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Abstract—This paper considers a cognitive radio network in
which each secondary user selects a primary user to assist in
order to get a chance of accessing the primary user channel.
Thus, each group of secondary users assisting the same primary
user forms a coaltion. Within each coalition, sequential relaying
is employed, and a relay ordering algorithm is used to make use
of the relays in an efficient manner. It is required then to find
the optimal sets of secondary users assisting each primary user
such that the sum of their rates is maximized. The problem is
formulated as a coalition formation game, and a Gibbs Sampling
based algorithm is used to find the optimal coalition structure.

I. INTRODUCTION

Towards a more efficient utilization of the wireless spec-
trum, there has been recent interest in employing cooperation
among secondary nodes in cognitive radio networks, and
modeling it using game theoretic tools [1]-[5]. Cooperation in
cognitive radio was initially considered from a collaborative
sensing and access perspective in [1]-[3], where secondary
users were considered transparent to the primary users. The
secondary users actively listen to the primary users’ channels
and opportunistically transmit when the primary users’ chan-
nels are idle. More specifically in [1], the secondary users
collaborate to improve their sensing information. In [2], the
tradeoff between channel sensing and channel access time
is captured, and the secondary users form coalitions within
which they share their channel sensing information in order to
improve their channel sensing and access time. Both problems
in [1] and [2] are formulated as coalition formation games,
and a distributed algorithm for coalition formation that adapts
based on topology and environment changes is presented.
In [3], the problem of collaborative spectrum sensing is
formulated as an evolutionary game, where each secondary
user can choose whether to disclose its sensing information
to others or not, and the objective is to study the behaviour
of selfish secondary users who make use of other secondary
users sensing information in order to maximize their channel
access time.

More recent problems in cooperative cognitive radio assume
that the primary users are aware of secondary users, and
that secondary users cooperate with primary users so as to
reduce the primary user transmission time and increase the
channel idle time in order to get a better chance in accessing
their channels. A Stackelberg formulation is utilized in [4]-
[6] where the primary users are considered as leaders and the
secondary users are considered as followers. The secondary
users assist the primary user in delivering its information

in order to get a chance of accessing the primary user’s
channel. Hence, the transmission time duration is divided to
the primary user transmission phase, the cooperation phase,
and the secondary user transmission phase, and the objective
is to find the optimal time duration for each phase. In [4], the
case of a single primary user and a single secondary user is
considered, and a reputation based model is used in which
every round of the game, the different time durations are
updated based on the behaviour of users from the previous
rounds, thus encouraging cooperation. In [5] and [6], the
case of multiple secondary users assisting one primary user
is considered. In [5], it is assumed that all the secondary
users are willing to help the primary user, and that they access
the channel using time division for their own transmissions.
Hence, each secondary user tries to find its optimal channel
access time to maximize its utility. Also, an algorithm that
selects which secondary users to assist the primary user is
provided. In [6], it is assumed that the primary user selects
only one of the secondary users as a relay, and random access
(Slotted Aloha) is used as a multiple access scheme among
the secondary users for their own transmissions.

In this problem, we consider a similar cooperative cognitive
radio model as in [4]-[6]. However, our contributions are
summarized as follows:
1. We extend the models in [4]-[6] to the case of multiple

primary users and multiple secondary users. Thus, each
secondary user has to choose which primary user it should
assist in order to maximize its utility, where the utility is
defined as a function of the achieved throughput and the
energy spent during the cooperation phase. Thus, secondary
users serving the same primary user collaborate to maximize
their utilities.

2. In [5], it is assumed that all active relays should decode
the information before transmitting in the cooperation phase,
and thus the achieved rate will be severely degraded by the
relays with low channel quality. Thus in this problem, we
assume that the secondary users employ sequential relaying
to improve the received rate by the primary user, and hence
increase their channel access duration.

3. We formulate the problem as a coalition formation game,
and we draw a connection between the coalition formation
game and potential games [7]. To our knowledge, this has
not been previously addressed.

