54 research outputs found

    Completeness-via-canonicity in coalgebraic logics

    No full text
    This thesis aims to provide a suite of techniques to generate completeness re- sults for coalgebraic logics with axioms of arbitrary rank. We have chosen to investigate the possibility to generalize what is arguably one of the most suc- cessful methods to prove completeness results in ‘classical’ modal logic, namely completeness-via-canonicity. This technique is particularly well-suited to a coal- gebraic generalization because of its clean and abstract algebraic formalism. In the case of classical modal logic, it can be summarized in two steps, first it isolates the purely algebraic problem of canonicity, i.e. of determining when a variety of boolean Algebras with Operators (BAOs) is closed under canonical extension (i.e. canonical). Secondly, it connects the notion of canonical vari- eties to that of canonical models to explicitly build models, thereby proving completeness. The classical algebraic theory of canonicity is geared towards normal logics, or, in algebraic terms, BAOs (or generalizations thereof). Most coalgebraic log- ics are not normal, and we thus develop the algebraic theory of canonicity for Boolean Algebra with Expansions (BAEs), or more generally for Distributive Lattice Expansions (DLEs). We present new results about a class of expan- sions defined by weaker preservation properties than meet or join preservation, namely (anti)-k-additive and (anti-)k-multiplicative expansions. We show how canonical and Sahlqvist equations can be built from such operations. In order to connect the theory of canonicity in DLEs and BAEs to coalgebraic logic, we choose to work in the abstract formulation of coalgebraic logic. An abstract coalgebraic logic is defined by a functor L : BA → BA, and we can heuristically separate these logics in two classes. In the first class the functor L is relatively simple, and in particular can be interpreted as defining a BAE. This class includes the predicate lifting style of coalgebraic logics. In the second class the functor L can be very complicated and the whole theory requires a different approach. This class includes the nabla style of coalgebraic logics. For simple functors, we develop results on strong completeness and then prove strong completeness-via-canonicity in the presence of canonical frame con- ditions for strongly complete abstract coalgebraic logics. In particular we show coalgebraic completeness-via-canonicity for Graded Modal Logic, Intuitionistic Logic, the distributive full Lambek calculus, and the logic of trees of arbitrary branching degrees defined by the List functor. These results are to the best of our knowledge, new. For a complex functor L we use an indirect approach via the notion of functor presentation. This allows us to represent L as the quotient of a much simpler polynomial functor. Polynomial functors define BAEs and can thus be treated as objects in the first class of functors, in particular we can apply all the above mentioned techniques to the logics defined by such functors. We develop techniques that ensure that results obtained for the simple presenting logic can be transferred back to the complicated presented logic. We can then prove strong-completeness-via-canonicity in the presence of canonical frame conditions for coalgebraic logics which do not define a BAE, such as the nabla coalgebraic logics.Open Acces

    How to write a coequation

    Get PDF
    There is a large amount of literature on the topic of covarieties, coequations and coequational specifications, dating back to the early seventies. Nevertheless, coequations have not (yet) emerged as an everyday practical specification formalism for computer scientists. In this review paper, we argue that this is partly due to the multitude of syntaxes for writing down coequations, which seems to have led to some confusion about what coequations are and what they are for. By surveying the literature, we identify four types of syntaxes: coequations-as-corelations, coequations-as-predicates, coequations-as-equations, and coequations-as-modal-formulas. We present each of these in a tutorial fashion, relate them to each other, and discuss their respective uses

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Dualities in modal logic

    Get PDF
    Categorical dualities are an important tool in the study of (modal) logics. They offer conceptual understanding and enable the transfer of results between the different semantics of a logic. As such, they play a central role in the proofs of completeness theorems, Sahlqvist theorems and Goldblatt-Thomason theorems. A common way to obtain dualities is by extending existing ones. For example, Jonsson-Tarski duality is an extension of Stone duality. A convenient formalism to carry out such extensions is given by the dual categorical notions of algebras and coalgebras. Intuitively, these allow one to isolate the new part of a duality from the existing part. In this thesis we will derive both existing and new dualities via this route, and we show how to use the dualities to investigate logics. However, not all (modal logical) paradigms fit the (co)algebraic perspective. In particular, modal intuitionistic logics do not enjoy a coalgebraic treatment, and there is a general lack of duality results for them. To remedy this, we use a generalisation of both algebras and coalgebras called dialgebras. Guided by the research field of coalgebraic logic, we introduce the framework of dialgebraic logic. We show how a large class of modal intuitionistic logics can be modelled as dialgebraic logics and we prove dualities for them. We use the dialgebraic framework to prove general completeness, Hennessy-Milner, representation and Goldblatt-Thomason theorems, and instantiate this to a wide variety of modal intuitionistic logics. Additionally, we use the dialgebraic perspective to investigate modal extensions of the meet-implication fragment of intuitionistic logic. We instantiate general dialgebraic results, and describe how modal meet-implication logics relate to modal intuitionistic logics

    Epistemic Modality, Mind, and Mathematics

    Get PDF
    This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; the types of mathematical modality; to the epistemic status of large cardinal axioms, undecidable propositions, and abstraction principles in the philosophy of mathematics; to the modal profile of rational intuition; and to the types of intention, when the latter is interpreted as a modal mental state. Chapter \textbf{2} argues for a novel type of expressivism based on the duality between the categories of coalgebras and algebras, and argues that the duality permits of the reconciliation between modal cognitivism and modal expressivism. Chapter \textbf{3} provides an abstraction principle for epistemic intensions. Chapter \textbf{4} advances a topic-sensitive two-dimensional truthmaker semantics, and provides three novel interpretations of the framework along with the epistemic and metasemantic. Chapter \textbf{5} applies the fixed points of the modal μ\mu-calculus in order to account for the iteration of epistemic states, by contrast to availing of modal axiom 4 (i.e. the KK principle). Chapter \textbf{6} advances a solution to the Julius Caesar problem based on Fine's "criterial" identity conditions which incorporate conditions on essentiality and grounding. Chapter \textbf{7} provides a ground-theoretic regimentation of the proposals in the metaphysics of consciousness and examines its bearing on the two-dimensional conceivability argument against physicalism. The topic-sensitive epistemic two-dimensional truthmaker semantics developed in chapter \textbf{4} is availed of in order for epistemic states to be a guide to metaphysical states in the hyperintensional setting. Chapter \textbf{8} examines the modal commitments of abstractionism, in particular necessitism, and epistemic modality and the epistemology of abstraction. Chapter \textbf{9} examines the modal profile of Ω\Omega-logic in set theory. Chapter \textbf{10} examines the interaction between epistemic two-dimensional truthmaker semantics, epistemic set theory, and absolute decidability. Chapter \textbf{11} avails of modal coalgebraic automata to interpret the defining properties of indefinite extensibility, and avails of epistemic two-dimensional semantics in order to account for the interaction of the interpretational and objective modalities thereof. The hyperintensional, topic-sensitive epistemic two-dimensional truthmaker semantics developed in chapter \textbf{2} is applied in chapters \textbf{7}, \textbf{8}, \textbf{10}, and \textbf{11}. Chapter \textbf{12} provides a modal logic for rational intuition and provides four models of hyperintensional semantics. Chapter \textbf{13} examines modal responses to the alethic paradoxes. Chapter \textbf{14} examines, finally, the modal semantics for the different types of intention and the relation of the latter to evidential decision theory

    Semantically informed methods in structural proof theory

    Get PDF

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems
    • …
    corecore