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Abstract

Categorical dualities are an important tool in the study of (modal) logics.
They offer conceptual understanding and enable the transfer of results
between the different semantics of a logic. As such, they play a central rôle
in the proofs of completeness theorems, Sahlqvist theorems and Goldblatt-
Thomason theorems.

A common way to obtain dualities is by extending existing ones. For
example, Jónsson-Tarski duality is an extension of Stone duality. A convenient
formalism to carry out such extensions is given by the dual categorical notions
of algebras and coalgebras. Intuitively, these allow one to isolate the new part
of a duality from the existing part. In this thesis we will derive both existing
and new dualities via this route, and we show how to use the dualities to
investigate logics.

However, not all (modal logical) paradigms fit the (co)algebraic perspec-
tive. In particular, modal intuitionistic logics do not enjoy a coalgebraic
treatment, and there is a general lack of duality results for them. To remedy
this, we use a generalisation of both algebras and coalgebras called dialgebras.
Guided by the research field of coalgebraic logic, we introduce the framework
of dialgebraic logic. We show how a large class of modal intuitionistic logics
can be modelled as dialgebraic logics and we prove dualities for them. We use
the dialgebraic framework to prove general completeness, Hennessy-Milner,
representation and Goldblatt-Thomason theorems, and instantiate this to a
wide variety of modal intuitionistic logics.

Additionally, we use the dialgebraic perspective to investigate modal
extensions of the meet-implication fragment of intuitionistic logic. We instan-
tiate general dialgebraic results, and describe how modal meet-implication
logics relate to modal intuitionistic logics.
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I

Introduction

The mathematical concept of duality allows one to take two different per-
spectives on the same mathematical structure. These different perspectives
may lead to different insights. Intuitively, it is like having a mugshot of the
structure both from the front and from the side.

Slightly more formally, a duality between two categories allows us to
transform an object from the first category into an object from the second
and vice versa, in such a way that if we go back and forth we end up with
essentially the same object. We can also turn morphisms from one category
into morphisms from the other, but doing this reverses its direction. As
with objects, taking a morphism and going back and forth through the
duality does not substantially change it. So in a sense a duality provides a
mirror-image of a category.

The appeal of duality lies in the fact that it offers conceptual understand-
ing, as well as enables the transfer of results between the two perspectives.

Duality, duality, duality

While nowadays duality is a category theoretic concept, duality theorems
can be traced back to before Eilenberg and Mac Lane formalised the basic
notions of category theory [145]. One of the first is Stone’s duality for Boolean
algebras, which was announced in 1934 [397, Section 8] and proven shortly
after in [400, 401]. Guided by his maxim “One must always topologize” [403,
Page 814], Stone described the duals of Boolean algebras as certain topological
spaces, now called Stone spaces. Keeping this maxim in mind, he also
provided a duality for distributive lattices [402, Part I], and even though it was
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closely related to Birkhoff’s representation theorem for distributive lattice [67,
Theorem 25.2], Stone’s topological perspective drew more attention.

Around the same time it was shown that every locally compact Abelian
group is isomorphic to its double (Pontryagin) dual. This is known as
Pontryagin-Van Kampen duality. Preceded by a representation theorem
by Pontryagin which was foreshadowed in [351] and proven in [352], the
duality was proven by Van Kampen [246], see also [215, Theorems 24.3
and 24.8]. Extending this to compact groups is the Tannaka-Krein theorem,
which intuitively states that a compact group is uniquely determined by its
continuous irreducible unitary representations [407, 258, 259, 260]. (English
translations of the latter two papers are available via the AMS Translations
series [261, 262], or see [216, Section 30] for an English textbook exposition.)

Not long after, in 1939, Gelfand proved a duality between compact
Hausdorff spaces and commutative C∗-algebras [175, 177, 176, 178]. A
different duality for compact Hausdorff spaces was given by Yosida, who
showed them to be dual to the category of uniformly complete Archimedean
unitary Riesz spaces [448, 439].

Ever since, many other dualities have been discovered. In particular,
there are lots of dualities between categories of algebras and categories of
Stone spaces with additional structure. For example, Priestley proved a
duality between (the categories of) bounded distributive lattices and ordered
Stone spaces called Priestley spaces [356]. This can be restricted to a duality
for Heyting algebras, which was also discovered independently by Esakia and
hence is known as Esakia duality [148, 152]. Similarly, Hofmann, Mislove and
Stralka proved a duality between semilattices and Stone spaces that carry a
semilattice structure (HMS duality) [218], Cornish and Fowler showed that
the category of de Morgan algebras is dual to a category of ordered Stone
spaces with an additional order-preserving homeomorphic involution [117],
and Isbell and Werner gave a duality for median algebras by means of
bounded ordered Stone spaces and an order-reversing morphism satisfying
certain conditions [227, 438]. Taking stock of this multitude of examples,
general techniques have been developed for proving such dualities [129], [111,
Sections 3 and 4].

Duality and logic

In the context of (modal) logic, dualities provide a way to translate between
the algebraic and geometric semantics of a logic. This allows one to translate
results between them. The first steps towards dualities for modal logics were
taken by McKinsey and Tarski. They proved a representation theorem for
closure algebras, which can be viewed as modal algebras for the logic S4,
stating that every closure algebra is the subalgebra of the closure algebra of
a topological space [303, Theorem 2.6]. This was followed by a more general
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representation theorem stating that every modal algebras is the subalgebra
of the complex algebra of some relational structure, due to Jónsson and
Tarski [240, Theorem 3.10]. With their theorem, they also paved the way
for relational semantics of (normal) modal logic, now known as Kripke
semantics. The representation theorem was extended to a categorical duality
by Goldblatt [184], [187, Section 1.10]. Interestingly, around the same time
Esakia independently proved a duality for closure algebras [148] (an English
version can be found in [152, Theorem 3.3.4]).

