;TY)) given q(t+1)

(Y;TY), and we have
(as shown in Figure 4.3):

KL

[
q(t)

(X ;BX) q
(t)
(Y;TY) || P (X ,Y|O,M)

]
≥ KL

[
q(t)

(X ;BX) q
(t+1)
(Y;TY) || P (X ,Y|O,M)

]
(4.27)

and similarly:

55

Figure 4.3 Illustrating how each step of the GEM-MP algorithm is guaranteed to increase
the lower bound on the log marginal-likelihood. In its “Mq(Y)-step”, the variational distri-
bution over hidden mega-node variables is maximized according to Eq. (4.15). Then, in its
“Mq(X)-step”, the variational distribution over hidden X variables is maximized according to
Eq. (4.16).

56

KL

[
q(t)

(X ;BX) q
(t+1)
(Y;TY) || P (X ,Y|O,M)

]
≥ KL

[
q(t+1)

(X ;BX) q
(t+1)
(Y;TY) || P (X ,Y|O,M)

]
(4.28)

This implies that GEM-MP increases the lower bound monotonically.
Now since the exact log marginal-likelihood, log∑X ,Y P (O,X ,Y|M), is a fixed quantity and
the Kullback-Leibler divergence, KL ≥ 0, is a non-negative quantity then this implies that
GEM-MP never overshoots the global optimum of the variational free energy.

Now since GEM-MP applies variational mean-field approximation for q(Y ; TY) and q(X ;BX)
distributions (refer to Eqs. (4.18) and (4.17)) over both mega-nodes and variables nodes
respectively, then it inherits the guaranteed convergence of mean field method to a local
minimum in the likelihood space.

Note that the convergence behaviour of GEM-MP for inference task resembles the be-
haviour of the variational Bayesian expectation maximization approach proposed by Beal
and Ghahramani (2003) for the Bayesian learning task. Both of them can be seen as a
variational technique (forming a factorial approximation) that minimizes a free-energy-based
function for estimating the marginal likelihood of the probabilistic models with hidden vari-
ables.

It is worth noting that when reaching the GEM-MP “Mq(Y)-step”, we can select between local
or global approximation to distribution q(Y ; TY). However, we restricted ourselves to local
approximations.4 Furthermore, although GEM-MP represents a general template framework
for applying variational inference to probabilistic graphical models, we concentrate on Markov
logic models, where the variables will be ground atoms and the factors will be both hard and
soft ground clauses (as will be explained in Section 4.2) and Ising models (as will be explained
in Section 4.5)

4.2 GEM-MP General Update Rule for Markov Logic

By substituting the local approximation for q(Y ; TY) from Mq(Y)-step into the Mq(X)-step, we
can synthesize update rules that tell us how to set the new marginal in terms of the old one.
So, in practice the Mq(Y)-step and the Eq(Y)-step messages of GEM-MP can be expressed in
the form of one set of messages (from atoms-to-atoms through clauses). This set of messages
synthesizes a general update rule for GEM-MP, applicable to Markov logic. However, since

4Note that the local approximation means that we handle mega-nodes individually. This appears in the
factorization of q(Y; TY) into independent distributions (refer to Eq. (4.17)).

57

the underlying factor graph often contains hard and soft clauses, then the GEM-MP will
distinguish two update-rules (Hard-update-rule and Soft-update-rule) for tackling hard and
soft clauses, respectively.

4.2.1 Hard-update-rule

For notational convenience, we explain the derivation of the hard-update-rule by considering
untyped atoms; but extending it to the more general case is straightforward. Also, for clarity,
we begin the derivation with the Mq(X)-step rather than with the habitual Mq(Y)-step. So,
we presume that we have already the constructed posterior distribution q(Y ; TY). Also, we
suppose here that all clauses are only hard clauses.

1. Mq(X)-step: Recalling Section 4.1, our basic goal in this step is to use q(Y ; TY) to estimate
the marginals (i.e., parameters) BX that maximize the expected log-likelihood such that each
βXj
∈ BX must be a proper probability distribution. Thus, we have an optimization problem

of the form:5

max
BX

Eq(X ;BX)q(Y;TY)
[

logP (O,Y|X ,M)
]

s.t.
(
β+

Xj
+ β−Xj

)
= 1, ∀βXj

∈ BX
(4.29)

To perform this optimization, we first express it as the Lagrangian function Λ(BX):

Λ(BX) = Eq(X ;BX)q(Y;TY)
[

logP (O,Y|X ,M)
]
− T (BX) (4.30)

Where T (BX) is a constraint that ensures the marginals, BX , are sound probability distribu-
tions. This constraint can be simply represented as follows:

T (BX) =
∑

Xj∈X
λXj

(
1− β+

Xj
− β−Xj

)
(4.31)

Where λXj
are Lagrange multipliers that allow a penalty if the marginal distribution βXj

does
not marginalize to exactly one.

Now, let us turn to the derivation of the expected log-likelihood. We have that:

Eq(X ;BX)q(Y;TY)

[
logP (O,Y|X ,M)

]
=
∑

Yi∈Y

q(Yi;αYi
)
∑

Xj∈X

q(Xj; βXj
) logP (O,Y|X ,M)

(4.32)

5Note that:Eq(X ;BX)q(Y;TY)
[

logP (O,X ,Y|M)
]
∝ Eq(X ;BX)q(Y;TY)

[
logP (O,Y|X ,M)

]
.

58

Based on the (hidden) variables Xj ∈ X and mega-nodes Yi ∈ Y , we can then decouple the
posterior distribution, logP (O,Y|X ,M), into individual distributions corresponding to hard
ground clauses, and we have:6

Eq(X ;BX)q(Y;TY)
[

logP (O,Y|X ,M)
]
∝
∑
Xj ,Yi

q(Xj; βXj
)q(Yi;αYi

)

× log
[∏
fh

i ∈Fh

P (Yi|X ,M)
]

(4.33)

Where P (Yi|X ,M) is the posterior probability of randomly choosing a valid local entry in
the mega-node Yi given the marginal probabilities of the ground atoms, BX . Now, we can
proceed by decomposing P (Yi|X ,M) into individual marginals of ground atoms that possess
consistent truth values in the valid local entries of Yi. That is:

log
[∏
fh

i ∈Fh

P (Yi|X ,M)
]
≈ log

[∏
fh

i ∈Fh

∏
Xj∈Xfh

i

βXj
(Yi(Xj))

]
(4.34)

Where βXj
(Yi(Xj)) is the marginal probability of ground atom Xj at its consistent values

with Yi.

It is important to note that the decomposition, in Eq. (4.34), is a mean field approximation
for P (Yi|X ,M). It implies that the probability of valid local entries of Yi for the ground
clause fi can be computed using individual marginals of the variables in the scope of fi
at their instantiations over such local entries. For instance, suppose that fi(X1, X2, X3) is
defined over three Boolean variables {X1, X2, X3} with marginal probabilities {βX1 , βX2 , βX3}.
Now let (0, 0, 1) be a valid local entry in the mega-node Yi of fi. To compute the probability
P (0, 0, 1|βX1 , βX2 , βX3 ,M), we can simply multiply the marginals of the three variables at
their instantiations over this valid local entry as:

P (0, 0, 1|βX1 , βX2 , βX3 ,M) = β−X1
× β−X2

× β+
X3

Where β−X1
, β−X2

and β+
X3

are the marginal probabilities of X1, X2, and X3 at values 0, 0, and
1 respectively.

6Note that since we marginalize extended factors over their mega-nodes then it is sufficient to work directly
with original factors in the original factor graph, which here are the hard ground clauses. In addition, we
can eliminate the observed variable Ō = 1 from logP (O,Y|X ,M) by explicitly deeming only the valid local
entries of the hard ground clauses.

59

Now, take the value of Eq. (4.34), and substituting it for Eq. (4.33). Next, we convert
logarithms of products into sums of logarithms and exchanging summations, and handle
each hard ground clause fhi ∈ Fh separately in a sum.

Subsequently, we then take the partial derivative of the Lagrangian function, in Eq. (4.30),
with respect to an individual ground atom positive marginal β+

Xj
and equate to zero:7

∂

∂β+
Xj

[Λ(BX)] = 0⇒ β+
Xj

= 1
λXj

 ∑
fh

i ∈F
h
Xj

(Eq(Y)-step message) µfi→Xj︷ ︸︸ ︷∑
Yi:∀yk(Xj)=“+”

q(Yi;αYi
)

︸ ︷︷ ︸

Weight+Xj

(4.35)

Where ∑Yi:∀yk(Xj)=“+” q(Yi;αYi
) is the Eq(Y)-step message that Xj will receive from each hard

ground clause (fhi ∈ FhXj
) conveying what it believes about Xj’s positive marginal. Each

Eq(Y)-step message is computed by adding a term for only those valid local entries (Yi :
∀yk(Xj) = “+”) which instantiate the current hard ground clause using the positive value
“+” for ground atom Xj.

Thus, the sum of the Eq(Y)-step messages that ground atom Xj will receive from its neigh-
boring hard ground clauses represents a weight (i.e., Weight+Xj

) used to update its positive
marginal.

Furthermore, an analogous expression can be applied for a negative marginal β−Xj
:

∂

∂β−Xj

[Λ(BX)] = 0⇒ β−Xj
= 1
λXj

 ∑
fh

i ∈F
h
Xj

(Eq(Y)-step message) µfi(Yi)→Xj︷ ︸︸ ︷∑
Yi:∀yk(Xj)=“−”

q(Yi;αYi
)

︸ ︷︷ ︸

Weight−Xj

(4.36)

Finally, we now move to solving λXj
as follows:

β−Xj
+ β+

Xj
= 1 From Eqs. (4.35) and (4.36)⇒[(

Weight+Xj
+Weight−Xj

)
/λXj

= 1
]
⇒ λXj

=
(
Weight+Xj

+Weight−Xj

) (4.37)

Which shows that λXj
serves as a normalizing constant that converts such weights (i.e.,

Weight+Xj
, and Weight−Xj

) into a sound marginal probability (i.e. βXj
=
[
β−Xj

, β+
Xj

]
).

7This implies taking the derivative of both expected log-likelihoods, which we obtain after substituting
the value of Eq. (4.34) for Eq. (4.33), and the penalty term in Eq. (4.31).

60

Now to obtain the completed hard-update-rule, what remains is the Mq(Y)-step, through
which we need to substitute the distribution q(Yi;αYi

) in Eqs. (4.35) and (4.36).

2. Mq(Y)-step: The goal here is to produce the distribution q(Yi;αYi
) by using the current

setting of marginals BX . However, the summation, ∑Yi:∀yk(Xj)=“−” involves enumerating all
the valid local entries for each Yi which is intractable. Instead, we will approximate the dis-
tribution ∑Yi:∀yk(Xj)=“−” q(Yi;αYi

) for each hard ground clause fhi ∈ Fh by using a probability
1 − ξ(Xj, f

h
i), which we call the probabilistic generalized arc consistency (pGAC). At this

point, let us pause to elaborate more on pGAC in the next subsection.

Note on the connection between pGAC and variational inference

According to the concept of generalized arc consistency, a necessary (but not sufficient)
condition for a ground atom Xj to be assigned a value d ∈ {+,−}, is for every other ground
atom appearing in the ground clause fi to be individually consistent in the support of this
assignment, i.e., Xj = d. Without loss of generality, suppose that Xj appears positively in
fi: there is a probability that Xj =“−” is not generalized arc consistent with respect to fi
when those other ground atoms appearing in fi are all individually inconsistent with this
assignment since Xj =“−” can belong to an invalid local entry of fi. This means that there
is a probability that Xj = d is unsatisfiable to fi when all other ground atoms appearing
in fi are set unsatisfyingly. We use ξ(Xj, fi) to denote this probability, and we assume
Independence and approximate it as:

ξ(Xj, fi) =

 ∏
Xk∈Xf+

i

\{Xj}

(
1− β+

Xk

)
·

∏
Xk∈Xf−

i

\{Xj}

(
β+

Xk

) (4.38)

As indicated in Eq. (4.38), ξ(Xj, fi) is computed by iterating through all the other ground
atoms in clause fi and consulting their marginals toward the opposite truth value of their
appearance in fi. In other words, the ξ(Xj, fi) forms a product representing the probability
that, except Xj, all other ground atoms Xfi

\ {Xj} in fi taking on particular values that
constitute invalid local entries to fi. Such invalid local entries support Xj unsatisfying
fi and can be approximated based on the marginal distributions of those ground atoms
(i.e., Xfi

\ {Xj}) at these particular values. It should be noted that fi has those marginal
distributions from the incoming Eq(X)-step messages that are sent from its argument ground
atoms Xfi

during the GEM-MP’s Mq(Y)-step.

Hence, if ξ(Xj, fi) is the probability of Xj = d unsatisfying fi then 1−ξ(Xj, fi) is directly the
probability of Xj = d satisfying the ground clause fi. It also represents the probability that

61

Xj = d is GAC with respect to fi because the event of Xj = d satisfying fi implies that it
must be GAC to fi. This interpretation entails a form of generalized arc consistency, adapted
to CNF, in a probabilistic sense; we call it a Probabilistic Generalized Arc Consistency.

Definition 13 (Probabilistic Generalized Arc Consistency (pGAC)). Given a ground clause
fi ∈ F defined over ground atoms Xfi

, and for every Xj ∈ Xfi
, let DXj

= {+,−} be the
domain of Xj. A ground atom Xj assigned a truth value d ∈ DXj

is said to be probabilistically
generalized arc consistent (pGAC) to ground clause fi if the probability of Xj = d belonging
to a valid local entry of fi is non-zero. That is to say, if there is a non-zero probability that
Xj = d is GAC to fi. The pGAC probability of Xj = d can be approximated as:

0 < 1− ξ(Xj, fi) ≤ 1 (4.39)

The definition of the traditional GAC in Section 2.4.1 corresponds to the particular case of
pGAC where ξ(Xj, fi) = 0, meaning that the probability of Xj = d being GAC to fi almost
definitely occurs, and ξ(Xj, fi) = 1 when it is never GAC to fi. Based on that, if fi contains
Xj positively then the pGAC probability of Xj = + equals 1 because it is always GAC to fi.
In an analogous way, the pGAC probability is 1 for Xj = − when fi contains Xj negatively.

From a probabilistic perspective, the pGAC probability of Xj = d represents the probability
that Xj = d is involved in a valid local entry of fi. This is similar to the computation of the
solution probability of Xj = d by using the probabilistic arc consistency (pAC) (presented
by Horsch and Havens, 2000, and summarized in Section 2.4.1). However, it should be noted
that our pGAC applies mean-field approximation. This is because when computing ξ(Xj, fi),
as defined in Eq. (4.38), for each ground atom Xj ∈ Xfi

, we use the marginal probabilities
of other ground atoms Xk ∈ Xfi

\ {Xj} set unsatisfying in fi. Thus the main difference
between our pGAC and pAC (Horsch and Havens, 2000) appears in the usage of mean-field
and BP for computing the probability that Xj = d belongs to valid local entry of fi in pGAC
and pAC, respectively. Furthermore, it should be noted that pAC is restricted to binary
constraints whilst pGAC is additionally applicable to non-binary ones.

From the point of view of computational complexity, ξ(Xj, fi) requires only linear computa-
tional time in the arity of the ground clause (as it will be shown in Propositional 3). Thus,
pGAC is an efficient form of GAC compared to pAC. In addition, pGAC guarantees the
convergence of mean-field whereas pAC inherits the possibility of non-convergence from BP.

From a statistical perspective, the pGAC probability of Xj = + samples the valid local

62

entries of fi that involve Xj = +, in a closed form. Thus we have that:

[
1− ξ(Xj, fi)

] ∣∣∣∣
Xj=“+”

∝
∑

Yi:∀yk(Xj)=“+”

q(Yi;αYi
) (4.40)

And similarly the pGAC probability for Xj = −:

[
1− ξ(Xj, fi)

] ∣∣∣∣
Xj=“−”

∝
∑

Yi:∀yk(Xj)=“−”

q(Yi;αYi
) (4.41)

Based on Eqs. (4.40) and (4.41), we can use pGAC for computing the two components of
Eq(Y)-step message, in Eqs. (4.35)and (4.36), that fi sends to Xj as follows:

• [1, 1− ξ(Xj, fi)] if fi contains Xj positively.

• [1− ξ(Xj, fi), 1] if fi contains Xj negatively.

Note that computing the components of fi’s Eq(Y)-step message in this way above requires
having in hand the marginals of all other ground atoms, Xk ∈ Xfi

\ {Xj}. Hence, simulta-
neously passing the Eq(X)-step messages, which conveying the marginals, from ground atoms
Xfi

to fi could be one of the best choices. Additionally, at fi’s level, we can sequentially
update the marginals as: obtain the marginal of the first ground atom then use its new
marginal in the updating process of the second atom’s marginal, and then use the first and
second atoms’ new marginals in the updating process of the third atom’s marginal, and so
on. This sequential updating allows GEM-MP to use the latest available information of the
marginals through the updating process. In addition, doing so enables a single update rule
that performs both of the E- and M- Steps at the same time, by directly representing the
Mq(Y)-step within the rule we derived for the Mq(X)-step.

63

Using pGAC in the derivation of Hard-update-rule

We now continue the derivation of the Hard-update-rule by using pGAC to address the task
of producing ∑Yi:∀yk(Xj) q(Yi;αYi

) in Eqs. (4.35) and (4.36) as follows:

Weight+Xj
=

∑
fh

i ∈F
h
Xj

∑
Yi:∀yk(Xj)=“+”

q(Yi;αYi
) (4.42a)

=
[∑
fh

i ∈F
h
Xj+

∑
Yi:∀yk(Xj)=“+”

q(Yi;αYi
)
]

+
[∑
fh

i ∈F
h
Xj−

∑
Yi:∀yk(Xj)=“+”

q(Yi;αYi
)
]

(4.42b)

≈
∑

fh
i ∈F

h
Xj+

[1] +
∑

fh
i ∈F

h
Xj−

(1− ξ(Xj, f
h
i)) (4.42c)

=
∣∣∣FhXj

∣∣∣− ∑
fh

i ∈F
h
Xj−

ξ(Xj, f
h
i) (4.42d)

Where, in Eq. (4.42b), we first separate the summation into Xj’s positive and negative hard
ground clauses to consider the two distinct situations of whether Xj appears as a positive
ground atom versus the other situation where it appears as a negative ground atom. Further,
in Eq. (4.42c), in the first positive summation, we replaced the inner summation with the
constant value of 1 (because all other atoms will be generalized arc consistent with Xj = “+”
for the hard clauses that have a positive appearance of Xj as explained in subsection 4.2.1).

The end result, as in Eq. (4.42d), is the Weight+Xj
of ground atom Xj computed as the

summation of all hard ground clauses that include Xj minus the summation of pGAC of
hard ground clauses that involve Xj as a negative atom.

The interpretation of Weight+Xj
can be understood as reducing the positive probability of Xj

according to the expectation of probability that Xj is needed by its negative hard ground
clauses. Such reductions are taken from a constant that represents the overall number of
hard ground clauses that involve Xj (i.e.

∣∣∣FhXj

∣∣∣). Similarly, we can obtain:

Weight−Xj
=
∣∣∣FhXj

∣∣∣− ∑
fh

i ∈F
h
Xj+

ξ(Xj, f
h
i) (4.43)

Where Weight−Xj
has an analogous interpretation of Weight+Xj

, for the negative probability
of Xj.

64

4.2.2 Soft-update-rule.

To derive the update rule for soft ground clauses, what we need to do is to soften some
restrictions on the weight parts (i.e. Weight+Xj

, Weight−Xj
) of the hard-update-rule. This

encompasses modifying the distributions, q(Yi;αYi
), of hard ground clauses for soft ground

clauses by applying two consecutive steps: softening and embedding.

For clarity, let us recall the example of the extended factor graph shown in Figure 4.1(right).
In the softening step, we define the variational parameters αi, of the distributions q(Yi;αYi

),
that are appended to the soft clauses to be different from those appended to hard clauses in
a way that renders them suitable to the semantics of soft ground clauses. That is, we dis-
criminate variational parameters, of distributions q(Yi;αYi

), for hard and soft ground clauses
respectively as follows:

αYi

(
fhi
)

=

1 if the state of Yi satisfies fhi ,

0 Otherwise.

αYi
(f si) =

exp(wfs
i
) if the state of Yi satisfies f si ,

1 Otherwise.

(4.44)

where wfs
i
is the numeric weight associated with soft ground clause f si . Now, the use of

variational parameters αYi
(f si) (instead of αYi

(
fhi
)
) for hard updating rule, in Eq. (4.42d).

Note that the idea of using the exponential form in αYi
(f si) is to imitate the soft clauses for

assigning weights to the local entries. In MLNs, each soft ground clause f si assigns the valid
local entries a value equal to exp(wfs

i
). Otherwise it assigns a value 1 (i.e., exp(0)) to the

invalid local entries. This implies taking the exponential transformation as follows:

Softening⇒ β+
Xj

= 1
λXj

∑

Yi:∀yk(Xj)=“+”

exp
[∑
fh

i ∈F
h
Xj

q(Yi;αYi
(fhi))

]
︸ ︷︷ ︸∏

fs
i
∈Fs

Xj

exp
(
q(Yi;αYi

(fh
i))
)

(4.45)

65

Note that, exp
[∑

fh
i ∈F

h
Xj

q(Yi;αYi
(fhi))

]
, is converted simply to:

∏
fs

i ∈F
s
Xj

exp
(
q(Yi;αYi

(fhi))
)

where

exp
(
q(Yi;αYi

(fhi))
)
≈ q(Yi;αYi

(f si))

.

Accordingly, in the embedding step, we embed the support of invalid local entries. This is
because at the dissatisfaction of soft ground clauses we get 1 instead of 0 at the dissatisfaction
of hard ground clauses. Thus, we discard the summation over valid local entries (i.e., remove∑

Yi:∀yk(Xj)=“+” in Eq. (4.45)) and instead we consider the support of both valid local entries
(weighted by exp(wfs

i
)) and invalid local entries (weighted by 1), which ending up with:

Embedding⇒ β+
Xj

= 1
λXj

 ∏
fs

i ∈F
s
Xj

q
(
Yi;αYi

(f si)
)

︸ ︷︷ ︸
Weight+Xj

(4.46)

Now, likewise, adhering to the derivation of the hard-update-rule, we can obtain the local

66

approximation of Weight+Xj
part for soft-update-rule as:

Weight+Xj
=

∏
fs

i ∈F
s
Xj

q
(
Yi;αYi

(f si)
)

(4.47a)

=
[∏
fs

i ∈F
s
Xj+

q
(
Yi;αYi

(f si)
)]
×
[∏
fs

i ∈F
s
Xj−

q
(
Yi;αYi

(f si)
)]

(4.47b)

≈
[∏
fs

i ∈F
s
Xj+

exp(wfs
i
)[1]

]

×
[∏
fs

i ∈F
s
Xj−

[
(1− ξ(Xj, f

s
i)) exp(wfs

i
) + ξ(Xj, f

s
i) · 1

]]
(4.47c)

=

exp(
∑

fs
i ∈F

s
Xj

wfs
i
)

−

 ∏
fs

i ∈F
s
Xj+

exp(wfs
i
)×

[∏
fs

i ∈F
s
Xj−

ξ(Xj, f
s
i)(exp(wfs

i
)− 1)

] (4.47d)

Note that comparing Eq. (4.47c) to its corresponding Eq. (4.42c) for the update rules of the
hard factors, we have an additional term “ξ(Xj, f

s
i) · 1” in the second summation. This is

because computing the second part of Eq. (4.47b) implies computing two terms as appeared
in the second part of Eq. (4.47c): the first is (1 − ξ(Xj, f

s
i)) representing the probability

that Xj being positive satisfies the factor f si that include Xj as negative ground atom, and
therefore it is multiplied by exp(wfs

i
) since at the satisfaction of soft ground clause f si we

obtain exp(wfs
i
). The second term is ξ(Xj, f

s
i) representing the probability that Xj being

positive dissatisfies the factor f si , and therefore it is multiplied by 1 since at the dissatisfaction
of f si we obtain 1. This “ξ(Xj, f

s
i) · 1” term disappeared from the update rules of the hard

factors in Eq. (4.42c) because ξ(Xj, f
s
i) is multiplied by 0, since at the dissatisfaction of hard

ground clauses we get 0 instead of 1 for the dissatisfaction of soft ground clauses.

Similarly, we can obtain the negative weight part Weight−Xj
for the soft-update-rule as:

Weight−Xj
=

exp(
∑

fs
i ∈F

s
Xj

wfs
i
)

−

 ∏
fs

i ∈F
s
Xj−

exp(wfs
i
)×

[∏
fs

i ∈F
s
Xj+

ξ(Xj, f
s
i)(exp(wfs

i
)− 1)

] (4.48)

67

Note that the weight parts (in Eqs. (4.47d) and (4.48)) used for the soft-update-rule, are
soft versions of previously derived weight parts (in Eqs. (4.42d) and (4.43)) used for the
hard-update-rule. Therefore, at a high level, they have similar interpretations.

At this point, we take the Weight+Xj
and Weight−Xj

from Eqs. (4.42d), (4.43), (4.47d)
and (4.48) and substitute these for the Weight+Xj

and Weight−Xj
in Eqs. (4.35) and (4.36) to

obtain our ultimate set of GEM-MP’s rules in order to update the marginals of query ground
atoms. This is in Table 4.2. The main advantage of these update rules is that they capture
relationships between ground atoms with each other. Thus, we do not need to pass explicitly
the messages from atoms-to-clauses or vice versa.

Note that, on one hand, using a single update rule for updating the marginals is beneficial
for the simplicity of implementation. However, on the other hand, using other scheduling
than the one used here for GEM-MP framework requires re-deriving GEM-MP’s equations
to obtain other single update rules that are adopted with the new scheduling, or do not use
single update rules and pass explicitly the Mq(Y)-step and Eq(Y)-step messages from variables-
to-factors and factors-to-variables, respectively.

Table 4.2 General update rules of GEM-MP inference for Markov logic. These rules capture
relationships between ground atoms with each other, and therefore it does not necessitate
explicitly passing messages between atoms and clauses.

