35,371 research outputs found

    Coalition Formation Game for Cooperative Cognitive Radio Using Gibbs Sampling

    Get PDF
    This paper considers a cognitive radio network in which each secondary user selects a primary user to assist in order to get a chance of accessing the primary user channel. Thus, each group of secondary users assisting the same primary user forms a coaltion. Within each coalition, sequential relaying is employed, and a relay ordering algorithm is used to make use of the relays in an efficient manner. It is required then to find the optimal sets of secondary users assisting each primary user such that the sum of their rates is maximized. The problem is formulated as a coalition formation game, and a Gibbs Sampling based algorithm is used to find the optimal coalition structure.Comment: 7 pages, 2 figure

    Interference Alignment-Aided Base Station Clustering using Coalition Formation

    Full text link
    Base station clustering is necessary in large interference networks, where the channel state information (CSI) acquisition overhead otherwise would be overwhelming. In this paper, we propose a novel long-term throughput model for the clustered users which addresses the balance between interference mitigation capability and CSI acquisition overhead. The model only depends on statistical CSI, thus enabling long-term clustering. Based on notions from coalitional game theory, we propose a low-complexity distributed clustering method. The algorithm converges in a couple of iterations, and only requires limited communication between base stations. Numerical simulations show the viability of the proposed approach.Comment: 2nd Prize, Student Paper Contest. Copyright 2015 SS&C. Published in the Proceedings of the 49th Asilomar Conference on Signals, Systems and Computers, Nov 8-11, 2015, Pacific Grove, CA, US

    MIMO-OFDM Based Energy Harvesting Cooperative Communications Using Coalitional Game Algorithm

    Get PDF
    This document is the Accepted Manuscript version. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we consider the problem of cooperative communication between relays and base station in an advanced MIMO-OFDM framework, under the assumption that the relays are supplied by electric power drawn from energy harvesting (EH) sources. In particular, we focus on the relay selection, with the goal to guarantee the required performance in terms of capacity. In order to maximize the data throughput under the EH constraint, we model the transmission scheme as a non-transferable coalition formation game, with characteristic function based on an approximated capacity expression. Then, we introduce a powerful mathematical tool inherent to coalitional game theory, namely: the Shapley value (Sv) to provide a reliable solution concept to the game. The selected relays will form a virtual dynamically-configuredMIMO network that is able to transmit data to destination using efficient space-time coding techniques. Numerical results, obtained by simulating the EH-powered cooperativeMIMO-OFDMtransmission with Algebraic Space-Time Coding (ASTC), prove that the proposed coalitional game-based relay selection allows to achieve performance very close to that obtained by the same system operated by guaranteed power supply. The proposed methodology is finally compared with some recent related state-of-the-art techniques showing clear advantages in terms of link performance and goodput.Peer reviewe

    Cloud Compute-and-Forward with Relay Cooperation

    Full text link
    We study a cloud network with M distributed receiving antennas and L users, which transmit their messages towards a centralized decoder (CD), where M>=L. We consider that the cloud network applies the Compute-and-Forward (C&F) protocol, where L antennas/relays are selected to decode integer equations of the transmitted messages. In this work, we focus on the best relay selection and the optimization of the Physical-Layer Network Coding (PNC) at the relays, aiming at the throughput maximization of the network. Existing literature optimizes PNC with respect to the maximization of the minimum rate among users. The proposed strategy maximizes the sum rate of the users allowing nonsymmetric rates, while the optimal solution is explored with the aid of the Pareto frontier. The problem of relay selection is matched to a coalition formation game, where the relays and the CD cooperate in order to maximize their profit. Efficient coalition formation algorithms are proposed, which perform joint relay selection and PNC optimization. Simulation results show that a considerable improvement is achieved compared to existing results, both in terms of the network sum rate and the players' profits.Comment: Submitted to IEEE Transactions on Wireless Communication