Dualities for other modal logics followed, ranging from positive modal
logic [97] and monotone modal logic [209, 210] to modal geometric logic [236,
58] to many-valued logics such as Riesz modal logic [311] and Markovian
logic [257, 164]. Such dualities often give rise to completeness and expressivity
results. Indeed, the initial algebra or Lindenbaum-Tarski algebra dually
corresponds to a final object which can be used as a canonical model. The
unique morphisms into this final object then identify logically equivalent
states, thus establishing expressivity.

But there are more applications of duality. For example, the duality
between modal algebras and descriptive Kripke frames plays a key rôle in
the simplified proof of the Sahlqvist completeness theorem [376] given by
Sambin and Vaccaro [377]. Their proof was adapted to a Sahlqvist theorem
for positive modal logic, using a duality for positive modal algebras [97].
Similar techniques are used in the context of fixed-point logics [50, 51, 54]
polyadic modal logics [191, 192, 193] distributive modal logic [114] and
substructural logic [404]. We note that the Sahlqvist theorem for monotone
modal logic [209, Theorems 5.14 and 10.34] can also be proven directly by
combining the duality from [209, Section 7] and techniques from [377].

Furthermore, dualities give rise to a notion of ultrafilter or prime filter
extension of a frame, given by the dual of its complex algebra. These can
for example be used to prove bisimilarity-somewhere-else [70, Theorem 2.62],
[273, Theorem 27]. Besides, such extensions play a key rôle in the proofs
Goldblatt-Thomason theorems [190], where they allow one to transfer the
Birkhoff variety theorem from the algebraic semantics of a logic to its
frame sematics. The latter has been adapted to a variety of logics, such
as intuitionistic logic [369, 188], positive modal logic [97], graded modal
logic [378], logics of normal lattice expansions [116], and modal logics with
a universal modality [379]. A general Goldblatt-Thomason theorem for
classical coalgebraic logics is given by Kurz and Rosický in [278].

Duality and computer science

It was observed by Plotkin [348] and Smyth [393] that the duality between
state-transformer and predicate-transformer semantics is an instance of
a Stone type duality. Kozen extended this observation to probabilistic
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transition systems [255, 256]. Furthermore, Abamsky [3] investigated the
connection between program logic and domain theory via Stone duality,
Bidoit, Hennicker and Kurz studied the connection between observational
and constructor-based logic [64], and Bonsangue and Kurz proved a duality
for logics of transition systems [77]. An overview of dualities in computer
science can be found in [336, 167]. Thus, duality theory plays an important
rôle in computer science.

As we have seen, dualities allow us to study the same phenomenon
from different perspectives. This allows one to prove new properties or
simplify proofs of existing ones. For instance, duality theory can be used
to give simplified proofs of minimisation algorithms, including Brzozowski’s
minimisation algorithm [56, 76, 59]. Such proofs make use of the fact that
quotients dually correspond to subobjects. Dualities have also been used
in the study of regular languages [174, 80, 266, 267, 168], for analysing
probabilistic systems [257, 164], and to prove generalisations of Eilenberg’s
variety theorem [75, 9, 130, 10].

Finally, extensions Tannaka-Krein duality have been used in quantum
groups and may play a rôle in quantum computing [242, 434]. It has also
been suggested that the duality for semilattices given by Hofmann, Mislove
and Stralkia [218] may be relevant to quantum information theory [336].

Duality and coalgebra

Closer inspection of the dualities mentioned so far shows that many of them
seem to be based on others. For example, the duality between modal algebras
and descriptive Kripke frames (which can be viewed as Stone spaces with a
relation) sends the Boolean algebra underlying a modal algebra to its Stone
dual. Similarly, a Stone space with a relation is sent to the Boolean algebra
dual to the Stone space and an operator whose definition depends on the
relation. We say that the duality between modal algebras and descriptive
Kripke frames “piggy-backs” on Stone duality.

A convenient formalism to deal with such situations is given by the dual
categorical constructions of algebras and coalgebras for an endofunctor on
a category. If T : C→ C is a functor, then a T -algebra is an object C in C
together with a C-morphism TC → C (called the structure map). Dually, a
T -coalgebra is an object C with a morphism C → TC. It is relatively easy
to see that the category of modal algebras can be viewed as a category of
algebras for a functor K on the category of Boolean algebras. Moreover, it
has been shown in e.g. [271] that the category of descriptive Kripke frames
is isomorphic to the category of V -coalgebras, where V is some endofunctor
on the category of Stone spaces. It follows from the dual nature of algebras
and coalgebras that, in order prove the duality between modal algebras and
descriptive Kripke frames, it suffices to show that K and V are the same
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“modulo Stone duality.”
Similarly, the duality for positive modal algebras from [97] piggy-backs

on Priestley duality, and the duality for Riesz modal logic [311] is based
on Yosida duality. Thus, instead of proving the entire duality from scratch,
it sometimes suffices to prove a duality of functors. We say that the base
duality lifts to another duality. In a sense, the use of algebra and coalgebra
helps us isolate the new part of the duality from the known part.

Let us take a step back and have a closer look at coalgebras. Coalgebras
can be viewed as a generalisation of transition systems [233, 374, 232].
Despite their simple definition, they can be used to model a wide variety of
phenomena, including many types of automata [373, 374, 269, 106, 107], type
spaces used in economics [319, 320], semantics for quantum systems [4], and
non-deterministic and probabilistic quantum walks [231]. Besides, coalgebras
can be used to model semantics for a wide range of modal logics, including
(descriptive) Kripke farmes [2, 271], (descriptive) monotone neighbourhood
frames [209, 210], frames for positive modal logic [53, 334], selection function
frames [268], and more.