β+
Xj

=
Weight+Xj

λXj
, β−Xj

=
Weight−Xj

λXj
, λXj

= Weight+Xj
+Weight−Xj

Hard-update-rule

Weight+Xj
←
∣∣∣FhXj

∣∣∣−∑fh
i ∈F

h
Xj−

ξ(Xj, f
h
i)

Weight−Xj
←
∣∣∣FhXj

∣∣∣−∑fh
i ∈F

h
Xj+

ξ(Xj, f
h
i)

Soft-update-rule

Weight+Xj
←

[
exp

(∑
fs

i ∈F
s
Xj
wfs

i

)]

−
[∏

fs
i ∈F

s
Xj+

exp(wfs
i
)×

[∏
fs

i ∈F
s
Xj−

ξ(Xj, f
s
i)(exp(wfs

i
)− 1)

]]

Weight−Xj
←

[
exp

(∑
fs

i ∈F
s
Xj
wfs

i

)]

−
[∏

fs
i ∈F

s
Xj−

exp(wfs
i
)×

[∏
fs

i ∈F
s
Xj+

ξ(Xj, f
s
i)(exp(wfs

i
)− 1)

]]

68

4.3 GEM-MP versus LBP

One might contrast GEM-MP and LBP inference. Recall the basic quantities used by GEM-
MP in Eqs. (4.35) and (4.36) vs. LBP in Eqs. (2.10) and (2.11) for updating the marginal of a
single variable Xj. Although the marginal update rules of both algorithms look similar, they
are constructed by very different routes, having important differences. The first significant
difference is that due to the expectations involved in variational message passing, in GEM-
MP, we take a summation (i.e. ∑fi∈FXj

) over the incoming messages to a given node which
are the outgoing messages coming from the factors. This is in contrast to the multiplication
(i.e. ∏fi∈FXj

) associated with standard LBP. In other words, GEM-MP handles the incoming
message (or as named Eq(Y)-step message) from each factor as a separate term in a sum. This
means that when moving toward the local maximum of energy functional FM in Eq. (4.10c),
GEM-MP computes a moderate arithmetic average of the incoming Eq(Y)-step messages to
yield the marginal update steps for Xj. Due to the variational underpinnings of GEM-MP
these steps update a quantity that is a lower bound on the log marginal likelihood. This
is attributable to the use of Jensen’s inequality in Eq. (4.7) that allows lower bounding
the model evidence, and at each update step we minimize the Kullback-Leibler divergence
distance. We therefore cannot ‘overstep’ in our approximation of the true model evidence
(refer to Theorem 1). In contrast, LBP computes a (coarse) geometrical average of the
incoming messages in a setting where there is no such bound.

The second important difference between both algorithms is how they compute their “outgo-
ing messages” from factors to variables based on the previous iteration’s incoming messages
from variables to factors. In LBP, the outgoing message is a partial sum over the prod-
uct of multiplying the factor’s probability distribution by its incoming messages from other
neighboring variables – which naturally arises from the original exact computations which
easily fall out of the computations for correctly marginalizing a tree structured graphical
model. However, the operations of simply multiplying then taking partial sums do nothing
to exploit any local structure of the underlying factor. Conversely, GEM-MP leverages the
fact that factors (e.g., in Markov logic and Ising models) are represented as logical clauses,
and therefore we can take advantage of generalized arc consistency to cleverly convey the
local structures’ semantics into their outgoing messages. Strictly speaking, the GEM-MP’s
outgoing Eq(Y)-step message is an approximate posterior marginal distribution q(Yi;αYi

) over
the valid local entries Yi : ∀yk(Xj) in which the Xj (that will receive the message) is GAC
with other variables in the factor; we approximate this posterior distribution by computing
the pGAC of Xj using the marginals of other variables in the factor that are GAC with Xj

(refer to subsection 4.2.1). This means that the outgoing Eq(Y)-step message that will be

69

received by Xj ensures that its marginal should be consistent with the marginals of other
variables according to the local structure’s semantic of the factor. Hence, exploiting the
logical structures by pGAC when computing the outgoing messages of factors, is what we
believe helps GEM-MP alleviate the problems associated with determinism.

4.4 GEM-MP Algorithm

Algorithm 3 The GEM-MP inference algorithm for Markov logic.

Input: Clauses F , Ground queries X , Maximum number of iterations Imax.
Output: Marginals BX .

// Initialization
1: for each Xj ∈ X do
2: βXj

← U [0, 1];
3: end for

// discriminate query atoms.
4: Xh ← Xj ∈ X ; // involved in hard ground clauses Fh ∈ F.
5: Xs ← Xk ∈ X ; // involved in soft ground clauses F s ∈ F.

// inferring marginals
6: repeat
7: for each Xj ∈ Xh do
8: βXj

← Hard-Update-Rule; // as in Table 4.2
9: end for

10: for each Xk ∈ Xs do
11: βXj

← Soft-Update-Rule; // as in Table 4.2
12: end for
13: until convergence or termination of Imax
14: Return BX ;

Algorithm 3 gives a pseudo-code for the GEM-MP inference algorithm. The algorithm starts
by uniformly initializing (i.e., U) the marginals of all ground atoms that exist in the query
set X (lines 1-3). Then, it distinguishes two subsets of query ground atoms. The first is
Xh that involves query ground atoms involved in hard ground clauses (line 4). The second
subset is Xs for the ones involved in soft ground clauses (line 5). Note that if the query
atom is involved in both soft and hard ground clauses, then it will be included in the two
subsets. At each step, the algorithm proceeds by updating the marginals for the first subset
of query atoms by using hard-update-rule (lines 7-9). Then it updates the marginals for
query atoms of the second subset by applying soft-update-rule (lines 10-12). The algorithm
keeps alternating between carrying out the two update-rules until convergence (i.e., ∀Xj ∈

70

X ,
∣∣∣βXj

(I)− βXj
(I − 1)

∣∣∣ < ε, where ε is a specified precision8) or until the termination of
the maximum number of iterations (line 13). Although the marginals of the query atoms
involved by soft and hard ground clauses (i.e., exist in the two subsets Xh and Xs) may
be affected by swapping from hard- to soft-update-rules, or vice versa, such query atoms’
marginals play the role of propagating the information about hard ground clauses to query
atoms in Xs when it is used by Soft-update-rule, and propagating the information about soft
ground clauses to query atoms in Xh when it is used by Hard-update-rule. It should be noted
that the checks performed by each update-rule are extremely cheap (a fraction of a second,
on average) and the subset of ground clauses at each particular step is unlikely to be in the
hard critical region.

Proposition 3 (Computational Complexity). Given an MLN’s ground network with n ground
atoms, m ground clauses, and a maximum arity of the ground clauses of r, one iteration of
computing the marginals of query atoms takes time in O(nmr) in the worst case.

Proof. see Appendix A

Note that even though GEM-MP is built on a propositional basis, its computational com-
plexity is quite efficient since the size of the grounded network is proportional to O(dr), where
d is the number of objects (constants) in the domain. Also, in practice, we can improve this
computational time by preconditioning some terms. For instance, we do not compute the
constant terms (such as

∣∣∣FhXj

∣∣∣ in the hard update rule) at each iteration, but instead we
compute them once in the onset and then recall their values.

4.5 GEM-MP Update Rules for Ising MRFs

In this section we demonstrate how to easily adapt the GEM-MP algorithm to handle infer-
ence in the presence of determinism over other typical probabilistic graphical models, rather
than over Markov Logic networks. For simplicity, let us here consider Ising models (as de-
fined in Subsection 2.2.1) with arbitrary topology which are a specific subset of the canonical
(pairwise) Markov random fields (MRFs). Although pairwise MRFs are commonly used as a
benchmark for inference because they have a simple and compact representation, they often
pose a challenge for inference. Now if we consider the factor graph representation of an Ising
Model, each uni-variate potential φi(Xi) can be represented as a unit clause (factor node)
involving only one variable Xi with associated weight θi in which it equals eθi when it is

8Note that ε is commonly assigned a very small value (e.g., 10−8) to ensure that the algorithm converges
properly.

71

satisfied and 1 otherwise. Similarly, each φij(Xi, Xj) can be formulated as a conjunction of
two clauses9

[
(¬Xi ∨Xj)∧ (Xi ∨¬Xj)

]
, with associated weight η ·C which equals eη·C when

Xi = Xj and e−η·C otherwise. Hence, the Ising model can be translated into CNF as:

• Unit clauses: (Xi, θi), ∀Xi ∈ X

• Pairwise clauses:
[
(¬Xi ∨Xj) ∧ (Xi ∨ ¬Xj), θij = η · C

]
, ∀Xi, Xj ∈ E

Now, without difficulty, we can directly apply the soft-update-rule from Table 4.2 for such
clauses when computing the marginals on the factor graph. Now assume that we want to
present some determinism in the model. We can achieve that by adjusting the parameters in
such a way that makes either uni-variate or pairwise potential produce 0 when it is unsatisfied.
For instance, if C is very large (say C →∞) in the setting of parameters θij we obtain that
all the valid local entries of φij(Xi, Xj)’s clauses equal to e∞ and all its invalid local entries
equal to 0 (i.e., e−∞), which can be simply re-cast as {0, 1} clauses. Thus in this case we can
apply the hard-update-rule from Table 4.2 when computing the marginals.

4.6 Experimental Evaluation

The goal of our experimental evaluation was to investigate the following key questions:

• (Q1.) Is GEM-MP’s accuracy competitive with state-of-the-art inference algorithms
for Markov logic? This question is important to answer as it examines the soundness
of GEM-MP inference.

• (Q2.) In the presence of graphs with problematic cycles, comparing with LBP exhibit-
ing oscillations, does GEM-MP lead to convergence? We want to explore and emphasize
experimentally that GEM-MP inference indeed addresses limitation 1.

• (Q3.) Is GEM-MP more accurate than LBP in the presence of determinism? We want
to check experimentally the effectiveness of GEM-MP inference to remedy limitation 2.

• (Q4.) Is GEM-MP scalable compared to other state-of-the-art propositional inference
algorithms for Markov logic? We wish to examine the real-world applicability of GEM-
MP inference.

• (Q5.) Is GEM-MP accurate compared to state-of-the-art convergent message-passing
algorithms for other probabilistic graphical models such as Markov Random Fields?

9Note that l1 ⇔ l2 converted into CNF gives two clauses: (¬l1 ∨ l2) ∧ (l1 ∨ ¬l2)

72

We wish to examine the accuracy and convergence behaviour of GEM-MP inference for
other related model classes and algorithms.

• (Q6.) Is GEM-MP’s accuracy influenced by the initialization of the marginals? We
will examine if the initialization of approximate marginals using random values differs
from initializing marginals to a uniform distribution

To answer these questions Q1 to Q4, we first selected three real-world datasets: Cora for En-
tity resolution, Yeast for Protein-interactions, and UW-CSE for Advising relationships. Such
datasets10 and their corresponding MLN formulations contain the problematic properties of
determinism and cycles and therefore represent good bases for carrying out our experimen-
tal evaluations. The first point to note is that their expressive Markov logic networks have
a formidable number of cycles. Besides this, some of their rules can be expressed as hard
formulas. Thus, it is highly anticipated that the inference procedure will face the hindrances
engendered from determinism and cycles. The second point is that they exemplify important
applications: Entity resolution has recently become somewhat of a holy grail sort of task;
Advising relationships and Protein-interactions are instances of Link prediction, an impor-
tant task that always receives much interest in statistical relational learning (Richardson and
Domingos, 2006).

To evaluate our proposed GEM-MP inference algorithm, we compared its results with five
prominent state-of-the-art inference algorithms11 that are built-in to the Alchemy system12(Kok
et al., 2007):

• MC-SAT proposed by Poon and Domingos (2006).

• Lazy MC-SAT (LMCSAT) proposed by Poon et al. (2008).

• Loopy Belief Propagation (LBP) (refer to Yedidia et al., 2005).

• Gibbs sampling (Gibbs) (see Richardson and Domingos, 2006).

• Lifted Importance sampling (L-Im) proposed by Venugopal and Gogate (2014b) and
improved the one proposed by Gogate et al. (2012).

10Publicly available: http://alchemy.cs.washington.edu/data/
11These algorithms run on the original factor graph G.
12Alchemy 0.2 software is one of the powerful tools that is based on probabilistic theorem proving inference

engine for performing inference on Markov logic models. It is publicly available at: http://alchemy.cs.
washington.edu/

http://alchemy.cs.washington.edu/data/
http://alchemy.cs.washington.edu/
http://alchemy.cs.washington.edu/

73

MC-SAT rapidly reasons in the limit of determinism and L-Im is the recent lifted importance
sampling inference that addresses the evidence problem (see Venugopal and Gogate, 2014a)
and as a result improves the scalability and accuracy of reasoning. Therefore to answer Q1
and Q4, our main comparison is with MC-SAT and L-Im. Additionally, since our GEM-MP
algorithm is a variant of message-passing inference, we shall compare with LBP to answer
Q1, Q2, Q3, and Q4. Gibbs, a popular MCMC algorithm, can serve as a good baseline here.
Additionally, even though GEM-MP is built on a propositional basis, it may be suitable
to compare its scalability with two state-of-the-art approaches for scaling inference such as
Lifted in the L-Import algorithm and Lazy in the LMCSAT algorithm. Note that a few other
efficient inference methods are not considered in our experiments because they are completely
dominated by one of the three considered algorithms (e.g., simulated tempering had shown
poor results compared to MC-SAT, as shown by Poon and Domingos (2006)), or they run
exact inference (like PTP introduced by Gogate and Domingos (2011)), which is not feasible
for the underlying datasets.

4.6.1 Datasets

Cora. This dataset consists of 1295 citations of 132 different computer science papers13.
Recently, the dataset was cleaned and split by Singla and Domingos (2006a) into five subsets
for cross-validation.

• MLN: We used the MLN model which is similar to the established one of Singla
and Domingos (2006a). The MLN involves formulas stating regularities such as: if
two citations are the same, their fields are the same; if two fields are the same, their
citations are the same. Also it has formulas representing transitive closure, which are
assigned very high weight (i.e. near deterministic clauses). The final knowledge base
contains 10 atoms and 32 formulas (adjusted as 4 hard, 3 near-deterministic and 25
soft).

• Query: The goal of inference is to predict which pairs of citations refer to the same cita-
tion (SameBib), and similarly for author, title and venue fields (SameTitle, SameAuthor
and SameVenue). The other atoms are considered evidence atoms.

Yeast. This dataset captures information about a protein’s location, function, phenotype,
class, enzymes, and protein-protein interaction for the Comprehensive Yeast Genome14. It
contains four subsets, each of which contains the information about 450 proteins.

13Primarily, it was labeled by Andrew McCallum: https://www.cs.umass.edu/~Cmccallum/data/
cora-refs.tar.gz

14Originally, it was prepared by Munich Information Center for Protein Sequence.

https://www.cs.umass.edu/~Cmccallum/data/cora-refs.tar.gz
https://www.cs.umass.edu/~Cmccallum/data/cora-refs.tar.gz

74

• MLN: We used the MLN model described by Davis and Domingos (2009). It involves
singleton rules for predicting the interaction relationship, and rules describing how
protein functions relate to interactions between proteins (i.e. two interacting proteins
tend to have similar functions). The final knowledge base has 7 atoms and 8 first-order
formulas (2 hard and 6 soft).

• Query: The goal of inference is to predict the interaction relation (Interaction, Func-
tion). All other atoms (e.g., location, protein-class, enzyme, etc.) are considered
evidence atoms.

UW-CSE. This dataset records information about the University of Washington (UW),
Computer Science and Engineering Department (CSE). The database consists of five sub-
sets: AI, graphics, programming languages, systems, and theory (which corresponds to five
research areas).

• MLN: We used the MLN model available from the alchemy website15. It includes
formulas such as the following: each student has at most one advisor; if a student is an
author of a paper, so is her advisor; advanced students only TA courses taught by their
advisors; a formula indicates that it is not allowed for a student to have both temporary
and formal advisors at the same time (¬TemAdvised(s, p)∨¬Advised(s, p) which is a
true statement at UW-CSE), etc. The final knowledge base contains 22 atoms and 94
formulas (considered as 7 hard and 65 soft and we excluded the 22 unit clauses). Note
that ten out of these 22 clauses are equality predicates: Sameperson(person; person),
Samecourse(course; course), etc. which always have known, fixed values that are true
if the two arguments are the same constant. The rest of them are easily predictable
using the unit clause method.

• Query: The inference task is to predict advisory relationships (AdvisedBy), and all
other atoms are evidence (corresponding to the all information scenario in Richardson
and Domingos (2006)).

4.6.2 Metrics

Since computing the exact posterior marginals is not feasible for the underlying domains, we
evaluated the accuracy using two metrics:

• Average conditional log marginal-likelihood (CLL). The CLL, which approximates the
KL-divergence between the actual and computed marginals returned by an inference

15Available at: http://alchemy.cs.washington.edu/data/uw-cse/

http://alchemy.cs.washington.edu/data/uw-cse/

75

algorithm for query ground atoms, is an intuitive way of measuring the quality of the
produced marginal probabilities. After obtaining the marginal probabilities from the
inference algorithm, the CLL of a query atom is computed by averaging the log-marginal
probabilities of the true values over all its groundings.

• Balanced F1 score. For the F1-score metric, we predict that a query ground atom is
true if its marginal probability is at least 0.5; otherwise we predict that it is false (see
Huynh and Mooney, 2011, 2009; Papai et al., 2012, for more details about measuring
prediction quality on the basis of marginal probabilities). The advantage of F1-score is
its insensitivity to true negatives (TNs), and thus it can demonstrate the quality of an
algorithm for predicting the few true positives (TPs).

4.6.3 Methodology and Results

All the experiments were run on a cluster of nodes with multiprocessors running at 2.4 GHz
Intel CPUs and 4 GB of RAM with RED HAT Linux 5.5. We used the implementations of
both the training algorithm (preconditioned scaled conjugate gradient) and inference algo-
rithms (MC-SAT, LBP, and Gibbs) that exist in the Alchemy system (Kok et al., 2007). In
addition, we implemented our GEM-MP algorithm as an extension to Alchemy’s inference.
All of Alchemy’s default parameters were retained (e.g., 100 burn-in iterations to negate the
effect of initialization in MC-SAT and Gibbs).

We conducted the experimental evaluations through five experiments.

Experiment I

The first experiment was dedicated to answer Q1 and Q2. We ran our experiments using
a five-way cross-validation for both Cora and UW-CSE, and a four-way cross-validation for
Yeast. In the training phase, we learned the weights of models by running a preconditioned
scaled conjugate gradient (PSCG) algorithm (in Lowd and Domingos, 2007, it was shown
that PSCG performed the best). In the testing phase, and using the learned models, we
carried out inference on the held-out dataset, by using each of the four underlying inference
algorithms, for producing the marginals of all groundings of query atoms being true. Such
marginal probabilities were used to compute F1 and average CLL metrics.

Although, a traditional way to assess the inference algorithms would be to run them until
convergence and compare their running times and their accuracy, diagnosing the convergence
in this way is problematic because some of the algorithms may never converge in the presence
of determinism and cycles (e.g. LBP). Or some may converge very slowly with the existence

76

of near-determinism (e.g., Gibbs). Instead, we assigned all inference algorithms the same
running time that is sufficient to judge the inference behavior. Then, at each time step,
we recorded the average CLL over all query atoms, by averaging their CLLs on each held-
out test set. In addition, we calculated the F1 based on the results we obtained at the
end of the allotted time on only one held-out sub-dataset, which has the grounding truth:
Cora (contains ≈ 35659 ground truth: 11234 for SameBib, 12640 for SameTitle, 5339 for
SameAuthor and 6441 for SameVenue), Yeast (contains ≈ 46225: 21097 for Interaction and
25128 for Function), and UW-CSE (contains ≈ 76856 for AdvisedBy)

1

1
1

1
1

1 1 1 1 1 1

200 400 600 800

−
0

.7
−

0
.6

−
0

.5
−

0
.4

−
0

.3
−

0
.2

−
0

.1

Time (mins)

A
ve

ra
g

e
 C

L
L

2
2 2 2 2 2 2 2 2 2 2

3
3

3
3

3
3

3 3
3 3 34 4

4 4
4 4

4
4 4 4 4

5
5 5 5 5 5 5

5 5 5 5

6 6 6 6 6
6 6

6 6 6 6

GEM−MP

MC−SAT

LBP

Gibbs

LMCSAT

L−IM

Figure 4.4 Average CLL as a function of inference time for GEM-MP, MC-SAT, LBP, Gibbs,
LMCSAT, and L-Im algorithms on Cora.

Figures 4.4, 4.5, and 4.6 show the results for the average CLL as a function of time for infer-
ence algorithms on the underlying datasets. For each point, we plotted error bars displaying
the average standard deviation over the predictions for the groundings of each predicate (i.e.,

77

1

1
1

1
1 1 1 1 1 1 1 1

100 150 200 250 300 350

−
0

.0
4

2
−

0
.0

4
0

−
0

.0
3

8
−

0
.0

3
6

−
0

.0
3

4
−

0
.0

3
2

Time (mins)

A
ve

ra
g

e
 C

L
L 2 2 2 2 2 2 2 2

2 2 2 2

3

3
3

3
3

3
3

3 3

3
3

3

4
4 4 4 4

4 4 4 4 4 4 4

GEM−MP

MC−SAT

LBP

Gibbs

LMCSAT

L−IM

Figure 4.5 Average CLL as a function of inference time for GEM-MP, MC-SAT, LBP, Gibbs,
LMCSAT, and L-Im algorithms on Yeast.

78

1
1
1
11 1 1 1 1 1 1 1 1 1 1 1

0 50 100 150 200 250 300

−
0

.0
8

−
0

.0
7

−
0

.0
6

−
0

.0
5

−
0

.0
4

Time (mins)

A
ve

ra
g

e
 C

L
L

2
2
222 2 2 2 2 2 2 2 2 2 2 2

3

3

33
3 3 3 3 3 3 3 3 3 3 3 3

4

4
44

4 4 4 4 4
4 4 4 4 4 4 4

GEM−MP

MC−SAT

LBP

Gibbs

LMCSAT

L−IM

Figure 4.6 Average CLL as a function of inference time for GEM-MP, MC-SAT, LBP, Gibbs,
LMCSAT, and L-Im algorithms on UW-CSE.

79

per marginals node). Note that when the error bars are tiny, they may not be clearly visible
in the plots. Overall, GEM-MP is the most accurate of all the compared algorithms, achiev-
ing the best average CLL on Yeast and UW-CSE datasets (this answers Q1).16 For the Cora
dataset, it took about 225 minutes to dominate all other inference algorithms.17 MC-SAT
came close behind GEM-MP on both Cora and UW-CSE, but considerably further on Yeast.
LBP was marginally less accurate than Gibbs on both Cora and UW-CSE (which is consis-
tent with the experiments of Singla and Domingos (2008)), but more accurate than Gibbs
on Yeast. Remarkably, GEM-MP converged quickly on both Yeast and UW-CSE datasets
and converged comparatively fast on Cora as well (this answers Q2). By contrast, LBP
was unable to converge, oscillating on both Cora and Yeast datasets, and Gibbs converged
very slowly on all datasets. L-Im was clearly more accurate than Gibbs on all the tested
datasets. In addition, its accuracy was more than LBP’s accuracy with large margins on
Cora and UW-CSE, and slightly less accurate than LBP on the Yeast dataset. The accuracy
of MC-SAT and its lazy algorithm (LMCSAT) were very close on all the used datasets.

Table 4.3 Average F1 scores for the GEM-MP, MC-SAT, Gibbs, LBP, LMCSAT, and L-Im
inference algorithms on Cora, Yeast, and UW-CSE at the end of the allotted time.

Datasets Algorithms
Query GEM-MP MC-SAT Gibbs LBP LMCSAT L-Im

Cora SameBib 0.778 0.695 0.443 0.382 0.690 0.491
SameAuthor 0.960 0.926 0.660 0.657 0.926 0.690
SameTitle 0.860 0.790 0.570 0.515 0.780 0.581
SameVenue 0.843 0.747 0.584 0.504 0.739 0.613

Yeast Interacts 0.792 0.669 0.474 0.536 0.651 0.512
Function 0.820 0.691 0.492 0.575 0.679 0.532

UW-CSE advisedBy 0.762 0.589 0.483 0.415 0.580 0.504
Overall average 0.831 0.730 0.529 0.512 0.720 0.560

Table 4.3 reports the average F1 scores for the inference algorithms. The results complement
those of Figures 4.4, 4.5 and 4.6, underscoring the promise of our proposed GEM-MP algo-
rithm for obtaining the highest quality among the alternatives for predicting marginals,

16Note that the average standard deviation error bars do not overlap between the GEM-MP’s curve and
MC-SAT’s curve at any point, which means that the difference between the two curves is statistically signif-
icant (with p = 0.05).

17Note that, for the Cora dataset, the construction of the grounded network required for inference takes
≈ 185 minutes on average.

80

particularly for the TP query atoms (i.e. query atoms that are true and predicted to
be true). GEM-MP substantially outperformed LBP, Gibbs and L-IM algorithms on all
datasets, achieving 39%, 37% and 33% greater accuracy than LBP, Gibbs and L-IM respec-
tively (answer Q2). MC-SAT was relatively competitive compared with GEM-MP on Cora
and UW-CSE, but on the Yeast dataset GEM-MP performed significantly better, attaining
13% greater accuracy than MC-SAT (conclusive answer to Q1). Both Gibbs and LBP rivaled
each other on the tested datasets, and both were overshadowed by MC-SAT. LMCSAT was
very competitive to its propositional MC-SAT with approximately 2.2% loss in accuracy.

Experiment II

Here we concentrated on Q3. To obtain robust answers, we examined the performance of
GEM-MP, MC-SAT and LBP algorithms at varying amounts of determinism. Thus, we
re-ran experiment I, but at gradual amounts of determinism. We marked each amount of
determinism as a zone, where determinism-zones are ∈ [0, 50]. Note that the 0-zone stands
for zero percentage of determinism (i.e., all clauses in the model are considered soft clauses),
and 50-zone means 50 percentage of determinism (i.e., we considered 50% of the clauses in
the model as hard clauses and 50% as soft clauses). Each zone of determinism in the range
would represent a level of comfort18 or discomfort for both GEM-MP and LBP algorithms.