4. We propose a distributed algorithm based on Annealed
Gibbs Sampling to find the optimal coalition structure.



II. SYSTEM MODEL

We consider the downlink scenario in a Cognitive Radio
(CR) network composed of a set P of primary users (PU)
and a set S of secondary users (SU). It is assumed that each
primary user p (p ∈ P) has a fixed rate requirement of Rp bits
per seconds over the time interval [0, T ] where T is in seconds,
and that the rate requirement is less than or equal to the link
capacity between the base station and the primary user. Also,
it is assumed that the primary users are assigned orthogonal
frequency channels. The channels between any pair of nodes
is modeled as slow Rayleigh fading i.e. the value of the fading
coefficient does not change over the interval [0, T ], and that
all channels are independent. Additive white Gaussian noise
of variance N0 is assumed to be present at each of the users.

In order to give the secondary users the chance to access the
primary users’ channels, the base station allows the secondary
users to assist it in satisfying the demands of the primary users.
Hence, cooperation is employed, and during the cooperation
phase, each secondary user s (s ∈ S) chooses which primary
user it will assist to satisfy its demand. Hence, for each primary
user p, we define coalition P made of the set CP of secondary
users serving p. Also, the time interval [0, T ] is divided into
two main phases:

1) The cooperation phase: During the first fraction αP of
T , the secondary users in set CP assist primary user p
in satisfying its rate demand.

2) The SUs’ transmission phase: During the time fraction
1−αP of T , the secondary users in set CP will share the
channel of primary user p for their own transmissions.

A. The cooperation phase

To serve each primary user p during the cooperation phase,
we assume that sequential relaying is used, and we employ
the same transmission scheme as in [8]. In this scheme, it
is assumed that the secondary users in set CP have a certain
order in the coalition such that σP(k) is the kth secondary user
in coalition set CP. Hence, the cooperation phase is divided
into several time fractions tPk (0 ≤ k ≤ CP = |CP|), and
transmission occurs as follows:
• During the first time fraction tP0 , the base station transmits

to the first secondary user σP(1). Then, σP(1) decodes
while the remaining SUs and the PU store the received
information.

• During any subsequent tPk (1 ≤ k ≤ CP − 1), secondary
user σP(k) transmits to secondary user σP(k+1) which
decodes while the remaining SUs σP(k + 2),...,σP(CP)
and primary user p store the newly received information.

• During the last fraction tPCP , secondary user σP(CP)
transmits to PU p, which ultimately decodes the message.

A coalition of SU P is therefore a triplet (CP, σP, tP), where
tP denotes the vector of time fractions tP = (tP0 , . . . , t

P
CP

)>

and is such that tP > 0 and t>P .1 = 1, with 1 refering to the
vector of size CP + 1 whose elements are all equal to 1 and
tP.1 refering to the inner product of vectors. Notation tP > 0
means that the inequality holds componentwise.

In the remainder of this section, we focus on a single
coalition P and therefore drop the corresponding index for
clarity of notations.

Based on this scheme, for a given coalition P, the mutual
information at each secondary user σ(k), and at primary user
p can be written as [8]: Rσ(1)(t) = t0LB,σ(1)

Rσ(k)(t) = t0LB,σ(k) + ...+ tk−1Lσ(k−1),σ(k)
Rp(t) = t0LB,p + ...+ tCLC,p,

(1)

where L`,m is the channel capacity of the link between
transmitter ` and mobile m, and B refers to the base station,
and is given by shannon’s capacity formula

L`,m = log2

(
1 +
|h`,m|2PR`,m

N0

)
, (2)

where h`,m is the value of the fading coefficient of the link
of transmitter ` and mobile m. In both phases, it is assumed
full channel state information and that the users transmit with
fixed power value P . The received power PR`,m by each node
follows the pathloss model. Hence, it is given by PR`,m =
|d`,m|−aP where d`,m is the distance between the transmitting
and receiving nodes, and a is the pathloss exponent.

Thus, the transmitted rate from the base station B to the
primary user p is

α.R with R = min
k
{Rσ(1)(t), ..., Rσ(k)(t), ..., Rp(t)}. (3)

The time fraction α is chosen so as to satisfy the primary user
constraint:

α = Rp/R. (4)

For ease of notations, we define σ(0) = B the base
station and introduce the matrix of channel capacities L =
(Lσ(a−1),σ(b))a,b:

L=


LB,σ(1) LB,σ(2) LB,σ(3) · · · LB,p

Lσ(1),σ(2) Lσ(1),σ(3) · · · Lσ(1),p
Lσ(2),σ(3) · · · Lσ(2),p

0
. . . . . . . . ..