The latter observation, together with Moss’ seminal paper on logic for
coalgebras [318], instigated the research field of coalgebraic logic [275, 372,
229, 230, 270, 273]. This is a framework in which generalised versions of
modal logics are developed parametric in the signature of a language and
a functor T : C → C on some base category C. The framework can be
used to prove results for large classes of (modal) logics at once, such as
completeness [341, 279, 147], expressivity [383, 385], cut elimination [343],
and the finite model property [382]. The relation between modal logic and
coalgebraic logic is so intimate that is has been claimed that “modal logics
are coalgebraic” [110].

The choice of base category C of a coalgebraic logic is motivated by
the desired underlying propositional logic. The majority of the coalgebraic
logic research focusses on a classical propositional signature and coalge-
bras for endofunctors on Set [318, 341, 270, 273, 382, 278, 383, 384, 268].
Other common categories are the category of Stone spaces and continuous
functions [271, 210, 146, 60], for a positive propositional base one uses endo-
functors on the category of preorders, posets or Priestley spaces [334, 21, 22,
247, 23, 24, 126, 196], and endofunctors on the category of topological spaces
or a suitable subcategory correspond to propositional geometric logic as
underlying logic [421, 58]. General approaches towards coalgebraic logic can
be found for instance in [419, 251, 279, 104]. Since the algebraic semantics
of coalgebraic logics can usually be given by a category of algebras for an
endofunctor, dualities for such logics can be given via dualities of functors.

However, not all modal logics are coalgebraic logics. Specifically, modal
extensions of intuitionistic logic do not have a coalgebraic treatment [291,
Remark 8]. Intuitively, in order to model frames for modal intuitionistic
logics we need to allow the structure map of the coalgebra to be of a different
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type than the morphisms between coalgebras, but coalgebra does not have
this flexibility.

Of course, the lack of (co)algebraic treatment does not preclude one from
giving dualities for them, and some dualities for normal modal extensions of
intuitionistic logic (piggy-backing on Esakia duality) can be found in [446,
335]. But the number of dualities pales in comparison to the vast body of
literature on modal intuitionistic logic, which ranges from normal modal
extensions [81, 82, 158, 159, 79, 447, 349, 392, 444, 445, 446, 113, 132,
254] to epistemic intuitionistic logic [443, 217, 357, 15, 235, 370, 371], and
from monotone and non-monotone modal extensions [185, 187, 127, 128] to
conditional intuitionistic logic [436, 437, 108]. This is one of the topics we
address in this thesis.

In this thesis

This thesis revolves around extending old dualities to new ones. In particular,
we focus on dualities for categories that arise in the study of modal logic,
such as categories of (analogues) of modal algebras. Our mantra throughout
this thesis will be:

Functor dualities lift old dualities to new ones.

In Chapter II we recall the dualities we wish to extend. Most of these
are well known, the only new one being a duality for implicative semilattices
that arises as a restriction of HMS duality.

In Chapters III and IV we use the duality between algebras and coalgebras
to extend Stone duality, Tarski duality and Priestley duality. On the one
hand, we show how to prove existing dualities via a duality of functors, thus
showcasing the convenience of using functor dualities. These include dualities
for modal algebras and positive modal algebras. On the other hand, we
provide new dualities for a large number of modal logics, including instantial
neighbourhood logic, positive monotone modal logic and the extension of
positive logic with a weak subintuitionistic implication. To showcase the
value of such dualities, we use them to prove new results for the logics under
consideration, ranging from definability theorems to completeness and the
finite model property.

But as we have seen the (co)algebra approach does not accommodate
equally well for all modal logics. In particular, modal extensions of intuition-
istic logic cannot be viewed as coalgebraic logics, and as a consequence we
cannot prove dualities for them by (co)algebraic means. To remedy this, in
Chapter V we introduce a generalisation of coalgebraic logic called dialgebraic
logic. Dialgebras generalise both algebras and coalgebras, and we can use
them to obtain new dualities from old ones using functor dualities akin to
algebras and coalgebras.
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We show that a large number of modal extensions of intuitionistic logic
from the literature fit the framework of dialgebraic logic, including normal
and monotone modal extensions, as well as conditional intuitionistic logic.
Not only do we prove a duality for each of these logics, we also prove and
instantiate general dialgebraic results. These include a Hennessy-Milner
theorem, a Jónsson-Tarski representation theorem, completeness results, and
a Goldblatt-Thomason theorem. Guided by these results we reformulate the
claim made in [110] to:

Some modal logics are dialgebraic.

Lastly, in Chapter VI we study two examples of dialgebraic logics. The
first one, in Section 13, is the extension of intuitionistic logic with a Lewis-
style implication, called Heyting-Lewis logic. The dialgebraic perspective
provides automatic results, including a Hennessy-Milner and a Goldblatt-
Thomason theorem. Additionally, we use non-dialgebraic methods to further
study the logic. This culminates in a Gödel-McKinsey-Tarski translation
and a Blok-Esakia theorem, enabling the transfer of properties such as
completeness, the finite model property and decidability between extensions
of Heyting-Lewis logic and their modal companions.

Finally, to demonstrate that the framework of dialgebraic logic is not
limited to modal extensions of intuitionistic logic, in Section 14 we investigate
modal extensions of the meet-implication fragment of intuitionistic logic. We
give dualities piggy-backing on HMS duality and its restriction to a duality
for implicative semilattices. On top of instantiations of general dialgebraic
results, we uncover that the normal modal extension of the meet-implication
fragment of intuitionistic logic is a “common denominator” of a wide variety
of normal modal intuitionistic logics from the literature.

About this thesis

Here I briefly discuss the preliminaries of this thesis, conventions concerning
notation, interdependency of sections, and origins of the presented work.

Preliminaries

We assume familiarity with basic notions of:

• topology (Hausdorff spaces, compactness, homeomorphisms, bases and
subbases, the Alexander subbase theorem), see e.g. [14, 322, 441, 321];
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• category theory (categories, (regular) monos and epis, functors, natural
transformations, equivalences and dualities, (dual) adjunctions), see
e.g. [297, 8, 18]; isomorphisms, equivalences and dual equivalence of
categories are denoted by ∼=, ≡ and ≡op, respectively;

• universal algebra (varieties of algebras, presentations via generators
and elations), see [83] or [7, Section 3];

• some modal and intuitionistic logic [100, 70, 49].