Figures 4.7, 4.8, and 4.9 report the average CLL as a function of time for GEM-MP and
LBP inference algorithms at different determinism zones. Overall, the results confirm that
the amount of determinism in the model has a great impact on both the accuracy and the
convergence of GEM-MP and LBP. That is, when traversing from one zone of determinism
to the next, where a greater percentage of determinism is present, we observe an increase
in the accuracy of GEM-MP and a decrease in the accuracy of LBP. Also, on all datasets,
at each zone of determinism, GEM-MP prevailed over the corresponding LBP in terms of
accuracy of results (answering Q3). In addition, the greater amount of determinism in the
zone, the greater the convergence for GEM-MP, and the greater the non-convergence for LBP
(answering Q2). Remarkably, the 0-zone, which has no amount of determinism, represents
the most uncomfortable19level for GEM-MP. Conversely, it was the most comfortable level
for LBP. However, even in this zone, GEM-MP surpassed LBP on all datasets. For MC-SAT,
increasing the determinism in the model has a small impact on its accuracy since traversing
from one zone to a higher one with a larger percentage of determinism, a decrease in its

18Note that we used the term “Comfort” to reflect the quality of the convergence and the accuracy of the
marginals obtained from the algorithm.

19Note that, at 0-zone, the 0-amount of determinism (i.e., no hard clauses) eliminates the usage of the
Hard-update-rule from GEM-MP, which could place GEM-MP outside of its comfortable zone.

81

1

1 1
1

1
1 1 1 1 1 1

200 400 600 800

−
0

.8
−

0
.6

−
0

.4
−

0
.2

Time (mins)

A
ve

ra
g

e
 C

L
L

2

2
2 2

2
2 2 2 2 2 2

3

3 3
3 3

3
3 3 3 3 3

4

4
4

4
4

4 4 4 4 4 4

5

5
5 5 5 5

5 5
5 5 5

6
6

6
6

6 6
6 6

6 6 6

7

7
7

7

7
7

7 7
7

7 7

8

8
8

8

8
8

8
8

8
8

8

9
9 9 9 9 9 9 9 9 9 9

0
0 0 0 0 0 0 0 0 0 0

a
a a a a a a a a a a

b
b b b b b b b b b b

GEM−MP 0%

GEM−MP 6.25%

GEM−MP 12.5%

GEM−MP 18.75%

LBP 0%

LBP 6.25%

LBP 12.5%

LBP 18.75%

MC−SAT 0%

MC−SAT 6.25%

MC−SAT 12.5%

MC−SAT 18.75%

Figure 4.7 The impact of gradual zones of determinism on the accuracy of GEM-MP, MC-SAT
and LBP algorithms for Cora dataset.

82

1
1

1
1 1

1 1 1 1 1 1 1

100 150 200 250 300 350

−
0

.0
4

5
−

0
.0

4
0

−
0

.0
3

5
−

0
.0

3
0

Time (mins)

A
ve

ra
g

e
 C

L
L

2
2

2
2 2 2 2 2 2 2 2 2

3
3

3
3

3 3 3 3 3 3 3 3

4
4

4
4 4 4 4 4 4 4 4 4

5

5
5

5 5 5
5

5
5

5 5 5

6

6
6

6 6
6

6 6
6

6 6 6

7

7
7

7
7

7 7

7
7

7
7

7

8

8

8

8
8

8

8 8 8

8
8

8

9 9 9 9 9 9 9 9 9 9 9 9

0 0 0 0 0 0 0 0 0 0 0 0
a a a a a a a a a a a a
b b b b b b b b b b b b

GEM−MP 0%

GEM−MP 12.5%

GEM−MP 37.5%

GEM−MP 50%

LBP 0%

LBP 12.5%

LBP 37.5%

LBP 50%

MC−SAT 0%

MC−SAT 12.5%

MC−SAT 37.5%

MC−SAT 50%

Figure 4.8 The impact of gradual zones of determinism on the accuracy of GEM-MP, MC-SAT
and LBP algorithms for Yeast dataset.

83

1
1
111

1 1 1 1 1 1 1 1 1 1 1

0 50 100 150 200 250 300

−
0

.1
0

−
0

.0
9

−
0

.0
8

−
0

.0
7

−
0

.0
6

−
0

.0
5

−
0

.0
4

Time (mins)

A
ve

ra
g

e
 C

L
L

2
2
222

2 2 2 2 2 2 2 2 2 2 2

3
3
333

3 3 3 3 3 3 3 3 3 3 3

4
44

44 4 4 4 4 4 4 4 4 4 4 4

5

5
555 5 5 5 5 5 5 5 5 5 5 5

6

6
666

6 6 6 6 6 6 6 6 6 6 6

7
7
7
7
7

7
7

7
7

7 7
7

7 7 7 7

8

8

8
8
8 8

8
8

8 8
8

8
8 8 8 8

9
9999 9 9 9 9 9 9 9 9 9 9 9

0
0000 0 0 0 0 0 0 0 0 0 0 0

a
aaaa a a a a a a a a a a a

b
bbbb b b b b b b b b b b b

GEM−MP 0%

GEM−MP 9.72%

GEM−MP 19.4%

GEM−MP 29.2%

LBP 0%

LBP 9.72%

LBP 19.4%

LBP 29.2%

MC−SAT 0%

MC−SAT 9.72%

MC−SAT 19.4%

MC−SAT 29.2%

Figure 4.9 The impact of gradual zones of determinism on the accuracy of GEM-MP, MC-SAT
and LBP algorithms for UW-CSE dataset.

84

accuracy was observed on all the tested datasets.

Experiment III

This experiment examines Q4. We are interested here in judging the scalability of various
inference algorithms. To guarantee a fair comparison, we rerun experiment I, but we increased
the number of objects in the domain from 100 to 200 in increments of 25, adhering to the
methodology previously used by Poon et al. (2008); Shavlik and Natarajan (2009). Then we
reported the average running time after converging (if the algorithm was able to converge)
or allowing a maximum of 5000 and 10000 iterations respectively for the entire inference
process.

1
1

1

1

1

100 120 140 160 180 200

0
1

0
0

0
0

3
0

0
0

0
5

0
0

0
0

7
0

0
0

0

No. Objects

T
im

e
 (

se
cs

)

2

2

2

2

2

3 3
3

3

3

4
4

4

4

4

GEM−MP
MC−SAT
LBP
Gibbs
LMCSAT
L−IM

Figure 4.10 Inference time vs. number of objects in Cora.

Figures 4.10, 4.11 and 4.12 report the average inference time as a function of the varied
number of objects in the domain. Overall, the results show that both LMCSAT (a lazy-based

85

1

1

1

1

1

100 120 140 160 180 200

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

No. Objects

T
im

e
 (

se
cs

)

2

2

2

2

2

3
3

3

3

3

4
4 4

4

4

GEM−MP
MC−SAT
LBP
Gibbs
LMCSAT
L−IM

Figure 4.11 Inference time vs. number of objects in Yeast.

86

1
1

1

1

1

100 120 140 160 180 200

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

No. Objects

T
im

e
 (

se
cs

)

2
2

2

2

2

3
3

3

3

3

GEM−MP
MC−SAT
LBP
Gibbs
LMCSAT
L−IM

Figure 4.12 Inference time vs. number of objects in UW-CSE.

87

algorithm) and L-IM (lifted-based algorithm) rivaled each other, and both dominate all other
compared propositional algorithms. L-IM was relatively scalable compared with LMCSAT
on Yeast and UW-CSE, but on the Cora dataset LMCSAT’s scalability was significantly
better than L-IM. Aside from Lazy- and Lifted-based algorithms and by considering the
propositional ones, the results demonstrate that GEM-MP is scalable compared to the other
evaluated inference algorithms. It clearly prevailed over both LBP and Gibbs on the entire
range of domain sizes by a significant margin, while saving time by more than a factor of 2
on all datasets. It also rivaled the MC-SAT algorithm overall. Although it came in slightly
behind MC-SAT on the Cora dataset, it outperformed MC-SAT in handling all domain sizes
on both Yeast and UW-CSE datasets, whereas MC-SAT ran out of memory with 200 objects
in UW-CSE dataset.

Experiment IV

This experiment was performed to answer Q5. Here the goal is to compare GEM-MP with
three state-of-the art convergent message passing algorithms:

• L2-Convex proposed in Hazan and Shashua (2010, 2008), which runs sequential message
passing on the convex-L2 Bethe free energy.

• RBP proposed by Elidan et al. (2006), which runs damped Residual BP, a greedy
informed schedule for message passing.

• CCCP double loop algorithm proposed by Yuille (2001, 2002), which runs message-
passing on the convex-concave Bethe free energy.

To evaluate the four underlying message passing algorithms we apply them to Ising models
on a two dimensional grid network. These model networks are standard benchmarks for eval-
uating message-passing algorithms, as it provides a systematic way to analyze iterative algo-
rithms (see Elidan et al., 2006). Following Hazan and Shashua (2010) and Elidan et al. (2006),
we generated 20×20 grids: The distribution has the form p(x) ∝ e

∑
(Xi,Xj)∈E θij ·XiXj+

∑
Xi
θi·Xi ,

where θi, θij are parameters (i.e., weights) of the univariate and pairwise potentials respec-
tively. For univariate potentials, the parameters θi were drawn uniformly from U [−df , df]
where df ∈ {0.05, 1}. For pairwise potentials, we use eη·C when xi = xj where we sample
η in the range [−0.5, 0.5] having some nodes to agree and disagree with each other. C is
an agreement factor, so the higher values of C impose stronger clauses (e.g., C = 200 and
η = 0.5 yield deterministic potentials since if a state violates a potential with C = 200 it
becomes 2.69 × 1043 times less probable). Thus to challenge and explore the difficulty of

88

inference in different regimes, we generate the networks in two determinism zones: Zone1 is
[0%− 20%] and Zone2 is [20%− 40%], with realizations obtained at 10% intervals, 50 graphs
at each interval. In each individual realization of the interval, we run the four underlying
inference algorithms for the network with time allowed to run until convergence up to 500
iterations (Note that, in this experiment, the inference algorithms are assigned only 500 iter-
ations since the tested (Ising grid) datasets are translated into graphical models (defined over
≈ 400 variables) which are much smaller than those graph models representing Cora, Yeast
and UW-CSE.). To diagnose the convergence, we considered the cumulative percentage of
convergence of all algorithms as a function of the number of iterations. To address the quality
of results, where exact inference was tractable using the junction tree algorithm, we compute
the average KL-divergence (KL) metric between the approximate and exact node marginals
for each algorithm.

Figure 4.13 displays the cumulative percentage of convergence as a function of the number of
iterations for each algorithm at the determinism Zone1 [0%− 20%] and Zone2 [20%− 40%].
Overall, the results show that GEM-MP converges significantly more often than all other
compared convergent message-passing algorithms (answering Q5). Also, it converges much
faster than them. In the first determinism zone, it finishes at 97% convergence rates versus
82% for L2-Convex, 68% for CCCP, and 59% for residual BP. In the second determinism
zone, where the amount of determinism increases, it clearly achieves at least 17.5%, 34.8 %,
and 48.4 % better convergence than L2-Convex, CCCP, and residual BP respectively.

Figure 4.14 displays the average KL-divergence (KL) between the approximate and exact
node marginals for each algorithm as a function of the number of iterations for each algo-
rithm in the two determinism zones considered. The results complement those of Figure 4.13,
here again these results underscore the promise of GEM-MP for converging to more accurate
solutions more rapidly than all other compared algorithms (answering Q5). In the two de-
terminism scenarios, it achieves on average 37.8%, 56%, and 61.6 % higher quality marginals
in terms of the average KL compared to the L2-Convex, CCCP, and residual BP methods
respectively. Also, it finishes at KL-divergence of 0.23 and 0.19 in the two determinism
zones respectively. This ensures that the quality of marginals obtained by GEM-MP in the
second determinism zone are more accurate than the ones obtained in the first determinism
zone, which is consistent with the results in experiment II that demonstrate that GEM-MP
provides more robust results when there is more determinism in the model.

89

1

1

1

1
1

1 1 1 1 1 1

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

No. Iterations

%
 o

f
ru

n
s
 C

o
n
v
e
rg

e
d

2

2
2

2

2
2 2

2 2 2 2

3

3

3
3 3

3 3 3
3 3 3

4

4

4

4

4 4 4 4 4 4 4

GEM−MP

L2−Convex

RBP

CCCP

1

1

1

1 1
1 1 1 1 1 1

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

No. Iterations

%
 o

f
ru

n
s
 C

o
n
ve

rg
e
d

2

2

2 2

2 2
2

2 2

2 2

3

3

3 3

3
3 3 3

3 3 3

4

4

4

4
4 4 4 4 4 4 4

GEM−MP

L2−Convex

RBP

CCCP

Figure 4.13 The results of 20 × 20 grids of Ising model: The cumulative percentage of con-
vergence (Convergence %) vs. number of iterations at determinism Zone1 [0%− 20%] (Top)
and at determinism Zone2 [20%− 40%] (Bottom).

90

1

1

1

1
1

1 1
1

1 1 1

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

No. Iterations

A
v
g
.
K

L
 d

iv
e
rg

e
n
c
e

2

2

2

2

2
2 2

2 2
2 2

3

3

3
3

3 3 3 3
3 3 3

4

4

4

4

4 4 4 4 4 4 4

GEM−MP

L2−Convex

RBP

CCCP

1

1

1

1 1

1

1
1

1 1 1

0 100 200 300 400 500

0
.2

0
.4

0
.6

0
.8

1
.0

No. Iterations

A
v
g
.
K

L
 d

iv
e
rg

e
n
c
e

2

2

2
2

2

2 2 2 2

2 2

3

3

3 3

3 3
3 3

3
3 3

4

4

4

4

4
4 4 4 4 4 4

GEM−MP

L2−Convex

RBP

CCCP

Figure 4.14 The results of 20 × 20 grids of Ising model: The average KL-divergence (KL)
metric vs. number of iterations at determinism Zone1 [0%− 20%] (Top) and at determinism
Zone2 [20%− 40%] (Bottom).

91

Experiment V

This experiment attempts to answer Q6. The goal is to compare the quality of solutions
returned by GEM-MP at different initializations settings of marginals: GEM-MP with ran-
dom initialization (GEM-MP-random) and GEM-MP with uniform initialization (GEM-MP-
uniform). That is to say, we re-ran experiment I for MLNs and recorded the relative corre-
lations of the average CLL between GEM-MP-random and GEM-MP-uniform. In addition,
we re-ran experiment IV for Ising models and report the relative correlations of the average
KL-divergence between GEM-MP-random and GEM-MP-uniform.

Figure 4.15 shows the quality of marginals obtained from GEM-MP-random relative to the
quality of marginals of GEM-MP-uniform as a function of the number of iterations at two
determinism zones for Cora (red), Yeast (green), UW-CSE (magenta), and Ising (blue). In
each scatter plot, the line of best fit indicates that both GEM-MP-random and GEM-MP-
uniform yield results of nearly identical quality Any point below the line means that GEM-
MP-uniform was more accurate than GEM-MP-random in that iteration, and the contrary
is true if the point is above the line. Overall, the results show that none of the initialization
settings dominates the other (answering Q6), and that GEM-MP is not sensitive to the
initialization settings.

4.7 Discussion

The experimental results from the previous section suggest that, in terms of both accuracy
and scalability, GEM-MP outperforms LBP inference. It improves message-passing inference
in two ways. First, it alleviates the threat of non-convergence in the presence of cycles. This
is due to making moderate moves in the marginal likelihood space and the consequences of
Jensen’s inequality which prevents such moves from overshooting the nearest local minimum.
Second, it improves quality of approximate marginals obtained in the presence of deter-
minism, which we believe is attributable to the virtue of using the concept of generalized
arc consistency to leverage the local entries of factors to compute more accurate outgoing
messages.

Moreover, GEM-MP performs at least as well as the other state-of-the-art sampling-based
inference methods (such as MC-SAT and Gibbs) algorithms. The goal of MC-SAT is to com-
bine a satisfiability-based method (e.g., SampleSAT) with MCMC based sampling approaches
to remedy the challenges engendered by determinism in the setting of MCMC inference. On
one hand, GEM-MP achieves a similar goal, but by integrating a satisfiability-based method
(i.e., GAC) with message-passing inference, instead of sampling inference. On the other

92

−0.22 −0.20 −0.18 −0.16 −0.14 −0.12 −0.10

−
0
.2

5
−

0
.2

0
−

0
.1

5

GEM_MP_Random

G
E

M
_
M

P
_
U

n
ifo

rm

−0.22 −0.20 −0.18 −0.16 −0.14 −0.12 −0.10 −0.08

−
0
.2

5
−

0
.2

0
−

0
.1

5
−

0
.1

0

GEM_MP_Random

G
E

M
_
M

P
_
U

n
ifo

rm

−0.037 −0.036 −0.035 −0.034 −0.033

−
0
.0

3
4
0

−
0
.0

3
3
5

−
0
.0

3
3
0

−
0
.0

3
2
5

−
0
.0

3
2
0

GEM_MP_Random

G
E

M
_
M

P
_
U

n
ifo

rm

−0.037 −0.036 −0.035 −0.034 −0.033 −0.032
−

0
.0

3
2
5

−
0
.0

3
2
0

−
0
.0

3
1
5

−
0
.0

3
1
0

−
0
.0

3
0
5

GEM_MP_Random

G
E

M
_
M

P
_
U

n
ifo

rm

−0.047 −0.045 −0.043 −0.041

−
0
.0

4
6

−
0
.0

4
4

−
0
.0

4
2

−
0
.0

4
0

GEM_MP_Random

G
E

M
_
M

P
_
U

n
ifo

rm

−0.044 −0.042 −0.040 −0.038

−
0
.0

4
3

−
0
.0

4
1

−
0
.0

3
9

−
0
.0

3
7

GEM_MP_Random

G
E

M
_
M

P
_
U

n
ifo

rm

0.3 0.4 0.5 0.6 0.7

0
.3

0
.4

0
.5

0
.6

GEM_MP_Random

G
E

M
_
M

P
_
U

n
ifo

rm

0.2 0.3 0.4 0.5 0.6 0.7

0
.2

0
.3

0
.4

0
.5

0
.6

GEM_MP_Random

G
E

M
_
M

P
_
U

n
ifo

rm

Figure 4.15 From Top to middle: The average CLL of GEM-MP-random (x-axis) vs. the aver-
age CLL of GEM-MP-Uniform (y-axis) for Cora (red), Yeast (green) and UW-CSE (magenta)
at two determinism zones, respectively. Bottom: the average KL-divergence of GEM-MP-
random vs. the average KL-divergence of GEM-MP-Uniform for 20× 20 grids of Ising model
at determinism zone1 [0% − 20%] (left-blue) and at determinism zone2 [20% − 40%] (blue)
during iterations.

93

hand, they completely differ in how they use ideas from satisfiability oriented methods to
deal with the issue of determinism.

From the satisfiability perspective, MC-SAT uses the SampleSAT (see Wei et al., 2004) to
help slice sampling (i.e., MCMC) to near-uniformly sampling a new state given the auxiliary
variables. This provides MC-SAT with the ability to rapidly jump between breaking modes,
and thus it avoids the local search in MCMC inference from being trapped in isolated modes.
Accordingly, one of the limitation of MC-SAT is that it applies a stochastic greedy local-
search procedure which is unable to make large moves in the state-space between isolated
modes. This may affect its capacity to converge to accurate results. Conversely, at a high
level, GEM-MP optimizes the setting of parameters with respect to a distribution over hidden
variables that captures the relative weights of samples (i.e., the valid local entries) that are
generated by individual variables in closed form. Thereby it performs a sort of gradient
descent/ascent local search procedure. This gives GEM-MP an advantage in converging to
more accurate results than MC-SAT, though MC-SAT is more likely to converge faster than
GEM-MP. This could explain the great success of GEM-MP over MC-SAT on most of the
experiments (MC-SAT only surpassed GEM-MP on the Cora dataset in experiment III). But
we have to remember that, during the training phase, we trained the models by applying
a preconditioned scaled conjugate gradient (PSCG) algorithm which uses MC-SAT for its
inference step. This, in turn, gave an advantage to the MC-SAT algorithm when performing
inference in the testing phase.

Gibbs is only reliable when neither determinism nor near-determinism are present. LBP,
for its part, also deteriorates in the presence of determinism and near-determinism, but also
when cycles are present. Thus, if LBP gets stuck in cycles with determinism, it may be
lodged there forever. However, if Gibbs hits a local optimum, it would eventually leave, even
though it may take ages. This could explain the success of Gibbs over LBP. But, with the
increase of determinism in the model, Gibbs loses out to LBP, as seen in the case of the Yeast
dataset in experiment I. Thus, apparently, the result of determinism has a stronger effect on
Gibbs than on LBP in this experiment.

Furthermore, GEM-MP performs better than the other state-of-the-art convergent message-
passing inference algorithms such as L2-Covex, CCCP and Damped residual BP. The goal of
L2-Convex is to convexify the Bethe free energy to guarantee BP converging to an accurate
local minimum. CCCP algorithm uses a convex-concave Bethe energy for achieving the same
purpose. On the one hand, GEM-MP achieves a similar purpose by optimizing a concave
variational free energy, which is a lower bound to the model evidence. On the other hand, it
additionally leverages the determinism, and therefore, while the presence of determinism in a

94

model can hinder the performance and converging behaviour of both L2-Convex and CCCP
to reach a local minimum, it increases the possibility that GEM-MP converges to accurate
one.

Overall, the experimental results suggest that the initialization of GEM-MP does not signifi-
cantly matter in practice since the correlation of two initialization settings (i.e., uniform and
random) is often moderately positive on average. While we believe that it is important to
have a good initialization to ensure that the local minimum that is found is sufficiently close
to the global minimum, it seems that a good initialization will depend on the model and
data. Therefore, in some cases either random or uniform initialization will suffice, whilst in
others it may be necessary to use a heuristic. However, generally speaking, it appears that
GEM-MP is able to reach an accurate result given any initialization, but maybe with minor
sacrificing in the allowed computational cost.

From the scalability point of view, although Singla (2012) conjectured that lifted inference
may subsume lazy, a clear relationship between lifted inference and lazy inference still eludes
us. Our experimental results show that none of them was able to dominate the other. On
one hand, lazy inference exploits sparseness to ground the network lazily, and therefore
greatly reduces the inference memory and time as well. But lazy inference still works at
the propositional level, in the sense that the basic units during inference are ground clauses.
In contrast, lifted inference exploits a key property of first-order logic to allow answering
queries without materializing all the objects in the domain inference. On the other hand,
lifted inference requires the network to have a specific symmetric structure, which is not
always the case in real-world applications, and in addition, in the presence of evidence most
models are not liftable because evidence breaks symmetries. Thus, at a high level, the
structure of the model network plays a significant role on the scalability of inference using
different factors: symmetry and sparseness. If the model is extremely sparse then one can
expect lazy inference to be more scalable. Lifted inference dominates when the symmetry
prevails in the model’s structure.

95

CHAPTER 5 EXPLOITING DETERMINISM TO SCALE INFERENCE

Although determinism frequently poses a significant challenge to probabilistic inference (as
discussed in Chapter 1), it remains an intrinsic part of the structure of SRL models. One
approach (Allen and Darwiche, 2003) based on recursive conditioning has been proposed to
exploit determinism in order to speed up exact inference by using standard logical techniques
such as unit propagation. But the approach does not scale to large real-world problems.
More recently, an efficient algorithm (Papai et al., 2011) based on ideas from constraint
programming has been introduced to use determinism in order to prune objects in the domain
of atoms by enforcing generalized arc consistency on the set of hard constraints in the theory.
For each hard constraint, the algorithm iteratively performs two main operations (join and
project) and therefore its complexity (both space and time) is sensitive to the complexity of
those operations that are in some cases exponential in the number of atoms.

In this chapter, our main objective is to exploit determinism to improve inference for large,
real-world problems. That is, we propose Preference Relaxation (PR), a two-stage strategy
that uses the determinism (i.e. hard constraints) present in the underlying model to improve
the scalability of relational inference. Strictly speaking, PR takes advantage of the fact
that hard constraints are sufficient to extract zero marginal probabilities for the considerable
number of query ground atoms that violate them, and this without ever having to waste
computational time (and memory usage) with preferences.

In what follows we begin by demonstrating our general PR approach in Section 5.1. Then we
explain how PR applies to both MC-SAT and Belief Propagation algorithms in Section 5.2.
Finally we present experimental evaluations in Section 5.4, followed by our discussion in
Section 5.5.

5.1 Scaling Up Relational Inference via PR

In graphical models that feature determinism, it is wasteful to allocate memory to all con-
straints in advance when performing inference. The PR framework first allocates memory
to the hard constraints along with their corresponding variables. In domains where most
variables are more likely to violate hard constraints, this can save memory and also speed
up the computation since we do not allocate memory and perform computations for soft
constraints that do not affect the marginal probabilities of some query variables.

Definition 14. Let F be a set of constraints. Each constraint fi(X1, ...Xl) ∈ F , where the

96

Xj’s are either variables or functions, has an inference state. The default state of constraints
is awake, meaning that the constraint will be considered when constructing the underlying
grounded network for answering the queries (i.e. for inference). Otherwise the constraint is
relaxed, meaning that it will be ignored. A variable is awake if it appears directly as an
argument of an awake constraint or in a function that is an argument of an awake constraint.
Otherwise it is considered to be relaxed.

5.1.1 The PR Framework

Assume thatA is an inference algorithm that we want to transform via PR to obtain inference
algorithm Â. We make the following assumptions about A so that our framework can be
used: (1) the theory of A involves carrying out a propositionalization step, then calling
a propositional inference algorithm; (2) the propositional inference algorithm used by A
updates one variable at a time.

We now describe how to derive Â from A. Algorithm 4 takes as input an underlying model
of constraintsM (e.g. a Markov logic model that involves clauses with associated weights),
query variables X whose marginals we want to compute, a pruning threshold γ, and an
evidence database DB that involves variables we can condition. Its output are the marginal
probabilities B of query variables X . In the first stage we relax all soft constraints and allocate
memory for the hard constraints that are not satisfied when all evidence variables are set to
their fixed values. This consequently awakens the non-evidence variables that are involved in
these hard constraints. The awake variables and awake hard constraints become the initial
set of variables and constraints that are used to perform inference, computing marginal
probabilities of awake query variables. Since many local-search-based inference algorithms
(e.g., WalkSAT) as well as MCMC-based algorithms resort to randomization to choose the
next variable to update, when relaxing the preferences we apply a smart randomization
technique (Poon et al., 2008) over awake variables only. After convergence, Â filters the set
of awake query variables: those whose marginals are at most γ are removed from X and are
added to evidence database DB as false evidence, and those whose marginals are at least
1− γ are added as true evidence.

