23 research outputs found

    Extended local fourier analysis for multigrid optimal smoothing, coarse grid correction, and preconditioning

    Get PDF
    Multigrid methods are fast iterative solvers for partial di erential equations. Especially for elliptic equations they have been proven to be highly e cient. For problems with nonelliptic and nonsymmetric features--as they often occur in typical real life applications--a rigorous mathematical theory is generally not available. For such situations Fourier smoothing and two-grid analysis can be considered as the main analysis tools to obtain quantitative convergence estimates and to optimize different multigrid components like smoothers or inter-grid transfer operators. In general, it is difficult to choose the correct multigrid components for large classes of problems. A popular alternative to construct a robust solver is the use of multigrid as a preconditioner for a Krylov subspace acceleration method like GMRES. Our contributions to the Fourier analysis for multigrid are two-fold. Firstly we extend the range of situations for which the Fourier analysis can be applied. More precisely, the Fourier analysis is generalized to k-grid cycles and to multigrid as a preconditioner. With a k-grid analysis it is possible to investigate real multigrid effects which cannot be captured by the classical two-grid analysis. Moreover, the k-grid analysis allows for a more detailed investigation of possible coarse grid correction difficulties. Additional valuable insight is obtained by evaluating multigrid as a preconditioner for GMRES. Secondly we extend the range of discretizations and multigrid components for which detailed Fourier analysis results exist. We consider four well-known singularly perturbed model problems to demonstrate the usefulness of the above generalizations: The anisotropic Poisson equation, the rotated anisotropic diffusion equation, the convection diffusion equation with dominant convection, and the driven cavity problem governed by the incompressible Navier Stokes equations. Each of these equations represents a larger class of problems with similar features and complications which are of practical relevance. With the help of the newly developed Fourier analysis methods, a comprehensive study of characteristic difficulties for singular perturbation problems can be performed. Based on the insights from this analysis it is possible to identify remedies resulting in an improved multigrid convergence. The theoretical considerations are validated by numerical test calculations

    Solving Upwind-Biased Discretizations

    Get PDF
    This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation obtained by AMA is always better than the required accuracy; the computational complexity of the AMA algorithm is (nearly) optimal (comparable with the complexity of the FMG algorithm applied to solve the problem on the optimally spaced target grid)

    Multigrid optimization for space-time discontinuous Galerkin discretizations of advection dominated flows

    Get PDF
    The goal of this research is to optimize multigrid methods for higher order accurate space-time discontinuous Galerkin discretizations. The main analysis tool is discrete Fourier analysis of two- and three-level multigrid algorithms. This gives the spectral radius of the error transformation operator which predicts the asymptotic rate of convergence of the multigrid algorithm. In the optimization process we therefore choose to minimize the spectral radius of the error transformation operator. We specifically consider optimizing h-multigrid methods with explicit Runge-Kutta type smoothers for second and third order accurate space-time discontinuous Galerkin finite element discretizations of the 2D advection-diffusion equation. The optimized schemes are compared with current h-multigrid techniques employing Runge-Kutta type smoothers. Also, the efficiency of h-, p- and hp-multigrid methods for solving the Euler equations of gas dynamics with a higher order accurate space-time DG method is investigated

    On local Fourier analysis of multigrid methods for PDEs with jumping and random coefficients

    Get PDF
    In this paper, we propose a novel non-standard Local Fourier Analysis (LFA) variant for accurately predicting the multigrid convergence of problems with random and jumping coefficients. This LFA method is based on a specific basis of the Fourier space rather than the commonly used Fourier modes. To show the utility of this analysis, we consider, as an example, a simple cell-centered multigrid method for solving a steady-state single phase flow problem in a random porous medium. We successfully demonstrate the prediction capability of the proposed LFA using a number of challenging benchmark problems. The information provided by this analysis helps us to estimate a-priori the time needed for solving certain uncertainty quantification problems by means of a multigrid multilevel Monte Carlo method

    Multigrid reduction-in-time convergence for advection problems: A Fourier analysis perspective

    Full text link
    A long-standing issue in the parallel-in-time community is the poor convergence of standard iterative parallel-in-time methods for hyperbolic partial differential equations (PDEs), and for advection-dominated PDEs more broadly. Here, a local Fourier analysis (LFA) convergence theory is derived for the two-level variant of the iterative parallel-in-time method of multigrid reduction-in-time (MGRIT). This closed-form theory allows for new insights into the poor convergence of MGRIT for advection-dominated PDEs when using the standard approach of rediscretizing the fine-grid problem on the coarse grid. Specifically, we show that this poor convergence arises, at least in part, from inadequate coarse-grid correction of certain smooth Fourier modes known as characteristic components, which was previously identified as causing poor convergence of classical spatial multigrid on steady-state advection-dominated PDEs. We apply this convergence theory to show that, for certain semi-Lagrangian discretizations of advection problems, MGRIT convergence using rediscretized coarse-grid operators cannot be robust with respect to CFL number or coarsening factor. A consequence of this analysis is that techniques developed for improving convergence in the spatial multigrid context can be re-purposed in the MGRIT context to develop more robust parallel-in-time solvers. This strategy has been used in recent work to great effect; here, we provide further theoretical evidence supporting the effectiveness of this approach

    Parallel algebraic multilevel Schwarz preconditioners for a class of elliptic PDE systems

    Full text link
    Algebraic multilevel preconditioners for algebraic problems arising from the discretization of a class of systems of coupled elliptic partial differential equations (PDEs) are presented. These preconditioners are based on modifications of Schwarz methods and of the smoothed aggregation technique, where the coarsening strategy and the restriction and prolongation operators are defined using a point-based approach with a primary matrix corresponding to a single PDE. The preconditioners are implemented in a parallel computing framework and are tested on two representative PDE systems. The results of the numerical experiments show the effectiveness and the scalability of the proposed methods. A convergence theory for the twolevel case is presented
    corecore