On notation

I have adopted a number of conventions, listed below. An index of categories
and functors and an ordinary index can be found at the end of this thesis.

• Categories are written in a sans serif font (Set,Pos,BA). If Frm is the
category of frames, then we usually denote the categories of general
and descriptive frames by prefixing it with G- and D-, respectively.

• Functors are written in a calligraphic font (pf,V ,ℱ), and their com-
position is indicated by · (like pf ·ℱ). (The symbol ◦ is reserved for
composition of functions and relations.) Natural transformations are
denoted by Greek lowercase letters.

• Languages are written in bold (L, IPC, MI) and logics in a calligraphic
bold font (L, IPC, MI). Formulae are denoted by lowercase Greek
letters (ϕ,ψ, χ) and sets of formulae by uppercase ones (Φ,Ψ,Γ).

• We use blackboard letters (X,Y,M) for of topological spaces, including
spaces with extra structure such as Priestley spaces and Esakia spaces.
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Dependencies

The directed hypergraph below shows the dependencies between the (sub)sections.

1.1 & 1.2

3

4 5

1.3

6

7

8

1.4

9

10

11

2

12 13 14

Dualities for several classes of logics can be found in this thesis, which
do not require reading the entire thesis.

Modal classical logics. This is developed in the sections contained in
the top left rectangle of the figure above.

Modal positive logics. This is developed in the sections contained in
the top rectangle that is second from the left.

Modal intuitionistic logics. This is developed as an instance of dial-
gebraic logic. If one is interested only in the results, rather than the
methods to obtain them, it suffices to read Subsection 9.3, in which
we recall the language and interpretation of a number of modal intu-
itionistic logics from the literature, and Section 12, where we formulate
results for them without using dialgebraic notions (although the proofs
rely on the dialgebraic perspective).

Modal meet-implication logics. This forms the content of Section 14.
Since this relies heavily on the dialgebraic formalism, one probably
wishes to read Sections 9, 10 and 11 beforehand.

Alternatively, we can fix a modal extension and investigate its manifestations
over various propositional bases. There are two types of modal extensions
particularly prevalent in this thesis.

Normal modal logics. These can extend classical logic (Subsection 3.1),
infinitary classical logic (Subsection 3.2), positive logic (Section 6),
intuitionistic logic (the extension of intuitionistic logic with a -like
modality serves as a running example throughout Sections 9, 10 and 11,
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the extension with an n-ary -like modality is discussed in Subsec-
tions 9.3.2 and 12.1) and meet-implication logic (Section 14 minus
Subsection 14.6).

Monotone modal logics. These can be based on classical logic (Subsec-
tions 3.3.2 and 4.4) infinitary classical logic (Subsection 4.2.1) positive
logic (Section 7), intuitionistic logic (Subsections 9.3.3 and 12.2), and
meet-implication logic (Subsection 14.6).

Origins of the presented work

Each section starts with a detailed account of the origin of the presented
theory and relevant related literature. For convenience, we have collected
below a list of published and submitted papers by the writer of this thesis
on which several of the sections are based.

Section Based on Coauthor(s)

2 & 14 [202] Dirk Pattinson
4 [62]† Guram Bezhanishvili, Nick Bezhanishvili
5 [60] Nick Bezhanishvili, Sebastian Enqvist
7 [196]
8 [203] Dirk Pattinson
9 & 10 [200] Dirk Pattinson
11 [198]‡

13 [205] Tadeusz Litak, Dirk Pattinson

The paper labelled † has been accepted with minor revisions and is in its
second round of reviewing. The paper labelled ‡ is under review.

Section 12 contains instantiations of dialgebraic logic to specific modal
intuitionistic logics found in the literature. Small portions of this section are
based on examples from [200] and [198], but not enough to claim that the
entire section is based on these two papers.

In order to tell a coherent story, some papers published during my PhD
programme are not included in this thesis [58, 199, 204, 201, 197]. Most of
these revolve around bisimulations, which is a topic that, besides duality
theory, I find fascinating.



19

Acknowledgements

First of all, I would like to thank my supervisor, Dirk Pattinson. Dirk is an
outstanding supervisor and his guidance greatly benefitted my development
as a researcher. Moreover, Dirk and his family were extremely welcoming
and helpful when I moved from Amsterdam to Canberra.

Next, I would like to thank Nick Bezhanishvili. Nick was one of the
supervisors of my master’s thesis and during my PhD has taken on the rôle
of academic advisor.

Lastly, I thank my coauthors, Guram Bezhanishvili, Sebastian Enqvist,
Helle Hansen, Tadeusz Litak, Alexander Kurz and Yde Venema, and my
supervisory panel consisting (besides Dirk) of Ranald Clouston and Michael
Norrish.



20 Introduction



II

Dualities of the giants

In this chapter we discuss a number of known dualities and a new one. Each
of these involves a category of algebras corresponding to a propositional logic.
In subsequent chapters we enrich these propositional signatures with modal
operators and obtain dualities for the resulting logics by lifting the dualities
from the current chapter.

We prove the dualities in a slightly uncommon way. Rather than describ-
ing the duals of categories of algebras using topological spaces right away,
we first prove a duality with a suitable category of fields of sets (in case of
Stone duality) or a variation thereof. We then show that these are equivalent
to a category of topological spaces, where the topology is generated by the
(analogy of the) field of sets. We use this method because the analogues of
fields of sets tie in so nicely to general and descriptive frames for modal logics,
used throughout this thesis. In a sense, they are the descriptive semantics of
the propositional logic corresponding to the algebras under consideration.
As such, we isolate the propositional part of the definition of a descriptive
frame from the modal part.