In the second stage Â awakens all preferences that were previously relaxed. It then con-
structs the grounded network based on both the enlarged evidence database DB∗ and the
reduced set of query variables X ∗∗. That is to say it allocates memory for awake constraints
(both hard and soft) that are not satisfied in the new evidence database DB∗ to answer
query variables X ∗∗. Then it applies the appropriate probabilistic inference to compute the
marginal probabilities of awake query variables X ∗∗. It is worth noting that although the

97

query variables are awakened at some point during inference, ultimately all of their marginal
probabilities are guaranteed to be computed, but some are computed in the first stage (i.e.,
filtered query variables) and the rest will be computed in the second stage.

Algorithm 4 PR-based Inference algorithm Â

Input: Evidence database (DB), set of query variables (X), underlying model (M), pruning
Threshold (γ).

Output: Marginals of query variables (B).
// Preference Relaxation (PR) step

1: Fh ← awake hard constraints that are not satisfied by DB;
2: Xh ← awake query variables in X that appear in Fh;
3: Mh ← ConstructNetwork(Xh,Fh,DB);
4: BXh

← Infer(Xh,Mh);
// Filtering query variables Xh

5: for each Xj ∈ Xh do
6: if β+

Xj
≤ γ then

DB ← DB ∪ {¬Xj} ;
BX̂ ← BX̂ ∪

{
β+
Xj

}
; X ← X \ {Xj} ;

7: else if β+
Xj
≥ 1− γ then

DB ← DB ∪ {Xj} ;
BX̂ ← BX̂ ∪

{
β+
Xj

}
; X ← X \ {Xj} ;

8: end if
9: end for
10: DB∗ ← DB; // Enlarge evidence database
11: X ∗ ← X ; //Shrink query set

// Awake all relaxed preferences
12: F∗ ← awake hard and soft constraints that are not satisfied by DB∗;
13: X ∗∗ ← awake query variables in X ∗ that appear in F∗;

//Construct the reduced ground network
14: M∗ ← ConstructNetwork(X ∗∗,F∗,DB∗);
15: BX ∗∗ ← Infer(X ∗∗,M∗);
16: B ← BX ∗∗ ∪ BX̂ ;
17: Return B;

The advantage of our PR strategy is three-fold. First we avoid unnecessary computations
with soft constraints to obtain marginal probabilities of awake query variables that violate
awake hard constraints. Second we reduce the set of query variables X by filtering out some
awake query variables that violate hard constraints. Third we enlarge the evidence database
by adding those filtered query variables, which reduces the effective size of the grounded
network that will be constructed for inference in the second stage since the evidence variables

98

are fixed to their truth values.

5.2 PR-based Relational Inference Algorithms

In relational domains the variables are ground atoms which are defined over Boolean domains
D = {+,−}. A ground atom is an evidence if its marginal β+ = 0 (false evidence) or β− = 0
(true evidence). The constraints are ground clauses. The ground clause is relaxed if it is set
to a non-default state and otherwise it is awake. A ground atom is awake if it is included by
(at least) one awake ground clause, otherwise it is relaxed.

PR-based inference algorithm Â is general and can be combined with many relational infer-
ence algorithms such as MCMC sampling (e.g. Gibbs sampling, simulated tempering, etc.),
MC-SAT, Walk-SAT, and Belief propagation (BP). Here we illustrate PR-based relational
inference for Belief propagation and MC-SAT, and use the latter in our experiments.

5.2.1 PR-BP

Given a factor graph G, PR-BP performs three steps. The situation is depicted in Fig. 5.1(b).

• Step (i) - Relaxing the Factor Graph: We relax soft factors and construct the
factor graph for factor nodes and variable nodes that represent the awake ground hard
clauses and their awake ground atoms, respectively. Assuming there is no evidence, all
awake variable nodes are queries. We simulate BP inference by alternating the passing
of awake messages.1 The message from an awake variable Xj to an awake factor fi is:

µawakeXj→fi
=

∏
fk∈FXj

\{fi}
µawakefk→Xj

(5.1)

and the message from an awake factor fi to awake variable Xj is:

µawakefi→Xj
=

∑
Xfi
\{Xj}

f awakei

∏
Xk∈Xfi

\{Xj}
µawakeXk→fi

 (5.2)

• Step (ii) - Enlarging the Evidence Database: We keep track of which variables
and factors send and receive violating awake messages: an awake message is violating
if it is less than γ or greater that 1− γ. The weight of an edge is the number of times
the variable node receives an identical violating message from the same factor node. If

1The message is awake if it is passed between the awake variable node and the awake factor node, or vice
versa.

99

we obtain a specified weight of such a message for a variable, then this means that it
violates the hard factor. Thus we filter the variable and relax its messages.

For instance at Fig. 5.1(b)-ii, if variable C violates a factor we mark it as evidence (i.e.
black circle) by adding it to DB and relax its passing of messages with this factor (i.e.
dashed line). In addition if a factor is satisfied by marking one of its argument variable
nodes as evidence then we relax this factor (i.e. black square) and relax its messages
as well.

• Step(iii) - Constructing the reduced Factor Graph: We awake soft factors and
construct the reduced grounded factor graph based on the last information we obtained
from step (2). We then run the standard BP algorithm on it.

5.2.2 PR-MC-SAT

PR-MC-SAT initializes by relaxing all soft clauses and awakens only those hard clauses that
are not satisfied by the given evidence database DB. It then calls Walk-SAT to find a solution
to all awake hard clauses (which is a satisfying assignment to their awake ground atoms).
At each iteration it generates membership M by sampling from the currently satisfied awake
hard clauses. Note that since the candidate clauses in M are all hard, we do not select
them based on their weights (all uniformly infinite) but whenever their auxiliary variable
is greater than 1. We then run unit propagation in order to simplify the selected clauses
in M . PR-MC-SAT next calls SampleSAT (Wei et al., 2004) to obtain the next state over
awake atoms by sampling near-uniformly from their solutions inM , which is initialized using
smart randomization (Poon et al., 2008) over the awake atoms. Once the num_samples
threshold is reached we identify awake atoms whose marginals are less than γ or greater than
1− γ. These atoms are removed from the query set and added to the evidence database. We
then awake the soft clauses and construct a grounded Markov network based on the shrunken
query list and enlarged evidence database, on which we perform standard MC-SAT inference.

5.3 Combining PR with Lazy Inference

One key advantage of PR is that it can be combined with other state-of-the-art approaches
which improve the scalability of inference, such as Lazy and Lifted. Algorithm 5 shows
how to combine PR with Lazy MC-SAT (Poon et al., 2008): it only differs from PR with
propositional MC-SAT at Lines 2, 5, 6, and 8. Lazy-PR starts by calling Lazy-SAT to find
the solution to awake hard constraints and then runs unit propagation among active-awake
hard clauses in M and their atoms. It then calls Lazy-SampleSAT to obtain the next state

100

Figure 5.1 a) Propositional-BP. b) From left to right, the steps of PR-BP inference algorithm.

by sampling near-uniformly from the solutions in M . After reaching the num_samples
threshold, it filters active-awake query atoms and enlarges the evidence database.

Algorithm 5 Combining PR with Lazy MC-SAT.

1: Relax soft clauses and maintain only active
hard clauses that are awakened;
// call Lazy-SAT

2: X (0)
h ← Satisfy (active-awake hard clauses);

3: for i← 1 to num_samples do
4: M ← ∅;
5: for all ck ∈ active-awake hard clauses satisfied by X (i−1)

h do
6: add ck to M ;
7: end for
8: Sample X (i−1)

h ∼USAT(M); //call Lazy SampleSAT
9: end for

10: [DB∗,X ∗]← Filtering the active-awake query atoms BXh
;

11: Construct the grounded network lazily on DB∗ and X ∗;
12: call MC-SAT;

5.4 Experimental Evaluations

The goal of our experimental evaluation is to investigate the following key questions.

101

• (Q1) Is PR powerful enough to reduce significantly the size of grounded networks?

• (Q2) Is PR-based inference competitive with prominent state-of-the-art methods such
as Lazy Inference?

• (Q3) How is the scalability of PR-based inference influenced by the amount of de-
terminism present in the underlying model and the pruning threshold that is used in
filtering the query variables?

We experimented on a protein interaction task in a molecular biology domain, a link predic-
tion task in a social networking domain, and an entity resolution task in a citation matching
domain. In these problem domains it is possible to transform certain soft constraints into
hard constraints. This provides us with the ability to test PR at differing levels of hard
constraints.

5.4.1 Metrics

To assess PR, we compared the scalability and accuracy (with and without PR) for both
propositional MC-SAT (Poon and Domingos, 2006) and its lazy inference version (Poon
et al., 2008), as implemented in the Alchemy system (Kok et al., 2007). We use the following
metrics:

• Space consumption

• Running time of network construction and inference.

• Average conditional log-likelihood (CLL).

5.4.2 Methodology

We conducted the experimental evaluations in the following manner. In the training phase,
we learned the weights using a preconditioned scaled conjugate gradient (PSCG) algorithm
(Lowd and Domingos, 2007) by performing a four-way cross-validation for the protein inter-
action task, and a five-way cross-validation for both the link prediction and entity resolution
tasks. In the testing phase, we carried out inference on the held-out dataset to produce the
marginals of all groundings of query atoms being true by using the following six underlying
inference algorithms:

• MC-SAT

102

• Lazy-MC-SAT

• PR-MC-SAT 0.001

• PR-MC-SAT 0.01

• PR-Lazy-MC-SAT 0.001

• PR-Lazy-MC-SAT 0.01

We ran each algorithm until it either converged or its number of iterations exceeded 10 000.
To obtain robust answers to the proposed questions, we did the following:

• vary the number of objects in the domains, following methodology previously used
(Poon et al., 2008);

• use two pruning thresholds 0.001 and 0.01 for PR;

• vary the amounts of determinism in the models (i.e., starting with hard constraints
that initially exist in MLN, we gradually increase the number of hard constraints and
re-run the experiment).

All of the experiments were run on a cluster of nodes with 3.0 GHz Intel CPUs, 3 GB of RAM,
RED HAT Linux 5.5, and we implemented PR as an extension to the Alchemy software (Kok
et al., 2007).

5.4.3 Datasets

Protein Interaction

Here we use the MLN model of Davis and Domingos (2009) for a Yeast protein interaction
problem. This dataset has been already described in detail in Chapter 4. The goal of inference
is to predict the interaction relation (Interaction, and Function). Here, we ran the experiment
at two amounts of determinism: 25% (i.e., ratio: 2 constraints out of 8 constraints, initially
present as hard in MLN) and 37.5% (ratio: 3 constraints out of 8 constraints were considered
hard), and we varied the number of objects in the domain from 0 to 1000 by increments of
50.

103

Link Prediction

For the link prediction task, we used the MLN model available on the Alchemy website (ex-
cluding the 22 unit clauses) of the UW-CSE dataset from (Richardson and Domingos, 2006).
This dataset has been previously described in detail in Chapter 4. The inference task is to
predict advisory relationships (AdvisedBy), and all other atoms are evidence (corresponding
to all the information scenario (Richardson and Domingos, 2006)). Here we ran the experi-
ment at two amounts of determinism: ≈ 9.7% (ratio: 7 out of 72 constraints were hard) and
≈ 38.9% (ratio: 28 out of 72 constraints were considered hard). In addition, we varied the
number of objects in the domain from 0 to 400 by increments of 50.

Entity Resolution

For the entity resolution experiment, we used the MLNmodel that is similar to the established
one of Singla (Singla and Domingos, 2006a) on the Cora dataset from Poon et al. (2008),
which has been described in detail in Chapter 4. The goal of inference is to predict which
pairs of citations refer to the same citation, author, title and venue (i.e, SameBib, SameTitle,
SameAuthor and SameVenue). The other atoms are considered evidence atoms. We ran
the experiment at two amounts of determinism: ≈ 12.5% (ratio: 4 out of 32 constraints,
actually already appearing in MLN as hard) and ≈ 25% (ratio: 8 out of 32 constraints were
considered hard). Additionally, we varied the number of objects in the domain from 0 to 500
by increments of 50.

5.4.4 Results

Figures 5.2–5.9 display the space and time for total inference (where total inference = con-
struction time + inference time) as a function of the number of objects in the domain for the
six underlying inference algorithms at different amounts of determinism. The results show
that PR-MC-SAT at thresholds 0.001 and 0.01 finishes at least four orders of magnitude
faster than the propositional MC-SAT on both Yeast and UW-CSE datasets, and three or-
ders of magnitude on the Cora dataset. It was also very competitive with Lazy Inference on
Yeast and on UW-CSE with 38.9% determinism. In addition, PR-lazy-MC-SAT at thresholds
0.001, 0.01 exceeds both the propositional MC-SAT and the lazy-MC-SAT on all underlying
tested datasets. Clearly, PR-lazy-MC-SAT 0.01 was able to handle all full datasets, whereas
lazy-MC-SAT ran out of memory with 1000 objects in the Yeast dataset.

Table 5.1 summarizes the average Construction (with and without PR) and inference times
(mins.), memory (MB) and accuracy (CLL) metrics of Propositional grounding and PR-based

104

Figure 5.2 Inference time (secs) vs. number of objects in Yeast at 25% amount of determinism.

105

Figure 5.3 Inference time (secs) vs. number of objects in Yeast at 37.5% amount of deter-
minism.

106

Figure 5.4 Inference time (secs) vs. number of objects in UW-CSE at 9.7% amount of
determinism.

107

Figure 5.5 Inference time (secs) vs. number of objects in UW-CSE at 38.9% amount of
determinism.

108

Figure 5.6 Inference time (secs) vs. number of objects in Cora at 12.5% amount of determin-
ism.

109

Figure 5.7 Inference time (secs) vs. number of objects in Cora at 25% amount of determinism.

110

Figure 5.8 Inference memory space (bytes) vs. number of objects in Cora at 25% amount of
determinism.

111

Figure 5.9 Inference memory space (bytes) vs. number of objects in UW-CSE at 25% amount
of determinism.

MC-SAT inference algorithms on the underlying datasets. The results complement those of
Figure 5.8, ensuring the promise of PR-based algorithms to improve MC-SAT’s inference
time and memory space. It also shows that RP-based algorithms at low thresholds (0.001)
maintain approximately the same accuracy on the three underlying datasets, although they
have a minor loss in accuracy to estimate marginals with a large pruning threshold (0.01),
particularly in the Cora dataset.

5.5 Discussion

Overall the results clearly show that PR-based algorithms substantially improve the scalabil-
ity of propositional MC-SAT inference. This is due to, first, avoiding irrelevant computations
as well as memory usage involving soft ground clauses for the large number of query ground

112

Table 5.1 Average Construction (with and without PR) and Inference times (mins.), mem-
ory (MB) and accuracy (CLL) metrics of Propositional grounding and PR-based MC-SAT
inference algorithms on the Yeast data set over 200 objects, the UW-CSE data set over 150
objects, and the Cora data set over 200 objects.

Datasets Yeast UW-CSE Cora
Determinism % Determinism % Determinism %

Algo. Metric 25% 37.5% 9.7% 38.9% 12.5% 25%

P
ro
po

si
t. Cons. 63.82 63.83 7.92 7.92 80.85 81.01

Infer. 716.26 797.44 783.75 873.38 1074.15 1390.33
Mem. 389 429 1144.41 1445.93 1430.51 1653.87
CLL −0.0353 −0.0357 −0.0433 −0.0457 −0.210 −0.245

P
R

0.
00
1 PR-Cons. 99.93 117.58 13.27 14.97 162.5 170.5

Infer. 150.94 90.15 169.05 140.03 270.13 249.62
Mem. 125.85 93.29 314.68 213.60 535.88 439.43
CLL −0.0354 −0.0362 −0.0443 −0.0467 −0.219 −0.261

P
R

0.
01

PR-Cons. 98.33 110.82 12.98 13.09 195.7 201.02
Infer. 126.32 70.38 114.06 93.60 164.3 131.51
Mem. 112.40 80.17 258.39 160.93 376.97 301.58
CLL −0.0365 −0.0370 −0.0459 −0.0470 −0.235 −0.280

atoms that violate hard ground clauses. Second, the enlarging of the evidence database that
provides great implications for reducing the effective size of the grounded network.

PR-based algorithms were also very competitive with respect to Lazy Inference whenever a
substantial amount of determinism is present in the model. This can be attributed to the
fact that determinism offers a trade-off for the capacity of PR-based algorithms in terms
of saving/wasting computational time and memory: on one hand the PR step costs both
memory and time for inference on a large number of hard clauses, but on the other hand it
shrinks the query set and enlarges the evidence database. Moreover, PR-based algorithms
dominate both propositional MC-SAT and lazy-MC-SAT on all tested data sets when they
were combined with Lazy Inference. This is because the result of such combination is the
exploitation of both sparseness in Lazy and determinism in PR to scale up the inference.

113

CHAPTER 6 IMPROVING MAP INFERENCE USING CLUSTER
BACKBONES

In this chapter, our main objective is to bring SP’s success and SRL closer together for the
benefit of MAP inference. That is, to remedy the aforementioned limitations of local search
algorithms, which are due to search space clustering as explained in chapter 1, we introduce
Weighted Survey Propagation-Inspired Decimation (WSP-Dec), a family of message-passing
algorithms for applying MAP inference to SRL models and Markov logic in particular.

We have organized this chapter in the following manner. In Section 6.1, we demonstrate the
family of WSP-χ algorithms. Then, in Section 6.2, we explain how WSP-χ can be applied to
improve MAP inference in Markov logic. In Section 6.4, we conduct a thorough experimental
study, which is followed by a discussion in Section 6.5.

6.1 WSP-χ Framework

6.1.1 Factor Graph Re-parameterization

To set up the framework of WSP-χ, the first thing we do is to generalize the natural inter-
pretation of core assignments (see Definition 11) to be applicable to MAP inference in SRL
models. That is, we introduce a new notion of max-core (denoted as “W-core”):

Definition 15. A max-core (W-core) is a valid complete assignment X ∈ {0, 1, ∗}n such
that:

• The total weight of its satisfying ground clauses equals W

• It contains no unconstrained ground atoms equaling 0 or 1

• It satisfies all the hard ground clauses (if there are both hard and soft ground clauses
involved in the model).

Intuitively, the simple interpretation of a max-core is that it is a combinatorial object pro-
viding a representative generalization of MAP solutions within a cluster. Additionally, the
core defined in Definition 11 is a particular case of the W-core wherein W is the sum of all
the ground clauses.

Now the second thing to be done in WSP-χ’s framework is to modify the factor graph such
that it defines a joint probability over complete assignments that are max-cores. Specifically,

114

Figure 6.1 (Left) An example factor graph G that involves grounding clauses F = {fa, fb, fc, fd}, and
three ground atoms {X1, X2, X3}, where dashed and solid lines represent “-” and “+” appearance
of the atoms, respectively. (Right) The extended factor graph Ĝ, after adding auxiliary mega-
node variables P = {P1, P2, P3} and auxiliary factor nodes Φ = {ϕ1, ϕ2, ϕ3}, which yields a set of
extended factors F̂ =

{
f̂a, f̂b, f̂c, f̂d

}
.

we need to re-parameterize the factor graph in such a way that carrying out a BP on the
new parameterization is equivalent to running a weighted variant of SP on the original factor
graph for MAP inference. In Figure 6.1(left), we consider a simple example of a factor graph G
that involves four ground clauses F = {fa, fb, fc, fd}, and three ground atoms {X1, X2, X3}.
We re-parameterize this factor graph by transforming it into an extended factor graph Ĝ,
shown in Figure 6.1(right), as follows:

• We extend the domain of each ground atom Xj to take values in {0, 1, ∗}.

• We add an auxiliary mega-node Pj (dashed circle) corresponding to each ground atom
node Xj. Each of these mega-nodes Pj captures the parent set Pj(X) of Xj. Although
there could be several ways to define Pj(X), we use a definition similar to the one used
by Maneva et al. (2007)

Pj(X) = {f ∈ F|CONj,f (Xf) = 1} (6.1)

That is, Pj(X) is the set of ground clauses for which Xj is the unique satisfying variable
in X (i.e., the set of ground clauses constraining Xj to its value). P = {Pj}nj=1 is
the set of auxiliary mega-nodes in G, with n = 3 in the example factor graph of
Figure 6.1(right).

• Now, since we expand the arguments of each factor fi by including auxiliary mega-node
variables that correspond to their ground atoms Xfi

, we then have an extended factor

115

f̂i. F̂ = {f̂i}mi=1 is the set of extended factors in G, with m = 4 in the example factor
graph. Note that this extension implies that the complete assignments {X} in the
original factor graph G extended to corresponding configurations {ρX} in the extended
factor graph. Each configuration ρX takes the form ρX = {Xj, Pj(X)}Xj∈X such that
the projection πρX

(X) of ρX onto variables X produces a complete assignment X to G,
representing a candidate for a max-core.

Each f̂i defines the following function for each configuration ρX

f̂i(ρX(Xf̂i
)) = ξ(πρX

(Xfi
))×

∏
Xk∈Xfi

δ([fi ∈ Pk(X)],CONk,fi
(Xfi

)) (6.2)

where ξ is a reward function that assigns different values to the projection πρX
(Xfi

) of
X onto the original factor fi as follows:

ξ(πρX
(Xfi

)) =

eŵi·y If πρX

(Xfi
) satisfies fi,

ν̂i If πρX
(Xfi

) violates fi,

0 If πρX
(Xfi

) is invalid for fi.

(6.3)

where ŵi is the weight associated with original factor fi, y is a cooling parameter that
plays a similar role to the y in SP-y algorithm (Battaglia et al., 2004), and ν̂i is a
violation value that equals 1, if fj is a soft ground clause, and 0, if it is a hard ground
clause. Therefore the role of ξ function is to provide a reward eŵi·y into the joint
probability of a valid max-core X if it satisfies fi, and to penalize it by 0 if X violates
fj, which is a hard ground clause. The second term in Eq. 6.2 involves a multiplication
of the Kronecker delta function δ:

δ(
κ1︷ ︸︸ ︷

[fi ∈ Pk(X)],
κ2︷ ︸︸ ︷

CONk,fi
(Xfi

)) =

1 κ1 = κ2

0 κ1 6= κ2

(6.4)

which represents a constraint that enforces the consistency between the parent set
Pk(X) and the set of ground clauses constraining the ground atom Xk to its value.

• In addition, we attach an auxiliary factor node ϕj (dashed square) that connects each
ground atom node Xj with its corresponding auxiliary mega-node Pj. Each ϕj defines

116

the following function for any configuration ρX:

ϕj(ρX(Xj, Pj)) =

γ If Pj(X) = ∅, and Xj 6= ∗.

χ If Pj(X) = ∅, and Xj = ∗,

1 for other valid (Xj, Pj),

(6.5)

where χ and γ are smoothing parameters restricted with a condition γ + χ = 1. In
the first case, the function ϕj assigns a value γ to a complete assignment X that is an
invalid max-core (since the projection of ρX onto X has an unconstrained variable Xj

set to 1 or 0, it represents an invalid max-core). In the second case, if the complete
assignment X represents a valid max-core then it is assigned a positive value χ. In
the third case the validity of (Xj, Pj) means that if Xj = 1 (resp. Xj = 0), then
Pj(X) ⊆ FXj+ (resp. Pj(X) ⊆ FXj−). Φ = {ϕj}nj=1 is the set of auxiliary factors in G,
with n = 3 in the example factor graph of Figure 6.1(right).

• For example, Table 6.1 depicts the expansion of complete assignments {1, 0, 1} and
{1, 1, 1} in G to their corresponding ρX configurations in Ĝ. As an illustration, consider
the complete assignment {1, 0, 1} in G, this assignment has X1 = 1 constrained by fd,
X2 = 0 constrained by {fc, fd}, and X3 = 1 constrained by fc. The assignment {1, 1, 1}
implies the same constrained ground clauses for X1 and X3, but not for X2 which can
not be constrained to 1 by any ground clause. In the extended factor graph Ĝ, we
note that flipping the X2 value from 0 to 1 will not violate or satisfy any additional
ground clauses. Thus, we have additionally the complete assignment {1, ∗, 1}. Now,
each one of three assignments {1, 0, 1}, {1, 1, 1} and {1, ∗, 1} can be a max-core with
a certain probability. However, both of the complete assignments X = {1, 0, 1} and
X = {1, 1, 1} have identical parent sets P1 = {f̂d}, P2 = ∅, and P3 = {f̂c}. Note that
these two assignments yield an invalid max-core since they violate the second condition
in the concept of max-core (see Definitions 6 and 15). Thus, their corresponding ρX

configurations have joint probability multiplied by γ. On the contrary, X = {1, ∗, 1} is a
valid max-core and its corresponding ρX configurations have joint probability multiplied
by χ.

Note that decreasing the value of γ, which is equivalent to increasing χ’s value, implies
increasing the probability that both {1, 0, 1} and {1, 1, 1} assignments can not be a max-
core. It also increases the probability that {1, ∗, 1} can be a max-core. (It will be shown in
subsection 6.1.3 that the best parameterization to Ĝ is to choose χ = 1 and γ = 0.)

Now it should be noted that since the values of a complete assignment X of X determine

117

Table 6.1 (Left) The joint probabilities of complete assignments {1, 0, 1} and {1, 1, 1} in
the original factor graph. (Right) The (solution cluster-based) joint probabilities of their
corresponding configurations ρX in the extended factor graph, where ŵc (resp. ŵd) are the
weights associated with the factors fc (resp. fd) that are satisfied by the underlying complete
assignments.

X1 X2 X3 p(X1, X2, X3)
1 0 1 e(ŵc+ŵd)·y

1 1 1 e(ŵc+ŵd)·y

· · · ·

X1 X2 X3 P1 P2 P3 p(X1, X2, X3, P1, P2, P3)
1 0 1 fd ∅ fc γ × e(ŵc+ŵd)·y

1 1 1 fd ∅ fc γ × e(ŵc+ŵd)·y

1 * 1 fd ∅ fc χ× e(ŵc+ŵd)·y

· · · · · · ·

uniquely the values of {Pj(X)}Xj∈X in ρX, then the distribution over ρX is a distribution over
X. Hence the extended factor graph defines the joint probability over complete assignment
X as follows:

p(X) = p(πρX
(X)) =

∏
f̂i∈F̂

f̂i(ρX(Xf̂i
))

∏
Xj∈X

ϕj(πρX
(Xj, Pj)) ∝ γn0χn∗

∏
fi∈S(X)

eŵi.y (6.6)

where n0 is the number of unconstrained ground atoms in X having the value 1 or 0, and
n∗ is the number of unconstrained ground atoms in X having joker value ∗. S(X) represents
the set of all ground clauses satisfied by X.