..

LC,p

. (5)

Then, equation (1) becomes: ∀k ∈ C ∪ {p}, Rk(t) =
(t>.L)k.

And finally, R can be rewriten

R = min
1≤k≤C+1

(t>.L)k. (6)

B. The SU transmission phase
Time division multiplexing is assumed, and the transmission

time is divided based on the contribution of the secondary
users in CP. Hence, the time allocated for secondary user k
is given by (1−αP)tPk . Thus, its reward is made proportional
to the amount of energy spent by the secondary user to assist
the primary user in the cooperation phase. The corresponding
achieved throughput of each secondary user is:

uk(P) = (1− αP(P))tPkLB,k. (7)

This is the utility of secondary user p when in coalition P.



III. COALITION STRUCTURING

In this section, we study the performance and optimal
structure of a coalition P for a given PU p, given the set
of SUs composing it CP.

Recall that a coalition is a triplet (CP, σP, tP). For a given
CP, the maximum achievable rate of the coalition is given by
αP.R

∗(P) with

R∗(P) = max
C′⊂CP

max
σP,t

P
k>0,

t>P .1=1

min
0≤k≤CP

(t>PL
P)k,

with σP being a permutation σP : CP → CP.

(8)

Again, as we focus on the optimal relay organization for
a given PU p, we omit the p index in what follows. Also,
the proofs of the following propositions and theorems of this
paper have been omitted due to space limitation. Please check
[9] for the detailed proofs.

A. Optimal Time Fractions

Consider first the optimization problem given by equation
(8). We first consider the sub-problem:

σ

R(P) = max
tPk≥0,
t>P .1=1

min
0≤k≤CP

(t>PL
P)k, (9)

In other words, we fix the set of relays and the relay order σ,
and discuss about

σ
t the maximizing time fraction vector, and

σ

R the corresponding solution.
Note that the relaxed optimization problem corresponds

to the 2 player zero-sum game with matrix game L (which
depends on σ), when the coalition relays play the role of the
row player which plays against nature. Then,

σ

R is the value
of the game and

σ
t is the corresponding optimal strategy.

We define the set PK = {q ∈ C,
σ
t > 0}. We have two

important properties:

Proposition 1. Assume that PK = CP. Then,

σ
t =

L−11

1>L−11
and

σ

R =
1

1>L−11
. (10)

Proposition 1 illustrates the fact that if all relays are active,
the time allocated for the transmission of each relay k should
be such that it passes on to the next active relay k + 1 the
information that k + 1 hasn’t yet received from the previous
transmissions. Then, the corresponding time fractions and
throughput can be computed by matrix inversions, as already
noted in [8]. Also, as the L matrix is lower triangular, the
inversion process can be obtained by forward substitution.

In the subsequent propositions, we will first state the condi-
tions for a relay to be active and then formulate the problem of
finding the optimal time allocation for the general case when
some relays can be inactive.

Proposition 2. ∀q ∈ PK, and ∀k ∈ C, (
σ
t>L)k ≥ (

σ
t>L)q .

A corrollary is that ∀k, q ∈ PK, (
σ
t>L)k = (

σ
t>L)q .

Simply put, Proposition 2 shows that, at the optimal time
vector

σ
t, any used relay forwards the same amount of infor-

mation to the next one: there is neither loss of information nor
wasted time. The fact that all unused relays k would have a
greater value of (

σ
t>L)k means that the σ(k+1) have already

received all information without the help of relay σ(k) which
is therefore unused.

Theorem 3. For a given matrix L, the optimal
σ
t and

σ

R are
the solution of the linear program:

max
t,R

R s.t.



∀i, ti ≥ 0,
C∑
i=0

ti = 1,

∀k, R ≤
C∑
j=0

Lk,jtj .

(11)

B. Optimal Relay Ordering

For a given CP and σP, Theorem 3 gives the optimal
corresponding tP. In this subsection, we focus on the joint
optimization of σP and tP for a given coalition set.

The optimal choice is crucial in terms of performance, as
shown in the next proposition.