1 Some Stone type dualities

We review four famous dualities that will be used in this thesis, each of
them corresponding to a propositional logic. Starting with Stone duality for
Boolean algebras in Subsection 1.1, we then move on to Tarski duality between
sets and a subcategory of Boolean algebras in Subsection 1.2. Subsequently,
we recall Priestley duality for distributive lattices in Subsection 1.3, which can
be viewed as an ordered analogue of Stone duality. Lastly, in Subsection 1.4

21
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we show how Priestley duality restricts to a duality for Heyting algebras,
known as Esakia duality.

1.1 Stone

Stone’s seminal duality for Boolean algebras was announced in a 1934 pa-
per [397], and a proof was published two years later [400, 401] as part of a
series of papers concerning Boolean algebras [397, 398, 399, 400, 401, 403].
This duality plays a major rôle in the field of (modal) classical logics (as
we shall see in Chapter III) and set off the development of similar dualities
for other categories, often called Stone type dualities. We refer to [236] for
an overview of mathematical consequences of Stone duality and the Stone
representation theorem, as well as an in-depth introduction to Stone’s work
on Boolean algebras.

An alternative (choice-free) duality for the category of Boolean algebras
was recently given by Bezhanishvili and Holliday [52], and plays the same rôle
for possibility semantics [219] that as Stone duality for classical propositional
logic. But here we focus on Stone duality between Boolean algebras and
Stone spaces.

We write Set for the category of sets and functions, and BA for the
category of Boolean algebras and Boolean homomorphisms. Rather than
prove Stone duality directly, we first derive a duality between Boolean
algebras and a suitable collection of fields of sets. Stone duality then follows
from an isomorphism between the category of fields of sets and suitable
morphisms, and the category of Stone spaces and continuous functions. A
more conventional introduction to Stone duality can be found in e.g. [83,
Section IV.4].

1.1. Definition. For a set X, let ℘X be the Boolean algebra of subsets
of X, with top, bottom, negation, conjunction and disjunction given by
X, ∅, complements, intersection and union, respectively. If f : X → X ′

is a function, define ℘f : ℘X ′ → ℘X (note the change of direction!) by
℘f := f−1. Then ℘ defines a contravariant functor Set→ BA.

Observe that ℘X corresponds bijectively to the set of functions g : X → 2,
where 2 is the two-element set. The collection of such functions is denoted
by HomSet(X, 2). Moreover, we can equip it with a pointwise Boolean
algebra structure by viewing 2 as the two-element Boolean algebra, and then
HomSet(X, 2) is isomorphic to ℘X as a Boolean algebra. A function f : X →
X ′ gives rise to a function HomSet(f, 2) : HomSet(X

′, 2)→ HomSet(X, 2) via
postcomposition with f , i.e. HomSet(f, 2)(g) is defined as the composition

X X ′ 2.
f g
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This makes HomSet(f, 2) a Boolean algebra homomorphism, so that we find a
contravariant functor HomSet(−, 2) : Set→ BA that is naturally isomorphic
to ℘. In other words, the functor ℘ can also be obtained by “homming into
2.”

The question arises whether every Boolean algebra emerges as the power-
set Boolean algebra of some set. While this is not the case, it can be shown
that every Boolean algebra is the subalgebra of a Boolean algebra of the
form ℘X. That is, for each Boolean algebra B we can find a set X and an
injective Boolean homomorphism B → ℘X. A suitable candidate for X is
given by the set of ultrafilters on B.

1.2. Definition. An ultrafilter on a Boolean algebra B is a nonempty subset
u ⊆ B such that

• if a ∈ u and b ∈ B and a ≤ b then b ∈ u;

• if a, b ∈ u then a ∧ b ∈ u;

• for all b ∈ B, either b ∈ u or ¬b ∈ u.

We write ufB for the set of ultrafilters on B.

1.3. Theorem. For each Boolean algebra B, the map

θB : B → ℘(ufB) : b 7→ b̂ := {u ∈ ufB | b ∈ u}

is an injective Boolean homomorphism.

The assignment uf can be extended to a contravariant functor BA→ Set.

1.4. Definition. The contravariant functor uf : BA→ Set sends a Boolean
algebra B to the set ufB of prime filters of B, and a Boolean homomorphism
h : B → B′ to the function ufh = h−1 : ufB′ → ufB.

Just like ℘, we can obtain uf by “homming into 2.” Let 2 = {>,⊥}
be the two-element set, viewed as Boolean algebra. First, observe that an
ultrafilter u on B gives rise to a Boolean homomorphism B → 2 that sends
b ∈ B to > if and only if b ∈ u. Conversely, any such homomorphism
h : B → 2 gives rise to an ultrafilter h−1(>) of B, and these two assignments
define a bijection. In symbols,

ufB ∼= HomBA(B, 2).

In the same way as above, HomBA(−, 2) can be extended to a contravariant
functor BA→ Set by acting on a Boolean homomorphism h : B → B′ via

HomBA(h, 2) : HomBA(B′, 2)→ HomBA(B, 2) : g 7→ g ◦ h

and the functors uf and HomBA(−, 2) are naturally isomorphic. Throughout
this thesis, we will use these two perspectives on ultrafilters interchangeably.

For future reference we mention:
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1.5. Lemma. The functors ℘ : Set → BA and uf : BA → Set constitute a
dual adjunction.

We will now modify the category of sets in an attempt to obtain a duality
for Boolean algebras. Theorem 1.3 suggests that, rather than taking the
Boolean algebra of all subsets of a set, we want to be able to transform a
set into a Boolean algebra of certain (chosen) subsets. This motivates the
notion of a field of sets.

1.6. Definition. A field of sets is a pair (X,A) where X is a set and A
is a collection of subsets of X that contains the empty set and is closed
under taking complements in X and under binary intersections (hence it
also contains X and is closed under binary unions). The sets in A are called
admissible subsets of X. A morphism between fields of sets (X,A) and
(X ′, A′) is a function f : X → X ′ such that f−1(a′) ∈ A for all a′ ∈ A′. We
write FOS for the category of fields of sets and their morphisms.