6.1.2 WSP-χ Message-Passing

The message passing process of WSP-χ proceeds by iteratively sending two types of messages
on the extended factor graph Ĝ until convergence. These messages are slightly different from
simply running the standard BP algorithm, but their structures are categorized based on the
value of the set of auxiliary mega-nodes P in Ĝ as follows:

- Factor-to-variable message (ηf̂i→Xj
): each extended factor f̂i sends to its ground atoms

Xj ∈ Xf̂i
a message which is a vector of four components:

ηf̂i→Xj
=

ηs
f̂i→Xj

if Xj = si,j , Pj ⊆ Fsf̂i
(j) ∪ {f̂i}

ηu
f̂i→Xj

if Xj = ui,j , Pj ⊆ Fuf̂i
(j)

η∗
f̂i→Xj

if (Xj = ∗, Pj = ∅) ∨ (Xj = si,j , Pj ⊆ Fsf̂i
(j))

0 Otherwise.

(6.7)

where ηs
f̂i→Xj

represents the probability of the warning that Xj is constrained to be uniquely

118

satisfying for f̂i, ηuf̂i→Xj
is the probability that Xj can violate f̂i, and η∗f̂i→Xj

represents the
probability that f̂i does not care about the value of Xj (i.e., Xj is either unconstrained by
f̂i or at least one other variable Xk in Xf̂i

\ {Xj} satisfies f̂i and Xj equals ∗).

- Variable-to-Factor message (µXj→f̂i
). Here each ground atom Xj sends to its extended

factors f̂i ∈ FXj
a message that consists of three components:

µXj→f̂i
=

µs
Xj→f̂i

if Xj is constrained to satisfy f̂i,

µu
Xj→f̂i

if Xj is constrained to violate f̂i,

µ∗
Xj→f̂i

if Xj is unconstrained to f̂i or equals ∗

(6.8)

where the components represent the probabilities that Xj warned by other extended factors
Ff̂i

(j) to satisfy, violate, and be unconstrained to f̂i, respectively.

6.1.3 A Family of Extended Factor Graphs

In a promising attempt at understanding the success of SP, it was suggested that the solutions
of random formulas typically do not possess non-trivial cores (Maneva et al., 2007) (the core
assignment is non-trivial if it has at least one frozen variable). This implies that the variants
of SP(ρ) are most effective for values of ρ close to and not necessarily equal to 1. That is,
pure SP, denoted as SP(1), is not always the most effective method that one usually wants
to use, and that other versions of BP could be preferable. This is because the near-core
assignments which are the ones of maximum weight in this case, may correspond to quasi-
solutions of the cavity equations (Montanari et al., 2004). However, this explanation has been
shortly dismissed by experiments that ensure that non-trivial cores simply do exist for large
formulas (Kroc et al., 2007). This means that the pure SP is surprisingly the most accurate
at computing marginals over these cores despite the existence of many cycles in the formulas
(Kroc et al., 2007). Recently, it has been shown that the cores can represent singleton clusters
(with very few variables taking the ∗ value). These cores are called degenerate covers (Chieu
et al., 2007). In addition, it has been proven that, in many structured weighted Max-SAT
problems, cores are often degenerate — see Lemma (2) in (Chieu et al., 2007).

All of the aforementioned observations motivate the studying of a full family of WSP-χ
extended factor graphs at various values of the smoothing parameter (i.e., 0 ≤ χ ≤ 1).
This can be helpful to investigate if the MAP solutions possess non-trivial max-cores or
not. From the satisfiability perspective, we believe that this can be beneficial for more
understanding about the combinatorial properties of the solution space of structured SAT
problems in relational domains. It can also be used to study the satisfiability threshold of

119

these problems, and classifying them according to connectivity of the solution space.

Based on that, if we now adjust the value of the smoothing parameter1, χ ∈ [0, 1], in the
auxiliary factor nodes (see Eq. 6.5), we consequently have a family of extended factor graphs
that can be categorized into three cases:

• Case 1. set χ 6= 0 and γ 6= 0: we have a subset of extended factor graphs parame-
terized by 0 < χ < 1. That is, for each value of χ ∈ (0, 1), we have an extended factor
graph that defines a positive joint distribution over max-cores as defined in Eq. (6.6).
Hence, running WSP-χ’s message-passing (as explained in subsection 6.1.2) recovers a
family of Weighted SP algorithms corresponding to the values of χ ∈ (0, 1).

• Case 2. set χ = 0 and γ = 1: In this case the max-cores with n∗ = 0 are the only
ones having a positive joint distribution as given in Eq. (6.6). This means that the
ground atoms are not allowed to take a joker value ∗, but take only values 1 or 0. This
implies that the extended factor graph Ĝ is equivalent to the original factor graph G
in such a way that renders running WSP-χ’s message-passing on Ĝ equivalent to loopy
max-product BP on G.

• Case 3. set χ = 1 and γ = 0: Here each auxiliary factor node (as defined in Eq. 6.5)
takes the form

ϕj(ρX(Xj, Pj)) =

0 If Pj(X) = ∅, and Xj 6= ∗,

1 If Pj(X) = ∅, and Xj = ∗,

1 for other valid (Xj, Pj)

(6.9)

where in the first case the function ϕj assigns a value 0 only if X is an invalid max-core
(from Definition 15, when the complete assignment has unconstrained ground atom set
to 1 or 0 then it can not be a max-core). Otherwise it assigns a positive value 1 when
X is a valid max-core. Therefore, the extended factor graph in this case has a joint
distribution over max-core X, as defined in the following theorem 2.

Theorem 2. The underlying joint distribution defined by the extended factor graph, Ĝ with
χ = 1, is positive only over valid max-cores.

Proof. see Appendix A
1Note that since γ+χ = 1 then γ = 1−χ, so we can specify the setting of the auxiliary factor node using

only one parameter χ.

120

Consequently, performing WSP-χ’s message-passing on Ĝ with χ = 1 produces a pure version
of Weighted SP algorithm (WSP-1).

Theorem 3. When y →∞, then WSP-1 estimates marginals corresponding to the stationary
point of the Bethe free energy on a uniform distribution over max-cores.

Proof. see Appendix A

From the above formulations, we have a parameterized family of Weighted Survey Propa-
gation algorithms (WSP-χ), ranging from a traditional max-product BP (WSP-0) to pure
weighted SP (WSP-1). In Subsection 6.4.3, our experimental evaluation shows the success
of pure WSP-1 on real-world problems for finding the most accurate MAP solutions. This is
consistent with experimental results in (Kroc et al., 2007; Chieu et al., 2007), showing that
non-trivial cores often do exist for large formulas of structured problems.

6.1.4 Derivation of WSP-χ’s Update Equations

In this subsection we derive the update equations for WSP-χ’s message passing. For simplic-
ity, and without lose of generality, we consider the derivation of WSP-1 (a pure version of
WSP-χ when setting χ = 1 in Ĝ). Now with the messages expressed in Eqs. (6.7) and (6.8),
we can update the WSP-1’s message passing in the following way.

Variable-to-Factor Updates

Let us start the variable-to-factor updates by computing the update of the message µs
Xj→f̂i

.
This message represents the event that Xj is constrained by other extended factors to satisfy
f̂i, and therefore, it is specified by the values of Xj = si,j and its mega-node Pj = Zj ∪ {f̂i}.
That is, it takes the form:

µs
Xj→f̂i

=
{ ∑
Zj⊆Fs

f̂i
(j)
ηf̂i→Xj

∣∣∣∣∣Xj = si,j, Pj = Zj ∪ {f̂i}
}

(6.10)

where Pj = Zj ∪ {f̂i} is a notation representing the following event for a ground atom Xj

f̂i ∈ Pj and Zj = Pj \ {f̂i} ⊆ F sf̂i
(j) (6.11)

121

Now we can compute Eq. (6.10) as

µs
Xj→f̂i

=
∑

Zj⊆Fs
f̂i

(j)

∏
f̂k∈Zj

ηs
f̂k→Xj

∏
f̂k∈Fs

f̂i
(j)\Zj

η∗
f̂k→Xj

∏
f̂k∈Fu

f̂i
(j)

ηu
f̂k→Xj

(6.12a)

=
[∏
f̂k∈Fs

f̂i
(j)

(
ηs
f̂k→Xj

+ η∗
f̂k→Xj

)] ∏
f̂k∈Fu

f̂i
(j)

ηu
f̂k→Xj

(6.12b)

where from Eq. (6.12b), we update µs
Xj→f̂i

by multiplying two parts: the first one represents
the probability that Xj satisfies all its constrained factors F s

f̂i
(j) and the second is the

probability that Xj violates all its violating factors Fu
f̂i

(j).

Similarly for the message µu
Xj→f̂i

. This message is specified by values of Xj = ui,j and its
mega-node Pj ⊆ Fuf̂i

(j). Thus, we have:

µu
Xj→f̂i

=
{ ∑
Zj⊆Fu

f̂i
(j)
ηf̂i→Xj

∣∣∣∣∣Xj = ui,j, Pj = Zj

}
(6.13a)

=
∑

Zj⊆Fu
f̂i

(j),Zj 6=∅

∏
f̂k∈Zj

ηs
f̂k→Xj

∏
f̂k∈Fu

f̂i
(j)\Zj

η∗
f̂k→Xj

∏
f̂k∈Fs

f̂i
(j)

ηu
f̂k→Xj

(6.13b)

−
∏

f̂k∈Fs
f̂i

(j)

η∗
f̂k→Xj

∏
f̂k∈Fs

f̂i
(j)

ηu
f̂k→Xj

=
[∏
f̂k∈Fu

f̂i
(j)

(
ηs
f̂k→Xj

+ η∗
f̂k→Xj

)
−

∏
f̂k∈Fs

f̂i
(j)

η∗
f̂k→Xj

] ∏
f̂k∈Fs

f̂i
(j)

ηu
f̂k→Xj

(6.13c)

where from Eq. (6.13c), we update µs
Xj→f̂i

by multiplying the probability that Xj violates
all its constrained factors F s

f̂i
(j) with the probability that Xj satisfies all its violating factors

Fu
f̂i

(j).

Finally, computing the message µ∗
Xj→f̂i

specifies the values of Xj = si,j with Pj = F s
f̂i

(j), and

122

Xj = ∗ with Pj = ∅, as follows:

µ∗
Xj→f̂i

=
{ ∑
Zj⊆Fs

f̂i
(j)
ηf̂i→Xj

∣∣∣∣∣Xj = si,j, Pj = Zj

}
+ ηf̂i→Xj

∣∣∣∣∣Xj = ∗, Pj = ∅
}

(6.14a)

=
∑

Zj⊆Fs
f̂i

(j),Zj 6=∅

∏
f̂k∈Fs

f̂i
(j)

ηs
f̂k→Xj

∏
f̂k∈Fs

f̂i
(j)

η∗
f̂k→Xj

∏
f̂k∈Fu

f̂i
(j)

ηu
f̂k→Xj

−
∏

f̂k∈Fu
f̂i

(j)

η∗
f̂k→Xj

∏
f̂k∈Fs

f̂i
(j)

ηu
f̂k→Xj

+
∏

f̂k∈Fs
f̂i

(j)

η∗
f̂k→Xj

∏
f̂k∈Fu

f̂i
(j)

η∗
f̂k→Xj

(6.14b)

=
[∏
f̂k∈Fs

f̂i
(j)

(
ηs
f̂k→Xj

+ η∗
f̂k→Xj

)
−

∏
f̂k∈Fu

f̂i
(j)

η∗
f̂k→Xj

] ∏
f̂k∈Fu

f̂i
(j)

ηu
f̂k→Xj

+
∏

f̂k∈Fs
f̂i

(j)∪Fu
f̂i

(j)

η∗
f̂k→Xj

(6.14c)

where from Eq. (6.14c), we update µ∗
Xj→f̂i

by considering the probability that Xj is uncon-
strained from either its satisfying factors F s

f̂i
(j) or its violating factors Fu

f̂i
(j).

Factor-to-Variables Updates

Let us start here with the message ηs
f̂i→Xj

. This message implies that Xj = si,j and f̂i ∈ Pj,
and that the only possible assignment for the other ground atoms Xk ∈ Xf̂i

\{Xj} is ui,k and
their mega-nodes are Pk ⊆ Fuf̂i

(k). Accordingly, using the definition of µu
Xk→f̂i

in Eq. (6.13a),
we obtain the following:

ηs
f̂i→Xj

=
{ ∏
Xk∈Xf̂i

\{Xj}

[∑
Pk⊆Fu

f̂i
(k)
µXk→f̂i

]
× eŵi·y

∣∣∣∣∣Xk = ui,k, Pk ⊆ Fuf̂i
(k)
}

(6.15a)

=
[∏
Xk∈Xf̂i

\{Xj}
µu
Xk→f̂i

]
×

reward︷ ︸︸ ︷
eŵi·y (6.15b)

That is, from Eq. (6.15b), we update ηs
f̂i→Xj

by considering the product of the messages of
all other ground atoms of f̂i except Xj that are violating it. Then we reward the result by
multiplying it with the factor term eŵi·y (refer to Eq. 6.3 for the definition of the reward
term).

Now moving to the message ηu
f̂i→Xj

. This message represents the probability that Xj can
violate f̂i. That is to say, we have Xj = ui,j and Pj ⊆ Fuf̂i

(j). This probability implies a
combination of three possibilities (having weights labeled as W1,W2 and W3) for the other

123

ground atoms Xk ∈ Xf̂i
\ {Xj} in a potential complete assignment:

1. There is one ground atom in Xf̂i
\ {Xj} satisfying f̂i, and all the other ground atoms

are violating it

W1 =
{ ∑
Xk∈Xf̂i

\{Xj}

∑
Zk⊆Fs

f̂i
(k)
µXk→f̂i

∣∣∣∣∣Xk = si,k, Pk = Zk ∪ {f̂i}
}

×
{ ∏
Xi∈Xf̂i

\{Xk,Xj}

[∑
Zi⊆Fu

f̂i
(i)
µXi→f̂i

]∣∣∣∣∣Xi = ui,i, Pi = Zi}
}

(6.16a)

=
∑

Xk∈Xf̂i
\{Xj}

µs
Xk→f̂i

×
∏

Xi∈Xf̂i
\{Xk,Xj}

µu
Xi→f̂i

(6.16b)

2. There are two or more ground atoms in Xf̂i
\ {Xj} satisfying f̂i or equal joker ∗, and

all other ground atoms are violating it

W2 =
∑

Xk∈Xf̂i
\{Xj}

[{ ∑
Zk⊆Fs

f̂i
(k)
µXk→f̂i

∣∣∣∣∣Xk = si,k, Pk = Zk

}
+
{
µXk→f̂i

∣∣∣∣∣Xk = ∗, Pk = ∅
}]

×
{ ∏
Xi∈Xf̂i

\{Xk,Xj}

[∑
Zi⊆Fu

f̂i
(i)
µXi→f̂i

]∣∣∣∣∣Xi = ui,i, Pi = Zi

}
(6.17a)

=
∏

Xk∈Xf̂i
\{Xj}

[
µu
Xk→f̂i

+ µ∗
Xk→f̂i

]
−

∑
Xk∈Xf̂i

\{Xj}
µ∗
Xk→f̂i

×
∏

Xi∈Xf̂i
\{Xk,Xj}

µu
Xi→f̂i

−
∏

Xk∈Xf̂i
\{Xj}

µu
Xk→f̂i

(6.17b)

Note that the weight assigned to the event that each ground atom is either satisfying
or ∗ is ∏Xk∈Xf̂i

\{Xj}

[
µu
Xk→f̂i

+ µ∗
Xk→f̂i

]
, and the weight W2 is given by subtracting

from this quantity the weight assigned to the event that there are not at least two
joker ground atoms ∗ or satisfying. This event is a combination of two disjoint events
that either all other ground atoms in Xk ∈ Xf̂i

\ {Xj} are violating (which weight∏
Xk∈Xf̂i

\{Xj} µ
u
Xk→f̂i

) or that only one ground atom is ∗ or satisfying (with weight∑
Xk∈Xf̂i

\{Xj} µ
∗
Xk→f̂i

×∏Xi∈Xf̂i
\{Xk,Xj} µ

u
Xi→f̂i

).

3. All other ground atoms in Xf̂i
\ {Xj} are violating f̂i. So here, there is a penalty factor

124

e−ŵi·y for updating the message:

W3 =
{ ∏
Xk∈Xf̂i

\{Xj}

[∑
Zk⊆Fu

f̂i
(k)
µXk→f̂i

]
× e−ŵi·y

∣∣∣∣∣Xk = si,k, Pk = Zk

}
(6.18a)

=
[∏
Xk∈Xf̂i

\{Xj}
µu
Xk→f̂i

]
×

penalty︷ ︸︸ ︷
e−ŵi·y (6.18b)

Now, bringing together the weight forms of W1, W2, and W3 from Eqs. (6.16b), (6.17b)
and (6.18b) results in:

ηu
f̂i→Xj

=
[∏
Xk∈Xf̂i

\{Xj}

(
µu
Xk→f̂i

+ µ∗
Xk→f̂i

)
+

∏
Xi∈Xf̂i

\{Xj ,Xk}
µu
Xi→f̂i

∑
Xk∈Xf̂i

\{Xj}

(
µs
Xk→f̂i

− µ∗
Xk→f̂i

)]
−
[penalty︷ ︸︸ ︷

(1− e−ŵi·y)
∏

Xk∈Xf̂i
\{Xj}

µu
Xk→f̂i

] (6.19)

Hence, from Eq. (6.19), updating ηu
f̂i→Xj

requires considering the difference between two
parts. The first includes the probability that two (or more) ground atoms in f̂i satisfies it
plus the probability that there is exactly one of f̂i’s ground atoms (except Xj) satisfying f̂i
and all other ground atoms are violating it. The second part involves the probability that
all other ground atoms are violating fi. This latter probability is penalized with the factor
(1− e−wj ·y) since the same part is rewarded in Eq. (6.15b) when satisfying f̂i.

Finally, the message η∗
f̂i→Xj

represents the probability that Xj can be unconstrained by f̂i.
This probability is a combination of two possibilities: either Xj is satisfying f̂i and all other
ground atoms are unconstrained, or Xj is unconstrained (i.e., Xj = ∗ with Pi = ∅)

η∗
f̂i→Xj

=
∑

Xk∈Xf̂i
\{Xj}

[{ ∑
Zk⊆Fs

f̂i
(k)
µXk→f̂i

∣∣∣∣∣Xk = si,k, Pk = Zk

}
+
{
µXk→f̂i

∣∣∣∣∣Xk = ∗, Pk = ∅
}]

(6.20)

Note that the first part of Eqs. (6.17a) and (6.17b) is identical to Eq. (6.20). Thus, we
substitute the computation of this part from Eqs. (6.17a) and (6.17b) into Eq. (6.20), and
we have:

η∗
f̂i→Xj

=
[∏
Xk∈Xf̂i

\{Xj}

(
µu
Xk→f̂i

+ µ∗
Xk→f̂i

)]
−

∏
Xk∈Xf̂i

\{Xj}
µu
Xk→f̂i

(6.21)

where, as in Eq. (6.21), we simply update η∗
f̂i→Xj

by considering the messages on which

125

the other ground atoms in f̂i except Xj are either unconstrained or satisfying f̂i minus the
probability that they are violating f̂i.

Estimating the Marginals

Now let us explain the derivation of ground atoms’ marginals over max-cores in Ĝ. Computing
the unnormalized positive marginal of a ground atom Xj requires multiplying the satisfying
income messages from the ground clauses in which Xj appears positively by the violating
income messages from the ground clauses in which Xj appears negatively:

θ̃+
j =

∏
f̂i∈Fs(j)

{
ηf̂i→Xj

∣∣∣∣∣Xj = si,j, Pj = F s(j)
}
×

∏
f̂i∈Fu(j)

{
ηf̂i→Xj

∣∣∣∣∣Xj = ui,j, Pj = Fu(j)
}

(6.22a)

=
∏

f̂i∈FXj+

{
ηf̂i→Xj

∣∣∣∣∣Xj = +, Pj = FXj+

}
×

∏
f̂i∈FXj−

{
ηf̂i→Xj

∣∣∣∣∣Xj = −, Pj = FXj−

}
(6.22b)

=
∏

f̂i∈FXj−

ηu
f̂i→Xj

×
[∏
f̂i∈FXj+

(
ηs
f̂i→Xj

+ η∗
f̂i→Xj

)
−

∏
f̂i∈FXj+

η∗
f̂i→Xj

]
(6.22c)

Similarly, we can obtain the unnormalized negative marginal by multiplying the satisfying
income messages from the factors in which Xi appears negatively by the violating income
messages from the factors in which Xi appears positively:

θ̃−j =
∏

f̂i∈FXj+

ηu
f̂i→Xj

×
[∏
f̂i∈FXj−

(
ηs
f̂i→Xj

+ η∗
f̂i→Xj

)
−

∏
f̂i∈FXj−

η∗
f̂i→Xj

]
(6.23)

Finally, we can estimate the unnormalized joker marginal by multiplying all the unconstrained
incoming messages from all factors in which Xj appears:

θ̃∗j =
∏

f̂i∈FXj

{
ηf̂i→Xj

∣∣∣∣∣Xj = ∗, Pj = ∅
}

=
∏

f̂i∈FXj

η∗
f̂i→Xj

(6.24a)

Now by normalizing the quantities in Eqs. (6.22c), (6.23) and (6.24a), we obtain the marginal

126

of Xj as follows:

β+
Xj

= Z−1
j θ̃+

j (6.25a)

β−Xj
= Z−1

j θ̃−j (6.25b)

β∗Xj
= Z−1

j θ̃∗j (6.25c)

(6.25d)

and
Zj = θ̃+

j + θ̃−j + θ̃∗j (6.26)

where Zj is the normalizing constant, given the evidence E.

The simple interpretation of the positive marginal β+
Xj
, in Eqs. (6.22c) and (6.25a), is that

it estimates the probability of randomly picking up a max-core (i.e., a cluster), and finding
that Xj is frozen to “+”. This max-core satisfies the ground clauses of total maximal weights
in which Xj appears positively and violates the ground clauses of total minimal weights in
which Xj appears negatively. In other words, β+

Xj
approximates the fraction of the max-cores

that contains potentially the optimal MAP solutions in which Xj =“+”.

Hence, when β+
Xj

is greater than β−Xj
, it is an indication that the fraction of clusters containing

Xj frozen to “+” have MAP solutions better optimized (i.e., having more total weights) than
the fraction of clusters in which Xj is frozen to “−”. This means that the probability of
getting inside a cluster that involves optimal solutions increases when Xj is frozen to “+”
compared to Xj frozen to “−”. This intuitively implies that fixing Xj =“+” is more likely to
be a part of the optimal MAP solution than Xj =“+”.

6.2 Using WSP-χ for MAP Inference in Markov Logic

As demonstrated in the previous subsection, the marginals obtained from WSP-χ correspond
to surveys over max-cores representing clusters of MAP solutions. That is to say, they provide
information about the fraction of clusters in which ground atoms are frozen or unfrozen in
their MAP solutions. Thus, a direct use of that information is to apply a marginalization-
decimation algorithm (Kroc et al., 2009) based on WSP-χ, recovering a family of WSP-χ
inspired decimation (WSP-Dec) algorithms for solving MAP inference on SRL models.

127

WSP-χ Inspired Decimation

For convenience, and without loss of generality, we focus on MLN when explaining how WSP-
Dec finds a MAP solution. As clarified in Algorithm 6, WSP-Dec is a two-stage strategy:

Algorithm 6 WSP-Dec for MAP inference in MLN.

Input: Set of Clauses and their Weights (F ,W), set of query atoms X , Evidence database
DB, Maximum number of iterations Imax, cooling parameter ŷ, Magnetization thresh-
old T̂ , smoothing parameter χ̂.

Output: MAP solution XMAP .
1: Set the parameters y = ŷ, T = T̂ and χ = χ̂;

// Using WSP-χ̂ as a pre-processing
2: ηf̂i←Xj

∈ U [0, 1] , ∀Xj ∈ X , ∀fi ∈ F ; // Messages initialization;
3: repeat // Updating the messages
4: Use ηf̂i→Xj

to update µXj→f̂i
; // Using Eqs.(6.12b),(6.13c), and (6.14c)

5: Use µXj→f̂i
to update ηf̂i→Xj

; // Using Eqs.(6.15b),(6.19), and (6.21)
6: until (Convergence or termination of Imax)
7: Return a fixed point of the messages η̂f̂i→Xj

;
8: if (non-trivial η̂f̂i→Xj

6= 0 are found) then
9: for each Xj ∈ X do
10: Compute: βXj = [β+

Xj
, β−Xj

]; //Using Eqs.(6.22c),(6.23),(6.24a), (6.25a), (6.25b), (6.25c)
11: end for
12: β ← Select[ground atoms Xjs having (|β+

Xj
− β−Xj

| > T)] // obtain frozen ground atoms

13: X ∗ ← X \ {β} ; // remove β from queries
14: DB∗ ← DB ∪ {β} ; // add β to evidence database
15: β∗ ← β∗ ∪ β; // store all β as a portion of XMAP

16: Simplify the model clauses F into F∗; // Fix frozen ground atoms (β)
17: Go to (2) and Re-run WSP-χ̂ for (F := F∗,X := X ∗);
18: else if (trivial η̂f̂i→Xj

= 0 are found) then
19: Run MaxWalkSAT on the simplified grounded network constructed by (X ∗,F∗,DB∗);
20: end if
21: XMAP ← Combination of returns from steps 15 and 19;
22: Return XMAP ;

• In the first stage, the goal is to use WSP-χ for scaling the MLN’s grounded network
and obtaining a portion of the optimal MAP solution, as follows:

– We assign the smoothing parameter χ the value χ̂ to specify the WSP-χ̂ algorithm
from the family WSP-χ that will be used as pre-processing. We then adjust its

128

setting for both the cooling parameter ŷ and magnetization2 threshold T̂ (line 1).

– The specified WSP-χ̂ starts by initializing its messages uniformly at random, as in
line 2. It then iteratively applies a set of decimation steps until reaching a trivial
fixed point of the messages.

– At each decimation step, lines 8-11, it iteratively updates its messages, using
Eqs.(6.12b),(6.13c), (6.14c), (6.15b), (6.19), and (6.21), until either exceeding the
maximum number of iterations or converging to a non-trivial fixed point of the
messages (lines 4-7). It then estimates the marginals of ground query atoms in X
using Eqs.(6.22c),(6.23),(6.24a), (6.25a), (6.25b), and (6.25c).