    Expanding alliance: ANZUS cooperation and Asia–Pacific security

    Get PDF
    Is an alliance conceived as a bulwark against a resurgence of Japanese militarism and which cut its military and intelligence teeth in the Cold War is still relevant to today’s strategic concerns? Overview The alliance between Australia and the US, underpinned by the formal ANZUS Treaty of 1951, continues to be a central part of Australian defence and security thinking and an instrument of American policy in the Asia–Pacific. How is it that an alliance conceived as a bulwark against a resurgence of Japanese militarism and which cut its military and intelligence teeth in the Cold War is still relevant to today’s strategic concerns? The answer is partly—and importantly—that the core values of the ANZUS members are strongly aligned, and successive Australian governments and American presidential administrations have seen great value in working with like-minded partners to ensure Asia–Pacific security. Far from becoming a historical curiosity, today it’s not just relevant, but of greater importance than has been the case in the past few decades. To explore new ideas on how to strengthen the US–Australia alliance, ASPI conducted a high-level strategic dialogue in Honolulu in July this year. Discussions canvassed the future strategic environment; the forthcoming Australian Defence White Paper; budget, sovereignty and expectation risks; and cooperation in the maritime, land, air, cyber, space and intelligence domains. A key purpose of the Honolulu dialogue was to help ASPI develop policy recommendations on the alliance relationship for government. This report is the product of those discussions

    Analyzing Interference from Static Cellular Cooperation using the Nearest Neighbour Model

    Full text link
    The problem of base station cooperation has recently been set within the framework of Stochastic Geometry. Existing works consider that a user dynamically chooses the set of stations that cooperate for his/her service. However, this assumption often does not hold. Cooperation groups could be predefined and static, with nodes connected by fixed infrastructure. To analyse such a potential network, in this work we propose a grouping method based on proximity. It is a variation of the so called Nearest Neighbour Model. We restrict ourselves to the simplest case where only singles and pairs of base stations are allowed to be formed. For this, two new point processes are defined from the dependent thinning of a Poisson Point Process, one for the singles and one for the pairs. Structural characteristics for the two are provided, including their density, Voronoi surface, nearest neighbour, empty space and J-function. We further make use of these results to analyse their interference fields and give explicit formulas to their expected value and their Laplace transform. The results constitute a novel toolbox towards the performance evaluation of networks with static cooperation.Comment: 10 pages, 6 figures, 12 total subfigures, WIOPT-SPASWIN 201

    Coalitional Games for Transmitter Cooperation in MIMO Multiple Access Channels

    Full text link
    Cooperation between nodes sharing a wireless channel is becoming increasingly necessary to achieve performance goals in a wireless network. The problem of determining the feasibility and stability of cooperation between rational nodes in a wireless network is of great importance in understanding cooperative behavior. This paper addresses the stability of the grand coalition of transmitters signaling over a multiple access channel using the framework of cooperative game theory. The external interference experienced by each TX is represented accurately by modeling the cooperation game between the TXs in \emph{partition form}. Single user decoding and successive interference cancelling strategies are examined at the receiver. In the absence of coordination costs, the grand coalition is shown to be \emph{sum-rate optimal} for both strategies. Transmitter cooperation is \emph{stable}, if and only if the core of the game (the set of all divisions of grand coalition utility such that no coalition deviates) is nonempty. Determining the stability of cooperation is a co-NP-complete problem in general. For a single user decoding receiver, transmitter cooperation is shown to be \emph{stable} at both high and low SNRs, while for an interference cancelling receiver with a fixed decoding order, cooperation is stable only at low SNRs and unstable at high SNR. When time sharing is allowed between decoding orders, it is shown using an approximate lower bound to the utility function that TX cooperation is also stable at high SNRs. Thus, this paper demonstrates that ideal zero cost TX cooperation over a MAC is stable and improves achievable rates for each individual user.Comment: in review for publication in IEEE Transactions on Signal Processin

    Operational Manoeuvre Group: Operation SOHIL LARAM II, Kandahar Province, February 2008

    Get PDF
    In February 2008 Regional Battle Group (South) in Afghanistan, based on The 1st Battalion, The Royal Gurkha Rifles supported by Canadian “enablers” and working with Afghan national security forces, conducted a mission known as Operation SOHIL LARAM II in the Maywand district of Kandahar province. A weak NATO presence coupled with a corrupt police force had allowed the Taliban to turn Maywand into a safe haven. Following the dismissal of the police force, Op SOHIL LARAM II was successful in disrupting Taliban operations, reasserting government authority and regaining the confidence of the local population. In addition, the disruption of Taliban forces allowed the relief in place of Canadian battle groups to proceed without the usual interference
    • …
    corecore