We can define a functor D : FOS→ BA that sends (X,A) to the Boolean
algebra A with connectives defined as in ℘X, and a FOS-morphism f :
(X,A)→ (X ′, A′) to f−1 : A′ → A. Then f−1 is a Boolean homomorphism
because inverses preserve Boolean operations.

Conversely, every Boolean algebra B gives rise to the field of sets (ufB, B̂),
where B̂ = {b̂ | b ∈ B}. (Recall from Theorem 1.3 that b̂ = {u ∈ ufB | b ∈
u}.) A straightforward verification shows that a Boolean homomorphism
h : B → B′ yields a morphism h−1 : (ufB′, B̂′)→ (ufB, B̂), so that we have
a functor BA→ FOS that we shall temporarily denote by Uf.

1.7. Lemma. For every Boolean algebra B the map θB : B → D(UfB) :
b 7→ b̂ defines an isomorphism in BA. Moreover, this isomorphism is natural
in B.

So the assignment θ = (θB)B∈BA is a natural isomorphism. In the reverse
direction, for each field of sets (X,A) we can define a function

η(X,A) : (X,A)→ Uf(D(X,A)) : x 7→ x̂ := {a ∈ A | x ∈ A}.

A routine verification shows that this function is natural in (X,A). However,
it is not necessarily a bijection! If we want it to be a bijection, we need
to stipulate extra conditions on (X,A). This leads to the notion of a
differentiated and compact field of sets.

1.8. Definition. A field of set (X,A) is called

1. differentiated if for all distinct x, y ∈ X there exists a set a ∈ A such
that x ∈ a and y /∈ a;

2. compact if for all C ⊆ A with the finite intersection property,
⋂
C 6= ∅;
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3. descriptive if it is differentiated and compact.

We write D-FOS for the full subcategory of FOS whose objects are descriptive.

1.9. Lemma. Let (X,A) be a field of sets. Then ηX : (X,A)→ Uf(D(X,A))
is injective if and only if (X,A) is differentiated, and surjective if and only
if (X,A) is compact.

Proof. Suppose (X,A) is differentiated. Then any two distinct elements x, y
of X are separated by some a ∈ A such that x ∈ a and y /∈ a. But this
implies a ∈ x̂ while a /∈ ŷ, so that x̂ 6= ŷ and ηX is injective. Conversely, if
ηX is injective and x 6= y in X, then x̂ 6= ŷ so there exists some a ∈ A such
that a ∈ x̂ while a /∈ ŷ. But this implies x ∈ a and y /∈ a, so that (X,A) is
differentiated.

Next suppose (X,A) is compact and u ∈ UfA. Then u ⊆ A and by
definition u has the finite intersection property. So there exists some x ∈

⋂
u.

Then u ⊆ x̂. Moreover, if a ∈ A is such that a /∈ u then X \ a ∈ u, so
x ∈ X \ a. But this implies x /∈ a, so a /∈ x̂ and hence u = x̂. Therefore ηX
is surjective.

Conversely, suppose ηX is surjective and C ⊆ A has the finite intersection
property. Let f = {a ∈ A | c ⊆ a for some c ∈ C}. We can extend this
to an ultrafilter f using the ultrafilter theorem [70, Proposition 5.38], and
by surjectivity of ηX we have f = x̂ for some x ∈ X. But then we have
x ∈

⋂
f ⊆

⋂
C.

It follows that every descriptive field of sets (X,A) is isomorphic to
Uf(D(X,A)). Indeed, ηX : (X,A)→ Uf(D(X,A)) gives a bijection between
the elements of X, θA provides an isomorphism between the admissible
subsets, and we have x ∈ a iff a ∈ ηX(x) iff ηX(x) ∈ θA(a). Furthermore,
it turns out that every field of sets of the form (ufB, B̂) for some Boolean
algebra B is descriptive!

1.10. Lemma. Let B be a Boolean algebra. Then UfB = (ufB, B̂) is a
descriptive field of sets.

Proof. Suppose u, r ∈ ufB and u 6= r. Then we can find an element b ∈ B
such that b ∈ u and b /∈ v, so u ∈ b̂ and v /∈ b̂. This proves that UfB is
differentiated.

For compactness, let C be a collection of elements of B̂ with the finite
intersection property. We construct an ultrafilter in their intersection. Let
F be the filter ↑{b1 ∧ · · · ∧ bn | b̂1, . . . , b̂n ∈ C}. We claim that F is proper
(i.e. it is a proper subset of B). Suppose not, then there exist b1, . . . , bn such
that b̂1, . . . b̂n ∈ C and b1 ∧ · · · ∧ bn = ⊥. But this implies b̂1 ∩ · · · ∩ b̂n = ∅, a
contradiction with the assumption that C has the finite intersection property.
It now follows from the ultrafilter theorem (see e.g. [70, Proposition 5.38])
that we can extend F to an ultrafilter u. By construction u ∈

⋂
C.
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This means that we may regard Uf as a functor BA → D-FOS, and
henceforth we shall do so. Summarising, we have found a collection of
fields of sets that correspond bijectively to Boolean algebras. In fact, this
correspondence is established by two contravariant functors.

1.11. Proposition. The functors Uf and D establish a dual equivalence

D-FOS ≡op BA. (1.1)

Proof. We have already seen natural isomorphisms η : idD-FOS → Uf · D
and θ : idBA → D ·Uf. This entails the duality.

We now take a more conventional perspective on descriptive fields of sets
by means of topological spaces, called Stone spaces. We will define these,
and then derive Stone duality from Proposition 1.11.