– Subsequently, as in line 12, it uses the computed marginals to identify frozen
ground atoms (i.e, cluster backbones): the fraction of ground atoms in X that
have a magnetization |β+

Xj
− β−Xj

| ≥ T .3

– Afterwards, it fixes the frozen ground atoms to their more likely truth values
(i.e., magnetized values). In addition, as in line 14, it adds them to the evidence
database DB: those whose (β+

Xj
< β−Xj

) are added to DB as false evidence, and
those whose (β+

Xj
> β−Xj

) are added as true evidence.

– At this point, it should be noted that the advantage of fixing the frozen ground
atoms is two-fold: shrinking the set of query atoms (i.e., X \ {β}), and enlarging
the evidence database (i.e., DB ∪ {β}). This in turn results in reducing the set of
ground clauses, and therefore simplifying the grounded network that instantiates
the MAP inference problem (line 16).

– It successively repeats the decimation process over the simplified MAP problem
to increase the set of the frozen ground atoms (line 17).

– Eventually, as in line 18, if it reaches a trivial fixed point of the messages: those
that often produce demagnetized marginals (i.e., marginals that are not biased to
either positive or negative values) and yield paramagnetic solutions (paramagnetic
solution refers to a generalized complete assignment that is not biased to any value
for all variables). Then either the complex parts of the grounded network have
been decimated by fixing the frozen ground atoms and/or the remaining query
ground atoms define a simple MAP inference that can be efficiently solved using
any off-the-shelf local search algorithm (e.g., MaxWalkSAT).

2Given the marginal probability of a variable Xj , the magnetization of Xj is the difference between
marginals of the variable being positive and it being negative.

3Note that the schema, that is used here to identify the frozen ground atoms, is identical to the one that
is used previously for filtering the query variables in Algorithm 4.

129

• In the second stage, we run the MaxWalkSAT algorithm (line 19) to solve the remaining
simplified MAP inference problem. The output returned from MaxWalkSAT combined
with the total set of the frozen ground atoms obtained from the WSP will provide the
overall MAP solution (line 21).

6.3 Combining WSP-χ with Lazy MAP Inference

One key advantage of WSP-χ algorithms is that they can be combined with other state-
of-the-art approaches which greatly improve the scalability of MAP inference such as Lazy
and Lifted. Algorithm 7 shows how to combine WSP-χ with a Lazy MAP inference, which
yields Lazy-WSP-Dec. Lazy-WSP-Dec mainly differs from the WSP-Dec of Algorithm 6
in both the initial set of underlying query atoms and clauses, and the local search algorithm
that will be used to solve the simplified MAP inference (line 19). That is, Lazy-WSP-Dec
starts by grounding the network lazily, and maintaining only active ground clauses and their
active ground atoms that are sufficient to answer the queries. It then calls the specified
WSP-χ̂ algorithm, steps 1-17 of algorithm 6, to scale the lazy ground network, which was
built using those active clauses and atoms, by fixing the frozen active atoms. After reaching
a trivial fixed point, it runs Lazy-MaxWalkSat, as in line 6, on the simplified network instead
of propositional MaxWalkSAT as in algorithm 6.

Algorithm 7 Combining WSP-Dec with lazy MAP inference.

Input: Set of Clauses and their Weights (F ,W), set of query atoms X , Evidence database DB,
Maximum number of iterations Imax, cooling parameter ŷ, Magnetization threshold T .

Output: MAP solution XMAP .
1: X ← (atoms in clauses unsatisfied by DB); // Consider only active atoms
2: F ← (clauses activated by X); // Consider only active clauses
3: W ←Weights associated with F ;

// Call WSP-χ: steps 1-17 in algorithm 6.
4: [X ∗,F∗,DB∗]←WSP-χ̂(X ,F ,W); //Simplifying the lazy grounded network
5: if (trivial η̂f̂i→Xj

= 0 are found) then
6: Run Lazy-MaxWalkSAT on the lazy grounded network constructed by (X ∗,F∗,DB∗);
7: end if

6.4 Experimental Evaluation

The goal of our experimental evaluation is to investigate the following key questions.

130

• (Q1) Is the WSP-Dec algorithm competitive with the state-of-the-art inference algo-
rithms for finding an optimal MAP solution?

• (Q2) Is WSP-χ powerful enough to reduce significantly the size of grounded networks
compared to the prominent state-of-the-art scalable methods such as Lazy Inference?

• (Q3) How is the behavior of WSP-Dec influenced by the choice of the cooling parameter
y and magnetization threshold T ?

• (Q4) How is the performance of WSP-Dec algorithm affected by tuning the value of
the smoothing parameter χ in WSP-χ?

• (Q5) Does the combination of WSP-χ with Lazy inference, i.e., Lazy-WSP-Dec, im-
prove the efficiency of WSP-χ based MAP inference?

We experimented on a protein interaction task, a hyperlink analysis task, and an entity
resolution task in a citation matching domain. We used both the MLNs and datasets available
from the Alchemy web page4.

Protein Interaction. We used both the MLN model (Davis and Domingos, 2009) and Yeast
dataset, which have been already described in detail in Chapter 4.

• Query: The goal of MAP inference here is to predict truth MAP solution of interaction
relations (i.e., Interaction, and Function). All other atoms (e.g., location, protein-class,
enzyme, etc.) are considered evidence atoms.

Hyperlink Analysis. We used the WebKB dataset that consists of labeled web pages from
the computer science departments of four universities. It features 4165 web pages and 10, 935
web links, along with the words on the webpages, anchors of the links, and neighborhoods
around each link. Each web page is marked with some subset of the categories: person,
student, faculty, professor, department, research project, and course.

• MLN: We used the MLN model (Kok et al., 2007) that involves only formulas link-
ing words to page classes, and page classes to the classes of linked pages. The final
knowledge base contains 3 atoms and 6 formulas.

• Query: The goal of MAP inference is to predict truth MAP solution of the web pages
point to each other, given their topics.

4http://alchemy.cs.washington.edu/

131

Entity Resolution. We used both the MLN model (Singla and Domingos, 2006a) and
Cora dataset (Davis and Domingos, 2009), which have been already described in detail in
Chapter 4.

• Query: The goal of MAP inference is to predict truth MAP solution to predict which
pairs of citations refer to the same citation (SameBib), and similarly for author, title and
venue fields (SameTitle, SameAuthor and SameVenue). The other atoms are considered
evidence atoms.

6.4.1 Methodology

To evaluate WSP-Dec, we compare its results with both the MaxWalkSAT (MWS) algorithm
(Kautz et al., 1997; Selman et al., 1993) and its lazy version (Lazy-MWS) which are the state-
of-the-art MAP inference algorithms in alchemy system (Kok et al., 2007). In addition, to
obtain robust answers to the proposed questions, we did the following:

• Varying the number of objects in the domains, following the methodology previously
used for MLNs (Poon et al., 2008)

• Varying the cooling parameter, following the methodology used for relaxed SP (Chieu
and Lee, 2009)

• Varying the magnetization threshold T ∈ {0.2, 0.5}. Thus we mainly considered two
WSP-Dec algorithms, WSP-Dec-0.2 and WSP-Dec-0.5, on which we selected the
ground atom as a frozen if its magnetization is greater than 0.2 and 0.5, respectively.

We then conducted the experimental evaluations in the following manner. In the training
phase, we learned the weights using a preconditioned scaled conjugate gradient (PSCG) al-
gorithm (Lowd and Domingos, 2007) by performing a four-way cross-validation for protein
interaction task, and a five-way cross-validation for both the link prediction and entity resolu-
tion tasks. In the testing phase, we carried out a MAP inference on the held-out dataset using
six underlying inference algorithms (WSP-Dec-0.2, WSP-Dec-0.5, MWS, Lazy-WSP-Dec-0.2,
Lazy-WSP-Dec-0.5, Lazy-MWS) to produce the MAP solution. .

All of the experiments were run on a cluster of nodes with 3.0 GHz Intel CPUs, 3 GB of RAM,
RED HAT Linux 5.5. We used the MWS algorithm and its lazy version as implemented in
the Alchemy software (Kok et al., 2007), and took advantage of the SP code5 in implementing
our WSP-χ as an extension to the Alchemy software (Kok et al., 2007).

5Available: http://users.ictp.it/ zecchina/SP/

132

6.4.2 Metrics

In order to compare the performance and scalability of the testbed algorithms we considered
three metrics:

• The quality of MAP solution as a function of the running time.

• The quality of MAP solution as a function of cooling parameter.

• The average percentage of fixed (frozen) ground atoms.

where the quality of MAP solution is measured by computing the average cost of unsatisfied
ground clauses by the obtained MAP solution. It is worth noting that solving the MAP
inference here is equivalent to solving a weighted MAX-SAT problem where the goal is to
find the MAP solution that maximizes the total weight of the satisfying clauses (which is
identical to minimize the total weight of the unsatisfying clauses). Thus considering the
average cost of unsatisfied ground clauses serves as a quite good measurement to test the
quality of the obtained MAP solution.

6.4.3 Results

We conducted our experimental evaluations through three experiments.

Experiment I

Figures (6.2, 6.3, 6.4), (6.5, 6.6, 6.7) and (6.8, 6.9, 6.10) display the average cost of unsatisfied
clauses (smaller is better) as a function of time for the six underlying inference algorithms
at three different numbers of objects in the domains of Cora, UW-CSE, and Yeast datasets
respectively. Notation used to label each of these figures is as: MLN-number-of-objects
(number of ground clauses in the propositional MLN). The absence of some algorithms in
some plots means that no results could be obtained since they ran out of memory.

In terms of the quality of solutions, the results show that the WSP-Dec algorithm at thresh-
olds 0.2 and 0.5 finishes at least 43% more accurately than the propositional MaxWAlkSAT
on both WebKB and Yeast datasets, and 51% more accurately on the Cora dataset. It
was also very competitive with Lazy MaxWalkSAT inference on Cora and WebKB datasets,
and at least 19.5% more accurate on Yeast datasets, even though Lazy MaxWalkSAT infer-
ence handles approximately half the number of ground clauses that are tackled by WSP-Dec
(answering Q1). In addition, lazy-WSP-Dec at thresholds 0.2, 0.5 dominates both the propo-
sitional MaxWalkSAT and the Lazy MaxWalkSAT by wide margins on all underlying tested

133

1 1 1 1
1

1
1 1 1 1

100 200 300 400 500

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

Time (secs)

C
o

s
t

2
2

2
2 2

2 2 2 2 2

3
3

3 3 3
3 3 3 3 3

MWS
WSP−Dec−0.2
WSP−Dec−0.5
Lazy−MWS
Lazy−WSP−Dec−0.2
Lazy−WSP−Dec−0.5

Cora−50 (76K clauses)

Figure 6.2 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time
for Cora at 50 objects.

134

1

1

1
1

1 1 1 1 1 1

200 400 600 800 1000

5
0

0
0

0
0

1
0

0
0

0
0

0
1

5
0

0
0

0
0

2
0

0
0

0
0

0
2

5
0

0
0

0
0

Time (secs)

C
o

s
t

2
2 2 2 2 2 2 2 2 2

3
3 3 3 3 3 3 3 3 3

MWS
WSP−Dec−0.2
WSP−Dec−0.5
Lazy−MWS
Lazy−WSP−Dec−0.2
Lazy−WSP−Dec−0.5

Cora−250 (16 Million clauses)

Figure 6.3 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time
for Cora at 250 objects.

135

1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

200 400 600 800 1000 1200 1400

2
e

+
0

8
4

e
+

0
8

6
e

+
0

8
8

e
+

0
8

Time (secs)

C
o

s
t

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2

3
3 3 3

3 3 3 3 3 3 3 3 3 3 3

4 4
4 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5

5 5 5 5 5 5 5 5 5 5 5

WSP−Dec−0.2
WSP−Dec−0.5
Lazy−MWS
Lazy−WSP−Dec−0.2
Lazy−WSP−Dec−0.5

Cora−1000 (1.8 Billion clauses)

Figure 6.4 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time
for Cora at 1000 objects.

136

1 1 1
1 1 1 1 1 1 1

100 200 300 400 500

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

Time (secs)

C
o

s
t

2
2 2 2 2 2 2 2 2 2

3
3 3 3 3 3 3 3 3 3

MWS
WSP−Dec−0.2
WSP−Dec−0.5
Lazy−MWS
Lazy−WSP−Dec−0.2
Lazy−WSP−Dec−0.5

WebKB−50 (150K clauses)

Figure 6.5 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time
for WebKB at 50 objects.

137

1

1 1 1 1 1 1 1 1 1

200 400 600 800 1000

5
e

+
0

6
6

e
+

0
6

7
e

+
0

6
8

e
+

0
6

9
e

+
0

6
1

e
+

0
7

Time (secs)

C
o

s
t

2
2 2 2 2 2 2 2 2

2
3

3 3
3

3 3 3 3 3 3

4
4 4 4 4 4 4 4 4 4

5

5
5 5 5

5 5 5 5 5
WSP−Dec−0.2
WSP−Dec−0.5
Lazy−MWS
Lazy−WSP−Dec−0.2
Lazy−WSP−Dec−0.5

WebKB−250 (250 Million clauses)

Figure 6.6 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time
for WebKB at 250 objects.

138

1

1 1 1 1 1 1 1 1 1 1 1
1 1 1

200 400 600 800 1000 1200 1400

0
.0

e
+

0
0

5
.0

e
+

0
9

1
.0

e
+

1
0

1
.5

e
+

1
0

2
.0

e
+

1
0

Time (secs)

C
o

s
t

2

2
2

2
2 2 2 2 2

2 2
2 2 2 2

3

3
3

3
3 3 3

3
3 3 3 3 3 3 3

4

4

4

4 4 4 4 4 4 4 4 4 4 4 4

5

5

5

5 5 5 5 5
5

5 5 5 5 5 5

WSP−Dec−0.2
WSP−Dec−0.5
Lazy−MWS
Lazy−WSP−Dec−0.2
Lazy−WSP−Dec−0.5

WebKB−500 (65 Billion clauses)

Figure 6.7 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time
for WebKB at 1000 objects.

139

1
1

1
1

1
1

1 1 1 1

100 200 300 400 500

5
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0

Time (secs)

C
o

s
t

2
2

2
2

2
2 2 2 2 2

3

3
3

3
3 3 3 3 3 3

MWS
WSP−Dec−0.2
WSP−Dec−0.5
Lazy−MWS
Lazy−WSP−Dec−0.2
Lazy−WSP−Dec−0.5

Yeast−50 (98K clauses)

Figure 6.8 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time
for Yeast at 50 objects.

140

1

1
1

1

1
1

1 1 1 1

200 400 600 800 1000

5
.0

e
+

0
7

1
.0

e
+

0
8

1
.5

e
+

0
8

2
.0

e
+

0
8

Time (secs)

C
o

s
t

2

2

2
2

2
2

2 2 2 2

WSP−Dec−0.2
WSP−Dec−0.5
Lazy−MWS
Lazy−WSP−Dec−0.2
Lazy−WSP−Dec−0.5

Yeast−250 (92 Million clauses)

Figure 6.9 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time
for Yeast at 250 objects.

141

1

1

1
1

1 1 1 1 1 1 1 1 1 1 1

200 400 600 800 1000 1200 1400

4
.0

e
+

1
0

8
.0

e
+

1
0

1
.2

e
+

1
1

Time (secs)

C
o

s
t

2

2
2

2 2 2

2 2 2 2 2 2 2 2 2

3

3
3

3 3 3

3 3 3 3 3 3 3 3 3

WSP−Dec−0.2
Lazy−WSP−Dec−0.2
WSP0.5Lazy

Yeast−1000 (71 Billion clauses)

Figure 6.10 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time
for Yeast at 1000 objects.

142

datasets (answering Q5). Clearly, the WSP-Dec algorithms at threshold 0.5 were marginally
more accurate than the WSP-Dec algorithms at threshold 0.2 on both Cora and WebKB
datasets (answering the part of Q3 related to magnetization threshold). In terms of scala-
bility, both Lazy-WSP-Dec at thresholds 0.2, 0.5 and WSP-Dec at threshold 0.2 were able
to handle all full datasets, whereas Lazy MaxWalkSAT and WSP-Dec at threshold 0.5 ran
out of memory with 1000 objects in the Yeast dataset (answering Q2). Additionally, both
Lazy MaxWalkSAT and WSP-Dec at threshold 0.5 dominated propositional MaxWalkSAT,
which ran out of with 1000 objects in both Cora and Yeast datasets, 500 objects in the Cora
dataset, and 250 objects in Yeast dataset.

Experiment II

1

1

1

1 1 1
1 1 1 1 1

1 2 3 4 5

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

Cooling parameter (y)

C
o

s
t

2

2

2

2 2
2

2 2 2 2 2

3

3

3

3 3 3 3 3 3 3 3

4

4

4

4 4
4

4 4 4 4 4

WSP−Dec−0.2
WSP−Dec−0.5
Lazy−WSP−Dec−0.2
Lazy−WSP−Dec−0.5

Figure 6.11 Cost vs. cooling parameter: average cost of unsatisfied clauses (smaller is better)
against different values of cooling parameter y of WSP-Dec algorithm for Cora.

Figures 6.11, 6.12 and 6.13 display the average cost of unsatisfied clauses as a function of

143

1

1
1

1 1 1
1 1 1 1 1

1 2 3 4 5

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

Cooling parameter (y)

C
o

s
t

2

2

2 2 2 2 2 2 2 2 2
3

3
3 3 3 3

3 3 3 3 3

4

4

4 4 4 4
4 4 4 4 4

WSP−Dec−0.2
WSP−Dec−0.5
Lazy−WSP−Dec−0.2
Lazy−WSP−Dec−0.5

Figure 6.12 Cost vs. cooling parameter: average cost of unsatisfied clauses (smaller is better)
against different values of cooling parameter y of WSP-Dec algorithm for WebKB.

144

1 1
1

1 1 1 1

1

1
1 1

1 2 3 4 5

6
0

0
0

0
8

0
0

0
0

1
0

0
0

0
0

1
2

0
0

0
0

Cooling parameter (y)

C
o

s
t

2 2 2
2 2 2 2

2

2

2 2

3 3 3 3 3 3 3

3 3 3 3

4
4 4 4 4

4
4

4 4 4 4

WSP−Dec−0.2
WSP−Dec−0.5
Lazy−WSP−Dec−0.2
Lazy−WSP−Dec−0.5

Figure 6.13 Cost vs. cooling parameter: average cost of unsatisfied clauses (smaller is better)
against different values of cooling parameter y of WSP-Dec algorithm for Yeast.

145

different cooling parameter’s values (y ∈ [0.25, 5.25]) of the WSP-Dec algorithm and the
Lazy-WSP-Dec algorithm at thresholds 0.2, 0.5 for 50 objects in the domains of the three
underlying datasets. The result shows that the WSP-Dec algorithm reaches a slope-and-
plateau region where its quality of solution increases and then starts to decease. In the three
tested datasets, this slope-and-plateau region occurred when the cooling y parameter’s value
is approximately between 1.5 and 3 (answering the part of Q3 related to cooling parameter).

Experiment III

Table 6.2 The percentage of the frozen ground atoms (i.e., cluster backbones) that are fixed
(fixed%) and the average cost of unsatisfied clauses (Cost) for a family of WSP-Dec at differ-
ent choices of smoothing pairs (χ,γ) on Cora, Web-KB, and Yeast. The cooling parameter y
assigned a value 2 and the threshold takes a value 0.2.

WSP-Dec algorithms
χ = 1, γ = 0 χ = 0.5, γ = 0.5 χ = 0.25, γ = 0.75 χ = 0, γ = 1

Datasets No. Obj. fixed% Cost fixed% Cost fixed% Cost fixed% Cost

Cora 50 43.1 3.2× 103 30.8 4.4× 103 21.1 5.4× 103 6.4 6.6× 103

250 40.5 7.2× 105 29.7 9.2× 105 18.8 1.2× 106 5.6 1.5× 106

1000 51.7 4.7× 107 36.5 6.1× 107 24.3 7.9× 107 10 9.7× 107

Web-KB 50 35.5 8.0× 103 26.2 1.0× 104 16.0 1.4× 104 7.0 1.6× 104

250 41.0 9.0× 106 30.0 1.2× 107 17.9 1.5× 107 8.3 1.9× 107

1000 48.2 1.1× 1010 35.3 1.4× 1010 22.5 1.8× 1010 9.9 2.3× 1010

Yeast 50 47.0 9.8× 104 34.0 1.3× 105 21.6 1.8× 105 9.0 2.6× 105

250 38.4 1.0× 108 28.9 1.2× 108 16.7 1.6× 108 7.8 2.1× 108

1000 30.5 1.1× 1011 22.6 1.3× 1011 13.4 1.7× 1011 4.3 2.1× 1011

Table 6.2 records both the average cost of unsatisfied clauses and the percentage of the
frozen ground atoms that are fixed by the WSP-Dec family of algorithms at four pairs of
settings of (χ,γ) on Cora, Web-KB, and Yeast. Overall, the most successful pair of WSP-Dec
algorithm was (χ = 1,γ = 0) in all tested datasets. For this setting, the decimation step
fixed approximately 30%− 51% of the query ground atoms (i.e., it obtains a portion that is
30 − 51% of the optimal MAP solution). By contrast, the poorest pair setting was (χ = 0,
γ = 1), the decimation step of the WSP-Dec algorithm fixed at most 10% of the query ground
atoms, reaching to small portions of the MAP solutions. In addition, the algorithm with the

146

pair (χ = 0.5, γ = 0.5) was more accurate than the pair (χ = 0.25, γ = 0.75) in terms of
both quality of MAP solution, and it has a larger amount of fixed frozen atoms (conclusive
answer to Q4).

6.5 Discussion

Overall the results clearly show that WSP-χ based algorithms substantially improve the
accuracy and scalability of the propositional MaxWalkSAT algorithm for MAP inference.
This is due to, first, finding the frozen ground atoms, which provides a large portion of
the optimal MAP solution. Second, fixing the frozen atoms simplifies the MAP inference
task into another one that can be solved accurately using any conventional MAP inference
algorithm.

WSP-Dec algorithms were also very competitive with respect to Lazy MAP Inference when-
ever a substantial amount of frozen atoms were obtained. This can be attributed to the
fact that fixing the frozen atoms enlarges the evidence database and shrinks the query set
which provides great implications for reducing the effective size of the grounded network.
Moreover, the WSP-Dec algorithm dominated both propositional MaxWalkSAT and Lazy-
MaxWalkSAT on all tested data sets when it combined with Lazy Inference. This is because
the result of such combination is the exploitation of both sparseness in Lazy and frozen atoms
from WSP to scale up the MAP inference.

The magnetization threshold T offers a trade-off for WSP-Dec algorithm in terms of the
amount of frozen atoms/the quality of obtained MAP solution: on one hand decreasing T ’s
value enables one to obtain a large amount of frozen ground atoms and therefore improve
the scalability, but on the other hand some of those frozen atoms could be inaccurate and
that can effect the quality of the final obtained MAP solution. Thus, in the presence of a
huge grounded network, one can choose to slightly sacrifice the quality of the solution by
decreasing T just to enable the WSP-Dec algorithm to find a MAP solution. For instance,
with 1000 objects in the domain of Yeast dataset - on which its MLN features diversity in
the weights) - WSP-Dec 0.5 has difficulties reaching a MAP solution, whereas WSP-Dec 0.2
algorithm can find one.

The results in Experiment II show that the behaviour of the WSP-Dec algorithm over varying
cooling parameter y is consistent with Theorem 3, ensuring that as long as WSP-χ converges,
its performance improves as cooling parameter y increases. That is to say, the marginals
computed by the WSP-Dec algorithm will prefer MAP solutions that satisfy the clauses
with a maximum total weight. However, at a certain point of increasing y, WSP can fail to

147

converge to accurate results which may be attributed to overshooting the optimal solution.
Also, choosing a small value of y can slow the convergence. Experimentally, we find that we
need to take it to a sufficiently large value between 1.5 and 3 to obtain highly convergence to
an accurate result. This values of y is very close to the work of Battaglia et al. (2004), who
found that y = 2.5 is one best value for SP-y algorithm. Although one can use a bisection
method to numerically obtain the ideal cooling value y beforehand, we believe that the value
of y can be dynamically tuned to favor the convergence of the WSP-Dec algorithm, which
will be an interesting analysis for future research.

Furthermore, the performance of WSP-χ algorithms on the extended factor graph signif-
icantly effected by the choice of smoothing parameter χ, and this appears clearly in the
results of Table 6.2. That is to say, given the pool of WSP-χ algorithms, increasing the value
of χ (or equivalently decreasing the value of γ) allows the algorithm to obtain more frozen
ground atoms, which results in enlarging the evidence database and shrinking the query set,
and therefore improving the scalability besides finding a larger portion for the optimal MAP
solution. Thus, when setting χ to the most (i.e., χ = 1 and γ = 0), a call to MaxWalkSAT
might in fact not be needed or only needed to solve an easy MAP inference on a scalable
grounded network. On the contrary, decreasing χ to the most (i.e., χ = 0 and γ = 1) re-
duces WSP-χ to traditional BP, and this makes the calling of MaxWalkSAT often faces an
hard MAP inference on a simplified grounded network that is very close to the propositional
one. In addition, the success of pure WSP-1 for finding the most accurate results, supports
the conjecture that MAP solutions of relational problems typically do possess non-trivial
max-cores for large structured formulas.

148

CHAPTER 7 CONCLUSION AND FUTURE WORK

In this thesis, we have proposed at least three major contributions. Below, we revisit those
contributions briefly, and then sketch our thoughts about future research directions.

7.1 GEM-MP Inference Approach

In Chapter 4, our work has targeted the less studied issue of the use of LBP and message
passing techniques in probabilistic models possessing both cycles and determinism. To fully
exploit determinism as opposed to having determinism posing a problem for inference, we
have examined some of the intricacies of message-passing algorithms. The novelty of this
work lies in the creation and exploration of an approach which we have named Generalized
arc-consistency expectation-maximization message-passing (GEM-MP), a message-passing
algorithm that applies a form of variational approximate inference in an extended form of
an underlying graphical model. We have focused our experiments on Markov logic, but
our method is easily generalized to other graphical models. To demonstrate the ease of
generalizing our approach, we have also presented results using Ising models and we find
that our method outperforms a variety of state-of-the-art techniques. The rules of GEM-MP
can be viewed as a free energy minimization method whose successive updates form a path of
bounded steps to the nearest fixed point in the space of approximate marginals. Using entity
resolution and link prediction problems, we have experimentally validated the effectiveness
of GEM-MP for converging to more accurate marginals and addressed the limitations of LBP
engendered by the presence of cycles and determinism.