Proposition 4. For a given coalition set, the degradation of
throughput due to the choice of order σ may be unbounded.
In other words,

∃CP, ∀Z > 0, ∃σ1, σ2,
σ2

R/
σ1

R > Z.

Since relay order significantly impact the performance of
a coalition, we propose an algorithm for constructing a relay
order, which is built on Proposition 5.

Proposition 5. For a certain order of relays, the optimal time
fractions of relays are (strictly) positive if and only if each
relay at the kth position (k = 1, 2, ..., C) satisfy:

Rσ(k)(t) > t0LB,r +

k−1∑
m=1

tmLσ(m),σ(r), ∀σ(r) > σ(k),

Rσ(k)(t) > t0LB,p +

k−1∑
m=1

tmLσ(m),p.

Corollary 6. It follows from Proposition 5 that each optimal
time fractions is positive if and only if each relay k is such that

σ(k) = argminktk with tk =
Rσ(k−1)(t)−

∑k−2
i=1 Lσ(i),kti

Lσ(k−1),k
.

Remark 1. In this problem, since we are considering Rayleigh
distribution of the channel coefficients, the channel capacities
have real values, and thus we assume that two relays having
the same tk occurs with probability 0. Hence, there exists only
one relay that minimizes tk.

The proposed relay ordering amounts in taking the next
relay as the one for which the needed time to transmit the
information will be minimized. Algorithm 1 returns such order



σ as well as the corresponding optimal time fractions
σ
t.

Further, the ordering will be the one where all relays have
positive optimal time fractions (i.e. where all relays participate
to the transmission), if such order exists (which then is unique,
following Remark 1). If not, the algorithm returns a relay order
and the set of unused relays.

Algorithm 1: Relay Coalition Ordering Algorithm
Input: The set C and matrix L.
Output: Permutation σ, time fractions t and set of unused
relays V .

1 Set J = C to be the current set of relays;
2 Set the array index k = 1 to be the current relay position;
3 Initialize the variable Tj = 1 for all j in J ;
4 Initialize the variable Tp = 1 for primary user p;
5 Initialize the variables sum = 0; mini = 1/L1,1

6 while J is not empty or V is empty do
7 foreach secondary user j in J do
8 If (k > 0) Set Tj = Tj − t[k − 1]Lk,j ;
9 Set tj =

Tj

Lk,j
;

10 If (tj < mini) Set mini = tj ;
11 end
12 Select secondary user s = mini;
13 Set tp =

Tp

Lk,p
; Tp = Tp − t[k − 1]Lk−1,p;

14 if ts < tp then
15 Increment k;
16 Set σ[k] = s; t[k] = ts; J = J\{s};
17 Set sum = sum+ t[k]; mini = 1/L1,1;
18 else
19 Set V = J ;
20 end
21 end
22 foreach j = 1, ..., k do
23 Set t[j] = t[j]

sum ;
24 end

Proposition 7 (Relay Coalition Ordering Algorithm). The
algorithmic complexity of Algorithm 1 is of O(C2).

C. Optimal Coalition Set

We finally look at the problem of jointly optimizing the
coalition set CP. Braess-like situations can occur: adding a
relay may decrease the throughput achieved by the coalition.
Indeed, a user with low channel capacities will require a higher
transmission time and therefore be detrimental to the coalition.

For example, consider a system with symmetric capacity
links and LB,1 = 6, LB,2 = 8, LB,3 = 2, L1,2 = 1, L1,3 = 2,
L2,1 = 5, L2,3 = 2. The achieved throughput is 2. Then
add secondary user 0 with LB,0 = 10, L0,1 = 4, L0,2 = 1,
L0,3 = 1. Then the total resulting achieved rate falls to 20/11
(see [9] for the details on the corresponding relay orders and
time fractions). Hence, it is necessary to find the optimal set of
relays to assist each primary user. This is why we propose in
the following section an algorithm based on Gibbs Sampling.

IV. COALITION FORMATION GAME

As each secondary user is devoted to assisting a single
primary user, the secondary users are partitioned into disjoint
sets. Hence, each group assisting a given primary user is
considered as a coalition, and the whole set of secondary users
is mapped into a coalition partition. The value V of a coalition
P is the sum of the utilities of each of its member for their
own tranmission, as given by Equation (7).