1.12. Definition. A topological space (X, τ) is called

• Hausdorff if for every distinct x, y ∈ X we can find disjoint opens
a, b ∈ τ such that x ∈ a and y ∈ b;

• compact if for every A ⊆ τ such that
⋃
A = X there exists a finite

A0 ⊆ A such that
⋃
A0 = X;

• zero-dimensional if τ is generated by a subbase of clopen (i.e. open
and closed) subsets.

A Stone space is a zero-dimensional compact Hausdorff space. We write Top
for the category of topological spaces and continuous functions, and Stone
for its full subcategory of Stone spaces.

1.13. Lemma. D-FOS ∼= Stone

Proof. If (X,A) is a descriptive field of sets then we can generate a topology
τA on X by using A as a basis. This is zero-dimensional because A is closed
under complements in X, and compact and Hausdorff because (X,A) is
compact and differentiated. Conversely, every Stone space (X, τ) gives rise
to the field of sets (X,Aτ ) by taking Aτ to be the set of clopen subsets of X.
We show that these assignments establish a bijection.

Let (X,A) be a descriptive field of sets. Then it follows immediately
from the definitions that A ⊆ AτA . To prove the reverse inclusion, suppose
a ∈ AτA . Then a is open in (X, τA), and since A is a basis for τA we can
write a as the union of elements in A. So a =

⋃
A′ for some A′ ⊆ A. By

assumption a is also closed, so we can use compactness of (X, τA) to find a
finite subcover, say, a = a1 ∪ · · · ∪ an. Since A is closed under binary unions
this implies a ∈ A.

Next, let (X, τ) be a Stone space. Then τAτ ⊆ τ because all elements
generating τAτ are in τ . For the converse, suppose a ∈ τ . Since (X, τ) is
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zero-dimensional, a can be written as the union of clopen elements. Since
all these clopen elements are in Aτ , we find a ∈ τAτ . We conclude that
(X,A) = (X,AτA) and (X, τ) = (X, τAτ ) for all descritpive fields of sets
(X,A) and all Stone spaces (X, τ).

Finally, it follows from a straightforward verification that f : X → X ′

is a FOS-morphism from (X,A) to (X ′, A′) if and only if it is a continuous
function from (X, τA) to (X ′, τA′). This proves the isomorphism.

So every Boolean algebra B gives rise to a unique Stone space whose
underlying set is ufB, with topology generated by the clopen base B̂. By
abuse of notation we denote the resulting functor BA → Stone by Uf as
well (just like the functor BA→ D-FOS). In practice, it will always be clear
from context which version of Uf we are using. Conversely, a Stone space
X = (X, τ) gives rise to the Boolean algebra of clopens, denoted by ClpX.
Setting Clpf = f−1 for a continuous function f yields a contravariant
functor Clp : Stone→ BA.

1.14. Theorem (Stone duality). The functors Uf : BA → Stone and
Clp : Stone→ BA constitute a dual equivalence

Stone ≡op BA.

Proof. Combine Lemma 1.13 and Proposition 1.11.

1.2 Tarski

In Subsection 1.1 we have adapted the dual adjunction between sets and
Boolean algebras to a duality between Stone spaces (or descriptive fiels
of sets) and Boolean algebras. We will now investigate how to obtain a
duality for Set. We do so by restricting the category BA to the subcategory
corresponding to the image of ℘. Since the functor ℘ is injective on objects
and morphisms, this gives rise to a duality for Set.

On objects, this duality stems from Tarski’s 1935 paper [408] and a
statement of the full duality can be found in [236, Example 4.6(a)]. The
name “Tarski duality” was coined recently in [47].

1.15. Definition. A Boolean algebra B is called complete if every (not
necessarily finite) subset of B1 ⊆ B has a smallest upper and a greatest lower
bound, denoted by

∨
B1 and

∧
B1 respectively. A complete homomorphism

between complete Boolean algebras is a map that preserves all conjunctions
and disjunctions.

1.16. Definition. An atom in a Boolean algebra B is a minimal non-trivial
element. That is, an atom is an element a ∈ B such that for all b ∈ B that
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lie below a either b = ⊥ or b = a. A Boolean algebra B is called atomic if
every b ∈ B is the upper bound of all atoms that lie below it.

We write CABA for the category of complete and atomic Boolean algebras
(CABAs) and complete homomorphisms.

If X is a set, then ℘X is complete and atomic. Indeed, ℘X is closed
under all intersections and unions, which act as conjunctions and disjunctions
of the Boolean algebra ℘X. The singletons of X are the atoms of ℘X, and
every subset of X is the union of its singleton subsets. Furthermore, since
inverse images of functions f : X → X ′ in Set preserve all intersections and
unions ℘f is a complete homomorphism. Therefore we may view ℘ as a
contravariant functor Set→ CABA.

More importantly, every CABA lies in the image of ℘. Writing atB
for the set of atoms of a CABA B, one can prove that B is isomorphic to
℘(atB). The assignment at extends to a contravariant functor CABA→ Set
by defining its action on a complete homomorphism h : B → B′ in CABA as

ath : atB′ → atB : a′ 7→
∧
{b ∈ B | a′ ≤ h(b)}.

We obtain the following duality between Set and CABA:

1.17. Theorem (Tarski duality). The functors ℘ : Set → CABA and
at : CABA→ Set establish a dual equivalence

Set ≡op CABA.

We explore two more ways of characterising the atoms of a CABA. First,
we use an analogue of ultrafilters, called a complete ultrafilter.

1.18. Definition. Let A be a CABA. A complete ultrafilter is an ultrafilter
u of A (in the sense of Definition 1.2) which is closed under taking arbitrary
conjunctions. Denote the set of complete ultrafilters of A by cfA. This
extends to a contravariant functor cf : CABA→ Set by defining the action
of cf on a morphism h : A→ A′ in CABA as cfh = h−1.

Since complete ultrafilters are upsets and closed under arbitrary intersec-
tions, for every complete ultrafilter u of a CABA A we have u = ↑(

∧
u) =

{a ∈ A |
∧
u ≤ a}. Moreover, the element

∧
u can be shown to be an atom.