As with other variational methods, much of the strength of our method derives as a conse-
quence of Jensen’s inequality which enables variational message-passing inference to estimate
marginals — through the optimization of variational parameters — by tightening a lower
bound on the model’s marginal likelihood at each approximate marginal update, such that
we cannot overshoot the underlying true marginal likelihood. We believe this effect allevi-
ates the threat of non-convergence due to cycles. In addition, the potency of generalized
arc consistency for handling the logical structures can be used to exploit structure in the
problem that is not normally available to a more naive message-passing algorithm. In so
doing, our formulation transforms determinism from a limitation into an advantage from the
perspective of GEM-MP.

149

7.2 Preference Relaxation Scaling Strategy

In Chapter 5, we proposed Preference Relaxation, a two-stage strategy that exploits deter-
minism to scale up relational inference. Preferences are first ignored in order to shrink the
query set and enlarge the evidence database. The novelty here appears in exploiting deter-
minism again, but this time for scaling inference. Experiments on real-world domains show
that PR is able to greatly reduce the time and space requirements of inference by several
orders of magnitude when applied to propositional MC-SAT and is twice as fast as its lazy
version.

7.3 WSP-χ Family of Algorithms

It is widely known that many real-world problems can be formulated using expressive SRL
models that feature logical structures with very high densities, and this renders them identical
to hard satisfiability instances. We believe a clear gap in the present literature on MAP
inference in SRL exists with respect to taking into consideration the fact that the solution
space of such problems is frequently clustered when the density of the underlying model is high
or close to a critical threshold. Ignoring the clustering that occurs in the solution space can
engender intricacies of getting stuck in a metastable cluster at local optimum when handling
the inference using some state-of-the-art techniques like local search, max-product message-
passing or LP relaxation based algorithms. The novelty of the work, presented in Chapter 6,
is two-fold. First, we present a new family of extended factor graphs WSP-χ associated
with a family of Weighted Survey Propagation algorithms applicable to SRL models. The
objective of WSP-χ is to identify the backbones of a cluster containing potentially optimal
MAP solutions. This introduces the WSP-χ family as a set of pre-processing methods that
can help in finding the optimal solution in the presence of clustered solution spaces. Second,
we propose lazy variants of the WSP-χ family of algorithms to improve scalability for MAP
inference. Using real-world domains such as protein interaction, hyperlink analysis and entity
resolution, we have experimentally shown that WSP-χ and its lazy variants are able to
greatly improve quality and scalability of MAP inference when integrated with propositional
MaxWalkSAT and its lazy version. To conclude, the approach of WSP-χ represents an
improvement in relational MAP inference: By obtaining cluster backbones that determine
which particular clusters contain potentially optimal solutions, not only is a large portion
of the optimal solution provided in the cluster, but also fixing them helps getting inside the
cluster by enlarging the evidence database and shrinking the query set. This therefore reduces
the graph network into a scalable one that can be solved accurately using any conventional

150

MAP inference method.

7.4 Note on some of the thesis’s applications

With the use of the proposed approaches in this thesis, we now have the ability to perform
inference and data mining tasks in much larger relational models in an accurate and efficient
way, even if these models are difficult to solve (e.g., because of the presence of large amounts
of determinism or hard constraints and cycles). As a concrete example, in the entity resolu-
tion application, we can integrate both PR and GEM-MP to de-duplicate more than three
billion citations (say, for example the citations of the articles in the engineering field that are
published in the last 10 years from universities in Europe and Asia). Another application
is protein interactions, we can now determine accurately the interactions among more than
two billion genes and proteins (e.g., breast cancer proteins of women living in North America
and Africa), specifying if they have similar functions and structures. This puts other similar
large scale, real-world (scientific and industrial) applications within reach. Specific examples
include many information extraction applications (Poon and Domingos, 2007), the mining
of knowledge-sharing sites for Viral marketing (Richardson et al., 2003), and certain mobile
robot mapping applications (Wang and Domingos, 2008).

7.5 Future Work

The research in this thesis points to a number of promising directions for future work. In
particular, some issues and directions still warrant consideration, including:

• Evaluation of the use of GEM-MP as an inference subroutine for learning.
It is well known that there is a strong interaction between learning algorithms, which
estimate the parameters of a model from data, and inference algorithms which use a
model to make predictions about data. This makes the choice of an efficient and ac-
curate inference technique during learning often has a great influence on the resulting
model. In the world of SRL, exact inference is intractable. Instead, we can perform
approximate inference using Markov chain Monte Carlo, and in particular Gibbs sam-
pling. However, when we have deterministic dependencies in the model, the ergodicity
breaks down in Gibbs sampling. This remains true even for more sophisticated alter-
natives like simulated tempering and MC-SAT. This in fact motivates the use of our
GEM-MP — which has the ability to frequently converge to accurate results in the
presence of cycles and determinism — as a much more efficient alternative.

151

• Investigation of the lifted (cf. Ahmadi et al., 2013; Singla et al., 2010) and the
lazy (cf. Poon et al., 2008) versions of GEM-MP to enhance its scalability. At
a high level, GEM-MP can be seen as akin to message-passing inference methods. The
presence of some lifting message-passing techniques like lifted BP — which has been
implemented in some publicly available software like alchemy 2.0 (Kok et al., 2007) —
makes the derivation of lifted GEM-MP is straightforwardly doable.

• The possibility of increasing the accuracy of GEM-MP by re-deriving new
update rules that apply a global approximation for the posterior distribution q(Y ; TY)
in the Mq(Y)-step of GEM-MP.

• The application of PR to other inference algorithms such as Lifted Inference.
One can combine PR with lifted BP to obtain Lifted-PR-BP, which maybe differ from
PR-BP (see subsection 5.2.1) with starting by relaxing soft factors and construct the
lifted factor graph for factor nodes and variable nodes that represent the awake ground
hard clauses and their awake ground atoms, respectively.

• The combination of WSP-χ with other inference algorithms such as Lifted
Inference. One can obtain a Lifted-WSP-χ by lifting the re-parameterized extended
factor graph (see section 6.1) and then slightly modifying WSP-χ to run over it.

• Derive an online MAP inference scenario for WSP-χ. In some applications
like object tracking (Song et al., 2013) and the development of markets (Domingos and
Richardson, 2001), it is often necessary to incorporate time for systems that change
dynamically and information from past states can be carried over by means of the
dynamic MLNs. In such cases, the MLNs have been frequently applied in an offline
mode, where the inference is done over a defined time frame. For real applications
this solution is often insufficient and a method is needed that can run online and in
real-time.

We also plan to:

• Use WSP-Dec for solving CSPs, since a decimation combined with WSP-χ-based
message-passing can be viewed as a depth-first search combined with a “highest bias”
heuristic.

• Try to dynamically tune the smoothing and cooling parameters for WSP-χ
to favor a better convergence for the WSP-Dec algorithm.

152

• Apply WSP-χ to the exact parallelized integer linear programming (ILP)
solver Gurobi and approximate solver Tuffy

• Perform an on-line inference scenario of PR-based algorithms.

• Try to combine WSP-χ with the most recent variants of MaxWalkSAT.

• Evaluate the use of PR, GEM-MP and WSP-χ for solving inference on small
datasets that are at the limit of what recent exact solvers (Vlasselaer et al.,
2015) can handle, and then compare the accuracy and scalability with the
state-of-the-art inference algorithms.

• Improve MC-SAT by using the more recent uniform sampling methods
(Chakraborty et al., 2014a,b) instead of SampleSAT.

153

REFERENCES

Achlioptas, Dimitris and Ricci-Tersenghi, Federico (2009). Random formulas have frozen
variables. SIAM Journal on Computing, 39 (1), SIAM, 260–280.

Ahmadi, Babak and Kersting, Kristian and Mladenov, Martin and Natarajan, Sriraam
(2013). Exploiting symmetries for scaling loopy belief propagation and relational training.
Machine learning, 92 (1), 91–132.

Allen, David and Darwiche, Adnan (2003). New advances in inference by recursive condi-
tioning. Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann Publishers Inc., 2–10.

Altarelli, Fabrizio and Monasson, Remi and Semerjian, Guilhem and Zamponi, Francesco
(2009). A review of the statistical mechanics approach to random optimization problems.
Handbook of Satisfiability, volume 185 of the Series “Frontiers in Artificial Intelligence and
Applications”, IOS Press.

Andrieu, Christophe and De Freitas, Nando and Doucet, Arnaud and Jordan, Michael I
(2003). An introduction to mcmc for machine learning. Machine learning, 50 (1-2), 5–43.

Battaglia, Demian and Kolář, Michal and Zecchina, Riccardo (2004). Minimizing energy
below the glass thresholds. Physical Review E, 70, 36107–36118.

Beal, M. J. and Ghahramani, Z. (2003). The variational bayesian em algorithm for incom-
plete data: with application to scoring graphical model structures. Bayesian statistics, 7,
453–464.

Besag, Julian (1986). On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society. Series B (Methodological), 259–302.

Biroli, Giulio and Cocco, Simona and Monasson, Rémi (2002). Phase transitions and com-
plexity in computer science: an overview of the statistical physics approach to the random
satisfiability problem. Physica A: Statistical Mechanics and its Applications, 306, 381–394.

Braunstein, A. and Mézard, M. and Zecchina, R. (2005). Survey propagation: An algorithm
for satisfiability. Random Structures and Algorithms, 27 (2), 201–226.

154

Braunstein, Alfredo and Zecchina, Riccardo (2004). Survey and belief propagation on ran-
dom k-sat. Proceedings of the 7th International Conference on Theory and Applications of
Satisfiability Testing, Vancouver (BC), Canada. Springer, vol. 2919, 519–528.

Bui, Hung B and Huynh, Tuyen N and de Salvo Braz, Rodrigo (2012). Exact lifted in-
ference with distinct soft evidence on every object. Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, July 22-26, Toronto, Ontario, Canada. AAAI Press,
1875–1881.

Chakraborty, Supratik and Fremont, Daniel J and Meel, Kuldeep S and Seshia, Sanjit A
and Vardi, Moshe Y (2014a). Distribution-aware sampling and weighted model counting for
sat. Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec
City, Québec, Canada, July 27 –31. AAAI Press, 1722–1730.

Chakraborty, Shiladri and Meel, Kuldeep S and Vardi, Moshe Y (2014b). Balancing scal-
ability and uniformity in sat witness generator. Proceedings of 51st Design Automation
Conference (DAC), Austin, Texas, June 5-9. IEEE, 1–6.

Chavas, Joël and Furtlehner, Cyril and Mézard, Marc and Zecchina, Riccardo (2005).
Survey-propagation decimation through distributed local computations. Journal of Sta-
tistical Mechanics: Theory and Experiment, 2005 (11), IOP Publishing, 11016–11027.

Chieu, Hai Leong and Lee, Wee Sun (2009). Relaxed survey propagation for the weighted
maximum satisfiability problem. Journal of Artificial Intelligence Research (JAIR), 36,
229–266.

Chieu, Hai L and Lee, Wee S and Teh, Yee W (2007). Cooled and relaxed survey propa-
gation for mrfs. Proceedings of the 21st Annual Conference on Neural Information Process-
ing Systems: Advances in Neural Information Processing Systems 20, Vancouver, British
Columbia, Canada. Curran Associates, Inc., 297–304.

Dauwels, Justin and Korl, Sascha and Loeliger, Hans-Andrea (2005). Expectation maxi-
mization as message passing. Proceedings of IEEE International Symposium on Information
Theory (ISIT 2005), Adelaide Convention Centre Adelaide, Australia. IEEE computer so-
ciety, 583–586.

Davis, Jesse and Domingos, Pedro (2009). Deep transfer via second-order markov logic. Pro-
ceedings of the 26th International Conference on Machine Learning (ICML-09). Montreal,
Canada.

155

De Salvo Braz, Rodrigo and Amir, Eyal and Roth, Dan (2005). Lifted first-order probabilis-
tic inference. Proceedings of the 19th International joint conference in artificial intelligent.
AAAI Press, 1319–1325.

De Salvo Braz, Rodrigo and Amir, Eyal and Roth, Dan (2006). Mpe and partial inversion
in lifted probabilistic variable elimination. Proceedings Of The Twenty-first National Con-
ference On Artificial Intelligence, July 16–20, 2006, Boston, Massachusetts. AAAI press,
vol. 6, 1123–1130.

De Salvo Braz, Rodrigo and Natarajan, Sriraam and Bui, Hung and Shavlik, Jude and
Russell, Stuart (2009). Anytime lifted belief propagation. Proceedings of 6th International
Workshop on Statistical Relational Learning, Leuven, Belgium. vol. 9, 1–3.

Dechter, Rina and Mateescu, Robert (2003). A simple insight into iterative belief prop-
agation’s success. Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence, Acapulco, Mexico. Morgan Kaufmann Publishers Inc., 175–183.

Domingos, Pedro and Richardson, Matt (2001). Mining the network value of customers.
Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery
and data mining, San Francisco, CA, USA. ACM, 57–66.

Elidan, Gal and McGraw, Ian and Koller, Daphne (2006). Residual belief propagation:
Informed scheduling for asynchronous message passing. Proceedings of the Twenty-Second
Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-06). AUAI
Press, Arlington, Virginia, 165–173.

Forney, G. D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61 (3), IEEE computer
society, 268–278.

Frey, Brendan J and MacKay, David JC (1998). A revolution: Belief propagation in graphs
with cycles. Advances in neural information processing systems, Morgan Kaufmann, 479–
485.

Friedgut, Ehud (2005). Hunting for sharp thresholds. Random Structures & Algorithms,
26 (1-2), 37–51.

Friedgut, Ehud and Bourgain, Jean and others (1999). Sharp thresholds of graph properties,
and the k-sat problem. Journal of the American mathematical Society, 12 (4), 1017–1054.

Geman, Stuart and Geman, Donald (1984). Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (6), IEEE computer society, 721–741.

156

Getoor, Lise and Taskar, Ben (2007). Introduction to Statistical Relational Learning: Adap-
tive Computation and Machine Learning. The MIT Press.

Globerson, Amir and Jaakkola, Tommi (2007). Convergent propagation algorithms via
oriented trees. R. Parr and L. C. van der Gaag, editors, Proceedings of the Twenty-Third
Conference on Uncertainty in Artificial Intelligence, Vancouver, BC, Canada, July 19-22.
AUAI Press, 133–140.

Gogate, Vibhav and Domingos, Pedro (2011). Probabilistic theorem proving. Proceedings of
the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence
(UAI-11). AUAI Press, Corvallis, Oregon, 256–265.

Gogate, Vibhav and Jha, Abhay Kumar and Venugopal, Deepak (2012). Advances in lifted
importance sampling. Proceedings of the Twenty-Sixth AAAI Conference on Artificial In-
telligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI Press, 1910–1916.

Gomes, Carla and Hogg, Tad and Walsh, Toby and Zhang, Weixiong (2002). Tutorial -
phase transitions and structure in combinatorial problems. Proceedings Of The Eighteenth
National Conference On Artificial Intelligence, Edmonton, Canada. AAAI Press.

Granville, Vincent and Krivánek, Mirko and Rasson, J-P (1994). Simulated annealing: A
proof of convergence. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16 (6), IEEE computer society, 652–656.

Hartmann, Alexander K and Weigt, Martin (2006). Phase transitions in combinatorial
optimization problems: basics, algorithms and statistical mechanics. John Wiley & Sons.

Hazan, Tamir and Shashua, Amnon (2008). Convergent message-passing algorithms for
inference over general graphs with convex free energies. Proceedings of the 24th Conference
in Uncertainty in Artificial Intelligence, Helsinki, Finland, July 9-12. 264–273.

Hazan, Tamir and Shashua, Amnon (2010). Norm-product belief propagation: Primal-dual
message-passing for approximate inference. IEEE Transactions on Information Theory,
56 (12), IEEE computer society, 6294–6316.

Heskes, Tom (2002). Stable fixed points of loopy belief propagation are local minima of
the bethe free energy. Proceedings of the 15th conference on Neural Information Processing
Systems, NIPS 2002, December 9-14, Vancouver, British Columbia, Canada: Advances in
neural information processing systems 15. Curran Associates Inc., 343–350.

157

Heskes, Tom (2004). On the uniqueness of loopy belief propagation fixed points. Neural
Computation, 16 (11), MIT Press, 2379–2413.

Hoeve, Willem Jan van and Pesant, Gilles and Rousseau, Louis-Martin (2006). On global
warming: Flow-based soft global constraints. Journal of Heuristics, 12 (4-5), Springer, 347–
373.

Hopcroft, John E. and Motwani, Rajeev and Ullman, Jeffrey D. (2006). Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Horsch, Michael C and Havens, William S (2000). Probabilistic arc consistency: A connec-
tion between constraint reasoning and probabilistic reasoning. Proceedings of the Sixteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 282–
290.

Hsu, Eric I and Kitching, Matthew and Bacchus, Fahiem and McIlraith, Sheila A (2007).
Using expectation maximization to find likely assignments for solving csp’s. Proceedings of
22nd National Conference on Artificial Intelligence (AAAI ’07), Vancouver, Canada. AAAI
Press, vol. 22, 224–232.

Hsu, Eric I. and Muise, Christian and Beck, J. Christopher and McIlraith, Sheila A. (2008).
Probabilistically estimating backbones and variable bias. Proceedings of 14th International
Conference on Principles and Practice of Constraint Programming (CP ’08), Sydney, Aus-
tralia. Springer, 613–617.

Huynh, Tuyen N and Mooney, Raymond J (2009). Max-margin weight learning for markov
logic networks. Machine Learning and Knowledge Discovery in Databases, Springer, vol.
5781. 564–579.

Huynh, Tuyen N. and Mooney, Raymond J. (2011). Online max-margin weight learning for
markov logic networks. Proceedings of SIAM-11 International conference on Data Mining,
Mesa, Arizona, USA. SIAM / Omnipress, 642–651.

Ibrahim, Mohamed-Hamza and Pal, Christopher and Pesant, Gilles (2015). Exploiting
determinism to scale relational inference. Proceedings of the Twenty-Ninth National Con-
ference on Artificial Intelligence (AAAI’15), January 25 –30, 2015, Austin, Texas, USA.
AAAI Press, 1756–1762.

158

Kambhampati, Soumya C and Liu, Thomas (2013). Phase transition and network structure
in realistic sat problems. Proceedings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence, July 14–18, 2013 in Bellevue, Washington, USA. AAAI Press, 1619–1620.

Kautz, Henry and Selman, Bart and Jiang, Yueyen (1997). A general stochastic approach
to solving problems with hard and soft constraints. The Satisfiability Problem: Theory and
Applications, 17, 573–586.

Kersting, Kristian (2012). Lifted probabilistic inference. Proceedings of 20th European
Conference on Artificial Intelligence (ECAI–2012), August 27-31, Montpellier, France. IOS
Press: ECCAI, 33–38.

Kersting, Kristian and Ahmadi, Babak and Natarajan, Sriraam (2009). Counting belief
propagation. Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intel-
ligence. AUAI Press, 277–284.

Khosla, Megha and Melhorn, Kurt and Panagiotou, Konstantinos (2009). Message Passing
Algorithms. PhD Thesis, Citeseer.

Kiddon, Chloe and Domingos, Pedro (2011). Coarse-to-fine inference and learning for first-
order probabilistic models. Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence, San Francisco, California, USA, August 7-11. AAAI Press, 1049–1056.

Kilby, Philip and Slaney, John and Thiébaux, Sylvie and Walsh, Toby (2005). Backbones
and backdoors in satisfiability. Proceedings of the The Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, Pittsburgh, Pennsylvania, USA. AAAI Press, vol. 5, 1368–1373.

Kok, Stanley and Singla, Parag and Richardson, Matthew and Domingos, Pedro and Sum-
ner, Marc and Poon, Hoifung and Lowd, Daniel (2007). The Alchemy system for sta-
tistical relational AI. Technical report, Department of Computer Science and Engineer-
ing,University of Washington, Seattle, WA. http://alchemy.cs.washington.edu.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press.

Kolmogorov, Vladimir (2006). Convergent tree-reweighted message passing for energy min-
imization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (10), 1568–
1583.

159

Kroc, Lukas and Sabharwal, Ashish and Selman, Bart (2007). Survey propagation revis-
ited. Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence,
Vancouver, BC, Canada, July 19-22. AUAI Press, 217–226.

Kroc, Lukas and Sabharwal, Ashish and Selman, Bart (2008). Counting solution clusters in
graph coloring problems using belief propagation. Proceedings of 22nd Conference on Neural
Information Processing Systems: Advances in Neural Information Processing Systems 21,
Vancouver, British Columbia, Canada. Curran Associates Inc., 873–880.

Kroc, Lukas and Sabharwal, Ashish and Selman, Bart (2009). Message-passing and local
heuristics as decimation strategies for satisfiability. Proceedings of the 2009 ACM symposium
on Applied Computing. ACM, 1408–1414.

Kschischang, Frank and Member, Senior and Frey, Brendan J. and Loeliger, Hans-andrea
(2001). Factor graphs and the sum-product algorithm. IEEE Transactions on Information
Theory, 47, IEEE computer society, 498–519.

Kumar, M Pawan and Torr, Philip HS (2008). Efficiently solving convex relaxations for map
estimation. Proceedings of the 25th international conference on Machine learning, Helsinki,
Finland, July 5-9. ACM, 680–687.

Lauritzen, Steffen L and Spiegelhalter, David J (1988). Local computations with probabil-
ities on graphical structures and their application to expert systems. Journal of the Royal
Statistical Society. Series B (Methodological), 157–224.

Le Bras, Ronan and Zanarini, Alessandro and Pesant, Gilles (2009). Efficient generic search
heuristics within the embp framework. Proceedings of the 15th international conference
on Principles and practice of constraint programming, Lisbon, Portugal. Springer-Verlag,
Berlin, Heidelberg, CP’09, 539–553.

Lowd, Daniel and Domingos, Pedro (2007). Efficient weight learning for markov logic net-
works. Proceedings of 11th European Conference on Principles and Practice of Knowledge
Discovery in Databases PKDD 2007, Warsaw, Poland, September 17-21. Springer, 200–211.

Maneva, Elitza and Mossel, Elchanan and Wainwright, Martin J. (2007). A new look at
survey propagation and its generalizations. Journal of the ACM (JACM), 54 (4), ACM,
17–21.

Mann, Alexander and Hartmann, AK (2010). Numerical solution-space analysis of satisfia-
bility problems. Physical Review E, 82 (5), APS, 056702–56707.

160

Marinescu, Radu and Dechter, Rina (2005). Advances in and/or branch-and-bound search
for constraint optimization. Proceedings of the 7th International Workshop on Preferences
and Soft Constraints of the Eleventh International Conference on Principles and Practice
of Constraint Programming, October 1, 2005 Melia Sitges Hotel, Sitges, Spain. Springer,
1457–1491.

Mateescu, Robert and Kask, Kalev and Gogate, Vibhav and Dechter, Rina (2010). Join-
graph propagation algorithms. Journal of Artificial Intelligence Research (JAIR), 37, 279–
328.

Robert J. Mceliece and David J. C. Mackay and Jung-fu Cheng (1998). Turbo decoding
as an instance of pearl’s belief propagation algorithm. IEEE Journal on Selected Areas in
Communications, 16, IEEE computer society, 140–152.

Meltzer, Talya and Globerson, Amir and Weiss, Yair (2009). Convergent message passing
algorithms - a unifying view. J. Bilmes and A. Y. Ng, editors, Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, June
18-21. AUAI Press, 393–401.

Milch, Brian and Zettlemoyer, Luke S and Kersting, Kristian and Haimes, Michael and
Kaelbling, Leslie Pack (2008). Lifted probabilistic inference with counting formulas. Pro-
ceedings of the Twenty Third Conference on Artificial Intelligence, Chicago, Illinois, USA.
AAAI Press, vol. 8, 1062–1068.

Montanari, Andrea and Parisi, Giorgio and Ricci-Tersenghi, Federico (2004). Instability of
one-step replica-symmetry-broken phase in satisfiability problems. Journal of Physics A:
Mathematical and General, 37 (6), IOP Publishing, 2073–2079.

Mooij, Joris M. and Kappen, Hilbert J. (2005). Sufficient conditions for convergence of loopy
belief propagation. Proceedings of the 21st Annual Conference on Uncertainty in Artificial
Intelligence (UAI-05). AUAI Press, 396–403.

Murphy, Kevin and Weiss, Yair and Jordan, Michael (1999). Loopy belief propagation for
approximate inference: An empirical study. Proceedings of the Fifteenth Conference Annual
Conference on Uncertainty in Artificial Intelligence (UAI-99), Stockholm, Sweden. Morgan
Kaufmann, 467–476.

Neal, Radford M. and Hinton, Geoffrey E. (1999). Learning in Graphical Models. MIT
Press, chapter A View of the EM Algorithm That Justifies Incremental, Sparse, and Other
Variants. 355–368.

161

Nguyen, XuanLong and Wainwright, Martin J and Jordan, Michael I (2004). Decentralized
detection and classification using kernel methods. Proceedings of the twenty-first interna-
tional conference on Machine learning, (ICML), Banff, Canada. ACM, vol. 69, 80–88.

Papai, Tivadar and Kautz, Henry A. and Stefankovic, Daniel (2012). Slice normalized
dynamic markov logic networks. Proceedings of 26th Conference on Neural Information
Processing Systems. Annual Conference: Advances In Neural Information Processing Sys-
tems 25. Curran Associates Inc., 1916–1924.

Papai, Tivadar and Singla, Parag and Kautz, Henry (2011). Constraint propagation for
efficient inference in markov logic. Proceedings of 17th International Conference on Princi-
ples and Practice of Constraint Programming (CP 2011), Perugia, Italy, 12-16 September.
springer publishing, 691–705.

Park, James D (2002). Using weighted max-sat engines to solve mpe. Proceedings of the
Eighteenth National Conference on Artificial Intelligence, Menlo Park, CA, USA. AAAI
Press, 682–687.

Parkes, Andrew J (1997). Clustering at the phase transition. Proceedings of the 14th Na-
tional Conference on Artificial Intelligence, July 27–31, at the convention center in Provi-
dence, Rhode Island. AAAI Press, 340–345.