V (P) =
∑
k∈P

uk(P) = (1− αP(P))
∑
k∈P

tPkLB,k. (12)

A. Allocation Coalition Game
Congestion games are games where the set of players share

a set of resources and where each player takes an action
by selecting which of the resources to use. The payoff of
each player depends on the number of players using the same
resources. Allocation games are more general games, where
the payoff of each user depends on the set of players using
the same resources.

Congestion games have interesting optimization properties.
Indeed, the class of congestion games is known to be the class
of exact potential games, which are games where there exists a
function F such that the change in the utility of any player (due
to a change of his strategy) can be computed as the change
in the value of F due to the change of that strategy. It has
been shown in [7] that the local maximizers of the potential
function F are the Nash equilibria of the potential game.

Allocation games are in general not potential games, but
it has been shown in [11] that a simple tranformation on the
utilities can turn an allocation game into a potential game.

Note that these classes of games do not yet have, to the
best of our knowledge, their counterparts in the coalition game
theory framework. Note also that coalition games differ from
these games in that the players cooperate within each coalition
and compete with the other coalitions.

Inspired from the definition of allocation games, we intro-
duce the coalitional allocation games as follows:

Definition 8. A coalition game satisfying the 3 following
properties is said to be an coalitional allocation game:

1) The number of coalitions A is given (although a coali-
tion may be empty)

2) Coalitions are indexed by parameter a, 1 ≤ a ≤ A.
3) The value of each coalition is a function on parameter a

as well as the set of members of the associated coalition
Ca, but does not depend upon the coalitions formed by
other members.

Note that allocation coalition games are not in characteristic
form in that the value of a coalition depends on the coalition
index p.

Proposition 9. The coalition games formed by secondary
users that cooperate to assist the primary users with value
function of Equation (12) is an coalitional allocation game.

Our game can also be thought an allocation game where the
players are the secondary users, the resources are the channels



of the primary users, and the payoffs are the secondary users
utilities as given by Equation (7).

The value of a coalition V (P) not only depends on the
set of secondary users that it consists in (i.e. CP) but also of
which primary user p the set is assisting. Hence, we define
the coalition structure CS to be an |P| dimensional vector in
S|P|, where each entry P, (1 ≤ p ≤ |P|) is the set of SUs
assisting PU p. Also, the entries should satisfy

⋂
p CP = ∅.

Pursuing the analogy with allocation games, we have the
following result:

Proposition 10. Suppose that the advertised utility for player
k when inside coalition a is the repercussion utility:

rk(Ca) = uk(Ca)−
∑

j∈a,j 6=k

(
uj(Ca\{k})− uj(Ca)

)
. (13)

Then, the set of stable coalition partitions CS∗ are the
maximizers of the social welfare, i.e. the sum of valuations
V of the different coalitions.

W (CS∗) = max
CS

∑
a

V (Ca). (14)

The remaining of this section presents our solution method.

B. Finding the Optimal Coalition Partition

In order to find the optimal coalition structure, we propose
a randomized algorithm based on Annealed Gibbs Sampling
[10]. For our algorithm, we will allow one user at a time
to move to a new coalition thus forming a new coalition
structure. The Annealed Gibbs Sampling based algorithm for
our problem is defined in Algorithm 2. Starting from an initial
coalition structure CS0, the algorithm first picks a secondary
user j at random.

Then at each time step t and for all coalitions CP, the algo-
rithm computes the repercussion utility rj(CP) of secondary
user j when moved to coalition CP. Finally, the algorithm
computes the probability of moving j to coalition CP. The
expression of the probability used is the one used in Gibbs
Sampling and it is often known as the Gibbs measure:

e
rj(CP)

T /
∑
q∈P

e
rj(CQ)

T (Gibbs-Measure)

when T is a parameter, commonly known as the temperature,
and is often used to control the randomness in jumping to
suboptimal solutions. Then, the algorithm moves secondary
user j to a coalition CP according to the computed probability
distribution. This process is repeated until convergence.

In what follows, we study the convergence of the algorithm.

Proposition 11. When T = 1
log(t) , Algorithm 2 converges to

a global optimal solution.

Although Gibbs Sampling can converge to the global opti-
mal solution, there are no guarantees on its convergence time.
In our problem, the algorithm is supposed to run in real time.
Hence, the algorithm is not allowed to exceed a certain time
duration. Thus, we set a maximum number of iterations for
the algorithm.