Pearl, Judea (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Poole, David (2003). First-order probabilistic inference. Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence IJCAI’03, Acapulco, Mexico. Morgan
Kaufmann Publishers Inc., vol. 3, 985–991.

Poon, Hoifung and Domingos, Pedro (2006). Sound and efficient inference with probabilistic
and deterministic dependencies. Proceedings of the 21st national conference on Artificial
intelligence, Vol.(1). AAAI Press, AAAI’06, 458–463.

Poon, Hoifung and Domingos, Pedro (2007). Joint inference in information extraction. Pro-
ceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI-07), Vancouver,
British Columbia, July 22–26. vol. 7, 913–918.

Poon, Hoifung and Domingos, Pedro and Sumner, Marc (2008). A general method for
reducing the complexity of relational inference and its application to mcmc. Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, Illinois, July 13–17.
AAAI Press, 1075–1080.

162

Potetz, Brian (2007). Efficient belief propagation for vision using linear constraint nodes.
IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, Minneapo-
lis, MN, USA. IEEE computer society, 1–8.

Ravikumar, Pradeep and Lafferty, John (2006). Quadratic programming relaxations for
metric labeling and markov random field map estimation. Proceedings of the 23rd interna-
tional conference on Machine learning. ACM, 737–744.

Richardson, Matthew and Agrawal, Rakesh and Domingos, Pedro (2003). Trust manage-
ment for the semantic web. Proceedings of the Second International Semantic Web Confer-
ence (ISWC2003). Springer, 351–368.

Richardson, Matthew and Domingos, Pedro (2006). Markov logic networks. Machine Learn-
ing, 62 (1-2), Kluwer Academic Publishers, 107–136.

Riedel, Sebastian (2008). Improving the accuracy and efficiency of map inference for markov
logic. Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI
2008), 9-12 July, Helsinki, Finland. AUAI Press, 468–475.

Roosta, Tanya and Wainwright, Martin J. and Sastry, Shankar S. (2008). Convergence
analysis of reweighted sum-product algorithms. IEEE Transactions on Signal Processing,
56 (9), IEEE computer society, 4293–4305.

Rossi, Francesca and Van Beek, Peter and Walsh, Toby (2006). Handbook of constraint
programming. Elsevier.

Sarkhel, Somdeb and Gogate, Vibhav (2013). Lifting walksat-based local search algorithms
for map inference. Proceedings of Statistical Relational Artificial Intelligence Workshop
at the Twenty-Seventh AAAI Conference on Artificial Intelligence, Bellevue, Washington,
USA. AAAI Press, 64–67.

Sarkhel, Somdeb and Venugopal, Deepak and Singla, Parag and Gogate, Vibhav (2014).
Lifted MAP inference for markov logic networks. Proceedings of the Seventeenth Interna-
tional Conference on Artificial Intelligence and Statistics, Reykjavik, Iceland. JMLR: W &
CP, vol. 33, 859–867.

Saul, Lawrence K. and Jaakkola, Tommi and Jordan, Michael I. (1996). Mean field theory
for sigmoid belief networks. Journal of Artificial Intelligence Research, AAAI Press, 4 (1),
61–76.

163

Selman, Bart and Kautz, Henry and Cohen, Bram and others (1993). Local search strategies
for satisfiability testing. Cliques, coloring, and satisfiability: Second DIMACS implementa-
tion challenge, 26, 521–532.

Semerjian, Guilhem and Monasson, Rémi (2003). Relaxation and metastability in a local
search procedure for the random satisfiability problem. Physical Review E, APS, 67 (6),
066103–66109.

Sen, Prithviraj and Deshpande, Amol and Getoor, Lise (2009). Bisimulation-based ap-
proximate lifted inference. Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, Montreal, Canada on June 18-21. AUAI Press, 496–505.

Shavlik, Jude and Natarajan, Sriraam (2009). Speeding up inference in markov logic net-
works by preprocessing to reduce the size of the resulting grounded network. Proceedings
of the 21 International Joint Conference on Artificial Intelligence, Pasadena, California,
USA. Morgan Kaufmann Publishers Inc., 1951–1956.

Shi, Xiangqiong and Schonfeld, Dan and Tuninetti, Daniela (2010). Message error analysis of
loopy belief propagation. Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP 2010, 14-19 March, Dallas, Texas, USA. IEEE
computer society, 2078–2081.

Singla, Parag (2012). Markov logic networks: theory, algorithms and applications. Pro-
ceedings of the 18th International Conference on Management of Data. Computer Society
of India, 15–150.

Singla, Parag and Domingos, Pedro (2006a). Entity resolution with markov logic. ICDM.
IEEE Computer Society, 572–582.

Singla, Parag and Domingos, Pedro (2006b). Memory-efficient inference in relational do-
mains. Proceedings of the Twenty-first National Conference on Artificial Intelligence (AAAI-
06), Boston, Massachusetts, July 16–20. AAAI Press, vol. 6, 488–493.

Singla, Parag and Domingos, Pedro (2008). Lifted first-order belief propagation. Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, Illinois, July
13–17. AAAI Press, 1094–1099.

Singla, Parag and Nath, Aniruddh and Domingos, Pedro (2010). Approximate lifted belief
propagation. Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
Atlanta, Georgia, USA, July 11–15, 2010. AAAI Press, 92–97.

164

Slaney, John and Walsh, Toby (2001). Backbones in optimization and approximation.
Proceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle,
WA, USA. Morgan Kaufmann Publishers Inc., vol. 1, 254–259.

Smith, David and Gogate, Vibhav (2014). Loopy belief propagation in the presence of deter-
minism. Proceedings of the Seventeenth International Conference on Artificial Intelligence
and Statistics, April 22-25, Reykjavik, Iceland. JMLR: W & CP, vol. 33, 895–903.

Song, Young Chol and Kautz, Henry and Allen, James and Swift, Mary and Li, Yuncheng
and Luo, Jiebo and Zhang, Ce (2013). A markov logic framework for recognizing complex
events from multimodal data. Proceedings of the 15th ACM on International conference on
multimodal interaction. ACM, 141–148.

Szeliski, Richard (2006). Image alignment and stitching: A tutorial. Foundations and
Trends R© in Computer Graphics and Vision, 2 (1), Now Publishers Inc., 1–104.

Van den Broeck, Guy and Taghipour, Nima and Meert, Wannes and Davis, Jesse and
De Raedt, Luc (2011). Lifted probabilistic inference by first-order knowledge compilation.
Proceedings of the Twenty-Second international joint conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, 16–22 July. AAAI Press, 2178–2185.

Venugopal, Deepak and Gogate, Vibhav (2014a). Evidence-based clustering for scalable
inference in markov logic. Proceedings of the 7th European machine learning and data mining
conference ECML PKDD 2014, Nancy, France, September 15-19. Springer, 258–273.

Venugopal, Deepak and Gogate, Vibhav G (2014b). Scaling-up importance sampling for
markov logic networks. Proceedings of the 28th Conference on Neural Information Processing
Systems: Advances In Neural Information Processing Systems 27, 8-13 December, Montreal,
Canada. Curran Associates Inc., 2978–2986.

Vlasselaer, Jonas and Van den Broeck, Guy and Kimmig, Angelika and Meert, Wannes
and De Raedt, Luc (2015). Anytime inference in probabilistic logic programs with Tp-
compilation. Proceedings of 24th International Joint Conference on Artificial Intelligence
(IJCAI). AAAI Press, 1852–1858.

Wainwright, Martin and Jaakkola, Tommi and Willsky, Alan (2003). Tree-based reparame-
terization framework for analysis of sum-product and related algorithms. IEEE Transactions
on Information Theory, 49 (5), IEEE computer society, 1120–1146.

165

Wainwright, Martin and Jaakkola, Tommi and Willsky, Alan (2004). Tree consistency and
bounds on the performance of the max-product algorithm and its generalizations. Statistics
and Computing, 14 (2), Springer, 143–166.

Wainwright, Martin and Jaakkola, Tommi and Willsky, Alan (2005). MAP estimation via
agreement on (hyper)trees: Message-passing and linear programming approaches. IEEE
Transactions on Information Theory, 51, IEEE computer society, 3697–3717.

Wainwright, Martin and Jordan, Michael (2003). Semidefinite relaxations for approximate
inference on graphs with cycles. Proceedings of the 17th conference on Neural Information
Processing Systems: Advances in neural information processing systems 16. MIT Press,
369–376.

Wang, Jue and Domingos, Pedro (2008). Hybrid markov logic networks. Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, Illinois, July 13–17.
vol. 8, 1106–1111.

Wei, Wei and Erenrich, Jordan and Selman, Bart (2004). Towards efficient sampling: Ex-
ploiting random walk strategies. Proceedings of the Nineteenth National Conference On
Artificial Intelligence, July 25–29, 2004, San Jose, California. AAAI Press, vol. 4, 670–676.

Weinman, Jerod J. and Tran, Lam C. and Pal, Christopher J. (2008). Efficiently learning
random fields fo stereo vision with sparse message passing. Proceedings of the 10th European
Conference on Computer Vision, Marseille, France. Springer, 617–630.

Weiss, Yair and Freeman, William T (2001). On the optimality of solutions of the max-
product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on Informa-
tion Theory, 47 (2), IEEE computer society, 736–744.

Winn, John Michael (2004). Variational message passing and its applications. PhD Thesis,
University of Cambridge.

Winn, John M. and Bishop, Christopher M. (2005). Variational message passing. Journal
of Machine Learning Research, 6, JMLR. org, 661–694.

Yanover, Chen and Meltzer, Talya and Weiss, Yair (2006). Linear programming relaxations
and belief propagation–an empirical study. Journal of Machine Learning Research, 7, JMLR.
org, 1887–1907.

Yeang, Chen-Hsiang (2010). Exact loopy belief propagation on euler graphs. Proceedings of
the 12th International Conference on Artificial Intelligence, Las Vegas, Nevada, USA, July
12-15. CSREA Press, 471–477.

166

Yedidia, J.S. and Freeman, W.T. and Weiss, Y. (2005). Constructing free-energy approxi-
mations and generalized belief propagation algorithms. IEEE Transactions on Information
Theory, (7), 2282–2312.

Yedidia, Jonathan S and Freeman, William T and Weiss, Yair (2003). Understanding belief
propagation and its generalizations. Exploring artificial intelligence in the new millennium,
8, 236–239.

Yuille, Alan L. (2001). A double-loop algorithm to minimize the bethe free energy. Proceed-
ings of the Third International Workshop on Energy Minimization Methods in Computer
Vision and Pattern Recognition. Springer-Verlag, 3–18.

Yuille, Alan L (2002). Cccp algorithms to minimize the bethe and kikuchi free energies:
Convergent alternatives to belief propagation. Neural computation, 14 (7), MIT Press, 1691–
1722.

Zhang, Weixiong (2004). Phase transitions and backbones of the asymmetric traveling
salesman problem. Journal of Artificial Intelligence Research (JAIR), 21, AAAI Press,
471–497.

167

APPENDIX A Proofs of Theorems and Propositions

Proof of Theorem 2

Theorem 2. The underlying joint distribution defined by the extended factor graph, Ĝ with
χ = 1, is positive only over valid max-cores.

Proof. The complete assignment X in extended factor graph Ĝ that is not max-core will be
either invalid or will involve unconstrained ground atoms set to value 1 or 0. For invalid
complete assignments, the distribution is zero because of the definition of ξ in Eq. (6.3).
Additionally, for complete assignments with unconstrained ground atoms set to value 1 or 0
the distribution will be zero because of the definition of ϕj in Eq. (6.9). Thus, from Eq. (6.6),
for each valid max-core X we have a joint probability of the form:

p(X) ∝
∏

fi∈S(X)
eŵi.y (A.1)

where S(X) represents only the set of the ground clauses satisfied by X. This means that
the joint probability is always positive for valid max-core X.

Proof of Theorem 3

Theorem 3. When y →∞, then WSP-1 estimates marginals corresponding to the station-
ary point of the Bethe free energy on a uniform distribution over max-cores.

Proof. Assume that we have a max-core (i.e.,W-core) of total weightW , and a more optimal
one ((W + ε)-core) of larger weight W + ε. According to Eq. (A.1), the ratio between the
two max-cores is:

P (W + ε-core)
P (W-core) = eε·y (A.2)

Now, as y tends to∞, the distribution of Eq. (A.2) is still positive only over max-cores. This
means that each max-core will have the same joint probability which is e∞. This in turn
implies that the extended factor graph defines a uniform joint distribution over valid max-
cores. Hence, running WSP-1’s message-passing over the extended factor graph representing
Eq. (A.1) estimates marginals over uniformly distributed max-cores.

168

Proof of Proposition 1

Proposition 1. In the extended factor graph Ĝ, reducing each extended factor f̂i by evi-
dencing its activation node with one, Ōi = 1, and then eliminating its auxiliary mega-node
Yi by marginalization yields its corresponding original factor fi in the original factor graph
G. ∑

Yi

f̂i(X1, . . . , Xn, Yi, Ōi)
∣∣∣∣
Ōi=1

= fi(X1, . . . , Xn), ∀f̂i ∈ F̂ (A.3)

Proof. Assume that we have a non-negative factor fi(X1, . . . , Xn) of n argument variables in
the original factor graph G that is extended to f̂i(X1, . . . , Xn, Oi, Yi) in the extended factor
graph Ĝ by attaching to it both an auxiliary activation node Oi and an auxiliary mega-node
Yi such that the extended f̂i(X1, . . . , Xn, Oi, Yi) never shares either its activation node or
its mega-node with other extended factors. Let Z being the set of all possible local entries
of f̂i that involves Ōi = 1. Each local entry of Z has the form (x1, . . . , xn, yi, 1), where
x = (x1, . . . , xn) is a configuration to the argument variables of fi, yi is a state of auxiliary
mega-node Yi, and value 1 for auxiliary activation node Oi. By construction, for each possible
local entry (x1, . . . , xn, yi, 1) in Z we have that:

∑
Yi
f̂i(x1, . . . , xn, Yi = yi, Ōi)

∣∣∣∣
Ōi=1

= ∑
Yi:Z(yi=x) f̂i(x1, . . . , xn, Yi = yi, Ōi)

∣∣∣∣
Ōi=1

+ ∑
Yi:Z(yi 6=x) f̂i(x1, . . . , xn, Yi = yi, Ōi)

∣∣∣∣
Ōi=1

(A.4)

The first and the second parts in the right hand side of Eq. (A.4) represent the marginalization
over the local entries in Z that involve x = yi and x 6= yi, respectively. However, we have
from Eq. (4.3) that f̂i(x1, . . . , xn, Yi = yi, Ōi)

∣∣∣∣
Ōi=1

= 0 when yi 6= x. This is because at the

dissatisfaction of the indicator constraint, the extended factor f̂i assigns a value 0. Thus, we
now have that:

∑
Yi
f̂i(x1, . . . , xn, Yi = yi, Ōi)

∣∣∣∣
Ōi=1

= ∑
Yi:Z(yi=x) f̂i(x1, . . . , xn, Yi = yi, Ōi)

∣∣∣∣
Ōi=1

+ ∑
Yi:Z(yi 6=x)

Zero︷ ︸︸ ︷
f̂i(x1, . . . , xn, Yi = yi, Ōi)

∣∣∣∣
Ōi=1

(A.5)

Furthermore, there is no need to take the summation ∑
Yi:Z(yi=x) since often there is only

one possible local entry in Z on which yi = x, ∀x, ∀yi. In addition, we have from Eq. (4.2)
that f̂i(x1, . . . , xn, Yi = yi, Ōi)

∣∣∣∣
Ōi=1

preserves the value of fi when yi = x (i.e., the case of

169

satisfaction of the indicator constraint). Thus, we have:

∑
Yi

f̂i(x1, . . . , xn, Yi = yi, Ōi)
∣∣∣∣
Ōi=1

= fi(x1, . . . , xn) (A.6)

Now since Eq. (A.6) is true for any configuration to the argument variables of x = (x1, . . . , xn)
of fi, then it is also true for any set of configurations:

∑
Yi

f̂i(X1, . . . , Xn, Yi, Ōi)
∣∣∣∣
Ōi=1

= fi(X1, . . . , Xn), ∀f̂i ∈ F̂ (A.7)

This implies the correctness of the proposition for any factor of n argument variables in the
original factor graph.

Proof of Proposition 2

Proposition 2. Any arbitrary factor graph G is equivalent, i.e., defining an identical joint
probability over variables X , to its extended Ĝ iff the activation nodes in Ĝ are evidenced
with one:

G ≡ Ĝ iff Ōi = 1, ∀Oi ∈ O in Ĝ

Proof. The equivalence is proved once we demonstrate that the two factor graphs define an
identical joint probability over variables whose marginals we want to compute.

Assume that we have an arbitrary factor graph G that involvesN random variables, {X1, . . . , XN}.1

It accommodates M factors, {f1(Xf1), . . . , fM(XfM
)}, where Xfa is the subset of variables

from {X1, . . . , XN} that are adjacent (i.e., argument) variables to fa.

Then, without loss of generality, the joint probability of G can be defined as follows:

P (X1, . . . , XN) =
M∏
a=1

fa(Xfa) (A.8)

Now assume that we extend G to an extended factor graph Ĝ by adding both an auxiliary ac-
tivation node Oa and auxiliary mega-node Ya for each individual factor fa(Xfa), obtaining its
corresponding extended factor f̂a(Xfa , Oa, Ya). Now the extended factor graph Ĝ includes the
original variables {X1, . . . , XN}, activation variables {O1, . . . , OM}, and mega-node variables
{Y1, Y2, . . . , YM}. It accommodatesM extended factors, {f̂1(Xf1 , O1, Y1), . . . , f̂M(XfM

, OM , YM)}.
1For simplicity, suppose that we want to compute their marginal probability for all variables {X1, . . . , XN}.

170

Thus, the joint probability of Ĝ is defined as follows:

P (X1, . . . , XN , Y1, . . . , YM , O1, . . . , OM) =
M∏
a=1

f̂a(Xfa , Oa, Ya) (A.9)

Now since it is a condition that all the activation variables must be evidenced with one to
get the equivalence, then we can reduce each extended factor f̂a with Ōa = 1:

P (X1, .., XN , Y1, .., YM , Ō1, .., ŌM)
∣∣∣∣
Ōa=1,∀a∈{1,..,M}

=
M∏
a=1

f̂a(Xfa , Ōa, Ya)
∣∣∣∣
Ōa=1

(A.10)

Now, eliminating the auxiliary mega-node variables from Eq. (A.10) by marginalizing each
extended factor f̂a over its mega-node Ya, we then have:

P (X1, . . . , XN) = ∑
Y1,..,YM

P (X1, .., XN , Y1, .., YM , Ō1, .., ŌM)
∣∣∣∣
Ōa=1,∀a∈{1,..,M}

= ∑
Y1,...,YM

∏M
a=1 f̂a(Xfa , Ōa, Ya)

∣∣∣∣
Ōa=1

(A.11)

However since all auxiliary mega-nodes are connected independently to individual factors,
then we can distribute the summation over the product with respect to individual extended
factors in Eq. (A.11), and we obtain:

P (X1, . . . , XN) =
M∏
a=1

∑
Ya

f̂a(Xfa , Ōa, Ya)
∣∣∣∣
Ōa=1

(A.12)

However, from Proposition 1 we have that:

∑
Ya

f̂i(Xfa , Ōi, Yi)
∣∣∣∣
Ōi=1

= fi(Xfa) (A.13)

By applying Eq. (A.13) for each reduced extended factor in Eq. (A.12), we obtain the joint
probability of the extended factor graph Ĝ over the variables {X1, , . . . , XN} as follows:

P (X1, , . . . , XN) =
M∏
a=1

fa(Xfa) (A.14)

This joint distribution we obtained for the extended factor graph Ĝ is identical to the joint
distribution that is defined by the original factor graph G in Eq. (A.8), which implies the
equivalence between the two factor graphs.

171

Proof of Proposition 3

Proposition 3 Given an MLN’s ground network with n ground atoms, m ground clauses,
and a maximum arity of the ground clauses of r, one iteration of computing the marginals
of query atoms takes time in O(nmr) in the worst case.

Proof. We introduce a complexity bound of the algorithm that is based on the efficiency of
functions and tools implemented in Alchemy (Kok et al., 2007) that are used by the algorithm.
Assume that n is the number of ground atoms and mh, ms are the number of hard and soft
ground clauses respectively, where m = mh +ms is the total number of ground clauses. Let
Tl be the time required for computing the pGAC probability, 1− ξ(Xj, fi), of a ground atom
Xj with respect to a ground clause fi. Also assume that Th, Ts are the time required to
perform hard and soft update rules respectively. The algorithm consists of three stages:

• Initialization stage S1: requires S1 ∈ Θ(n) to initialize the marginals of n ground atoms.

• Discrimination stage S2: requires S2 ∈ Θ(nm) since for each ground atom we iterate
through its ground clauses to decide whether it is involved in hard clauses or soft clauses
or both.

• Inference stage S3: here for each ground atom in Xh we run the hard update rule, then
for each ground atom in Xs we run the soft update rule, thus we have:

S3 = |Xh| × Th + |Xs| × Ts (A.15)

Now we need to calculate the computational complexity required by both Th and Ts.
For Th we first calculate

∣∣∣FhXj

∣∣∣ once which requires Θ(mh) and then calculate Tl for the
set of hard ground clauses that involve Xj as positive and negative respectively, which
requires Θ(mhTl). Now to calculate the pGAC probability Tl for each Xj ∈ Xh with
respect to one ground clause fi we iterate through other ground atoms in fi except Xj

to multiply their marginals at the opposite value. This requires linear time in the arity
of the clause, therefore, we have that Tl is bounded above by r, the maximum arity of
the ground clauses. Hence, the time required by each hard update rule can be obtained
as follows:

Th ∈ Θ(mh) + Θ(mhTl) ∈ O(mhr) (A.16)

In an analogous way, the time required by each soft update rule:

Ts ∈ Θ(ms) + Θ(msTl) ∈ O(msr) (A.17)

172

Now we take Eqs. (A.16) and (A.17) and substitute for Eq. (A.15) to obtain the com-
putational complexity of S3:

S3 ∈ |Xh| ×O(mhr) + |Xs| ×O(msr) (A.18)

Now since |Xh| and |Xs| are less than n, and mh and ms are less than m

S3 ∈ O(nmr) (A.19)

Now using Eq. (A.19), the total complexity of the three stages of the algorithm can be
bounded as:

S1 + S2 + S3 ∈ O(max[n, nm, nmr]) = O(nmr) (A.20)

This implies that the worst case complexity of the algorithm is O(nmr)

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Overview and Motivations
	1.2 Problem Statement and Limitations
	1.2.1 Problem 1
	1.2.2 Problem 2
	1.2.3 Problem 3

	1.3 Research Questions and Objectives
	1.4 Summary of the Contributions
	1.5 Organization of the Dissertation

	2 BACKGROUND
	2.1 Basic Notation and Definitions
	2.2 Probabilistic Graphical Models
	2.2.1 Ising Models
	2.2.2 Markov Logic Networks
	2.2.3 Factor Graphs

	2.3 Probabilistic Reasoning over Graphical Models
	2.3.1 Message-Passing Methods
	2.3.2 Markov Chain Monte Carlo Methods
	2.3.3 Local Search Methods

	2.4 Constraint Satisfaction Techniques for Analyzing Constraint Problems
	2.4.1 Constraint Satisfaction Problems
	2.4.2 Clustering Phenomenon and Geometry of the Solution Space
	2.4.3 The Survey Propagation Model of Satisfiability
	2.4.4 Decimation Based on Survey Propagation

	2.5 Variational Approximation Methods
	2.5.1 Variational Expectation Maximization
	2.5.2 Variational Mean Field approximation

	3 LITERATURE REVIEW
	3.1 Message-Passing Techniques for Computing Marginals
	3.1.1 Studying Message-passing's convergence
	3.1.2 Damped Message-passing
	3.1.3 Re-parameterized Message-passing
	3.1.4 Message passing and variational methods
	3.1.5 Scalable Message Passing

	3.2 Integrating Constraint Satisfaction techniques with Message Passing
	3.2.1 Constraint Propagation Based Methods
	3.2.2 Survey Propagation Based Methods

	3.3 Solving Maximum-A-Posteriori Inference Problems
	3.3.1 Systematic and Non-Systematic Search Methods
	3.3.2 Message-Passing-Based Methods
	3.3.3 Scalable MAP Methods

	4 IMPROVING INFERENCE IN THE PRESENCE OF DETERMINISM AND CYCLES
	4.1 GEM-MP Framework
	4.2 GEM-MP General Update Rule for Markov Logic
	4.2.1 Hard-update-rule
	4.2.2 Soft-update-rule.

	4.3 GEM-MP versus LBP
	4.4 GEM-MP Algorithm
	4.5 GEM-MP Update Rules for Ising MRFs
	4.6 Experimental Evaluation
	4.6.1 Datasets
	4.6.2 Metrics
	4.6.3 Methodology and Results

	4.7 Discussion

	5 EXPLOITING DETERMINISM TO SCALE INFERENCE
	5.1 Scaling Up Relational Inference via PR
	5.1.1 The PR Framework

	5.2 PR-based Relational Inference Algorithms
	5.2.1 PR-BP
	5.2.2 PR-MC-SAT

	5.3 Combining PR with Lazy Inference
	5.4 Experimental Evaluations
	5.4.1 Metrics
	5.4.2 Methodology
	5.4.3 Datasets
	5.4.4 Results

	5.5 Discussion

	6 IMPROVING MAP INFERENCE USING CLUSTER BACKBONES
	6.1 WSP- Framework
	6.1.1 Factor Graph Re-parameterization
	6.1.2 WSP- Message-Passing
	6.1.3 A Family of Extended Factor Graphs
	6.1.4 Derivation of WSP-'s Update Equations

	6.2 Using WSP- for MAP Inference in Markov Logic
	6.3 Combining WSP- with Lazy MAP Inference
	6.4 Experimental Evaluation
	6.4.1 Methodology
	6.4.2 Metrics
	6.4.3 Results

	6.5 Discussion

	7 CONCLUSION AND FUTURE WORK
	7.1 GEM-MP Inference Approach
	7.2 Preference Relaxation Scaling Strategy
	7.3 WSP- Family of Algorithms
	7.4 Note on some of the thesis's applications
	7.5 Future Work

	REFERENCES
	APPENDICES