Algorithm 2: Primary User Selection Using Annealed
Gibbs Sampling

1 Set uj = 0 for all secondary user j
2 Define the set CP = ∅ for all primary user p
3 Initialize temperature T
4 forall the time epoch t do
5 Pick randomly a secondary user j;
6 forall the coalition set CP do
7 Compute the value of the repercussion utility

rj(CP) of secondary user j when moved to CP
8 end
9 Randomly pick up coalition C according to the Gibbs

measure (Gibbs-Measure)
10 Move secondary user j to coalition C

11 Update temperature T (e.g. according to T = 1
log(t) )

12 end

V. NUMERICAL RESULTS

In this section, we study the performance of the coalition
formation algorithm. For evaluation, the following values are
used: |P| = 3, |S| = 10, N0 = −40.87 dBm, a = 3.4.

As for the location of the nodes, the coordinates of the the
primary and secondary users are chosen randomly according
to a uniform distribution on a 10×10 rectangular grid, whereas
the base station is placed at the center of the grid. Without loss
of generality, we neglect the effect of fading in the simulations
by setting the value of all fading coefficients to be one. The
rate demand of each primary user is set to be the channel
capacity of the link between the base station and the primary
user. All transmission power values are set to be 0.5 Watts.

For the Gibbs Sampling coalition formation algorithm de-
scribed in Algorithm 2, we consider two cases for the value of
the temperature T . The first one when the temperature is set to
be T = 1/log(t) where t is the current iteration value, while
the second case when the temperature is very low and set to
be T = 0.001. The second case corresponds to the greedy
algorithm that chooses the next best solution at each iteration.
The maximum number of iterations is set to be 1500.

Then, we compute the total utility obtained at each iteration
of Algorithm 2 for both cases when T = 1/log(t) and
when T = 0.001. Also, we compute the maximum utility
obtained using brute force optimization in order to determine
the value of the global optimal solution. Figure 1a shows the
the evolution of the total utility as Algorithm 2 elapses.

Based on Figure 1a, we first notice for the case when
T = 1/log(t) considerable fluctuation in the value of the total
utility, and that sometimes the total utility value drops in the
subsequent iteration, and this follows from the random nature
of Gibbs Sampling that allows jumping to less optimal solution
for the purpose of escaping from local optimum solutions
and eventually reaching the global optimal solution. Also,
we see that the global optimum (obtained from brute force
optimization and which is found to be 0.5914) is attained
for the first time at iteration number 277 which is relatively
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fast. Due to the stochastic nature of the algorithm, the total
utility keeps fluctuating but keeps closer to the global optimal
solution. For the case of T = 0.001 (i.e. the greedy choice), the
total utility converges fast to a suboptimal solution where the
total utility value is found to be 0.1579, which is considerably
lower than the global optimal solution.

Figure 1b shows the optimal coalition structure and the
relay order for each coalition. The secondary users and the
base station are represented by black circles, where the base
station is the circle at the center of the grid. Primary user
1, 2, and 3 are represented by the blue, green and red circles
respectively. Each of the blue, green and red lines connects the
secondary users assisting primary user 1, 2 and 3 respectively.
The secondary users are connected from the base station to
the primary user based on their order obtained from the relay
ordering algorithm. Since fading is not considered in this case,
it is clear to observe from Figure 1b that the secondary users
are connected based on the relative proximity to each others, to
the base station and to the primary users while the secondary
users that are far away from the primary users and the base
station do not assist any of the primary users. Hence, this
shows the effectiveness of our Gibbs Sampling algorithm in
selecting the secondary users that are mostly beneficial to each
primary user thus reaching the optimal solution.

VI. CONCLUSION

We have formulated the problem of cooperation among
primary users and secondary users in a cognitive radio network
as a coalition formation game, and proposed a Gibbs Sampling
based algorithm in order to find the optimal coalition structure.
The results show that our Gibbs Sampling based algorithm
can reach the global optimum value within an acceptable time
duration, unlike the case of greedy algorithms which they are
more likely to converge at a local optimum value. The results
also show the dependence of the coalition structure on the
system parameters such as the distance between the nodes and
the rate demand of the primary users.
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