So, atoms and complete ultrafilters are simply two ways of talking about the
same things.

Furthermore, in the same way as explained in Subsection 1.1 we can view
complete ultrafilters as complete homomorphisms. Note that the two-element
Boolean algebra 2 is complete and atomic. A complete ultrafilter u of a CABA
A corresponds bijectively to the complete homomorphism A→ 2 given by
sending a ∈ A to > if and only if a ∈ u. Write HomCABA(−, 2) : CABA→ Set
for the resulting contravariant functor.

1.19. Proposition. The functor at is naturally isomorphic to cf and
HomCABA(−, 2).
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1.3 Priestley

Distributive lattices are a lot like Boolean algebras, but without negation.
They form the algebraic semantics of propositional positive logic. Several
dualities for the category of distributive lattices have been discovered. In
1938, Stone extended his duality for Boolean algebras to a duality for dis-
tributive lattices using spectral spaces as dual topological spaces [402], and
this was closely related to a representation theorem given by Birkhoff [67,
Theorem 25.2]. Priestley proved a duality using ordered Stone spaces, now
called Priestley spaces [356], and more recently a duality using bitopological
spaces was given by Bezhanishvili, Bezhanishvili, Gabelaia and Kurz [46],
based on work in [243].

Within the context of (modal) positive logic, Priestley’s duality is the
most common one. Here we recall her duality, called Priestley duality. Instead
of proving it directly, we first establish a duality between distributive lattices
and certain generalisations of (descriptive) fields of sets, called (descriptive)
rings of upsets. These are interesting because they underlie descriptive frames
of modal positive logics, such as the ones discussed in Chapter IV, as well
as descriptive intuitionistic Kripke frames (defined in Subsection 1.4). A
more customary introduction to Priestley duality can be found in e.g. [356]
or [169].

We begin by giving some basic definitions for ordered sets.

1.20. Definition. A preordered set or preorder is a pair (X,≤) of a set
X and a binary relation ≤ that is reflexive and transitive. If moreover ≤
is antisymmetric then (X,≤) is called a partially ordered set or poset . An
order-preserving function from (X,≤) to (X ′,≤′) is a function f : X → X ′

such that x ≤ y implies f(x) ≤′ f(y) for all x, y ∈ X. We write PreOrd for
the category of preorders and order-preserving functions, and Pos for its full
subcategory of posets.

Order-preserving functions are often called monotone. We call them
order-preserving because the term monotone is already intensively used in
the context of modal logic.

1.21. Definition. If (X,≤) is a poset and a ⊆ X then we define the upward
closure of a as ↑≤a := {y ∈ X | x ≤ y for some x ∈ a}. The set a is called
up-closed or an upset if ↑≤a = a. For x ∈ X we abbreviate ↑≤x := ↑≤{x}.
If the order is clear from context we sometimes omit the subscript ≤ and
write simply ↑a and ↑x.

We similarly define ↓≤a, ↓≤x, downward closures and downsets.

1.22. Definition. If (X,≤) is a preorder or a poset then we write Up(X,≤)
for the set of upsets of (X,≤). Setting Upf = f−1 for order-preserving
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functions yields a contravariant functor Up : PreOrd→ Set, which restricts
to Up : Pos→ Set.

The collection Up(X,≤) is closed under intersections and unions. With
X as top and ∅ as bottom element it forms a distributive lattice, denoted by
up(X,≤) = (Up(X,≤), X, ∅,∩,∪). Furthermore, if f : (X,≤)→ (X ′,≤′) is
order-preserving, then f−1 : up(X ′,≤′)→ up(X,≤) is a distributive lattice
homomorphism. Therefore, setting upf = f−1 gives rise to contravariant
functors

up : PreOrd→ DL and up : Pos→ DL,

where DL denotes the category of distributive lattices and distributive lattice
homomorphisms. (The type of the functor will always be clear from context.)
Indeed, if UDL : DL → Set is the forgetful functor then we have Up =
UDL ·up.

In order to define a contravariant functor in the opposite direction we
make use of the notion of a prime filter on a distributive lattice.

1.23. Definition. Let A be a distributive lattice. A filter of A is a subset
p ⊆ A that is up-closed and closed under finite meets. A filter p is called
prime if a ∨ b ∈ p implies a ∈ p or b ∈ p for all a, b ∈ A.

If p is a prime filter of A and 2 = {>,⊥} is the two-element distributive
lattice, then χp : A→ 2 defined by χp(a) = 1 iff a ∈ p is a homomorphism
in DL. Conversely, every homomorphism h : A → 2 gives rise to a prime
filter ph = {a ∈ A | h(a) = 1}. These assignments are easily seen to give a
bijection, and we will use these perspectives interchangeably.

1.24. Definition. The set of prime filters of A is denoted by pf0A. Ordered
by inclusion they form a poset, which we denote by pfA := (pf0A,⊆). If
h : A→ A′ is a distributive lattice homomorphism then h−1 : pfA′ → pfA
is a well-defined order-preserving function, and setting pfh = h−1 yields a
contravariant functor pf : DL→ Pos.

Just like ℘ and uf gave rise to a dual adjunction between sets and Boolean
algebras, the functors up and pf yield a dual adjunction between Pos and
DL. We will adapt this dual adjunction obtain Priestley duality using a
similar approach as in Subsection 1.1.

The distributive-lattice counterpart of a field of sets is a ring of sets [69].
A ring of sets is a set X together with a collection A of subsets of X such
that A is closed under binary intersections and binary unions. They were
used by Birkhoff in [69] to give a representation theorem for distributive
lattices. We adapt them to obtain a reformulation of Priestley spaces, and
subsequently to derive a duality theorem for distributive lattices.

1.25. Definition. A ring of upsets is a tuple (X,≤, A) such that (X,≤) is
a poset, A ⊆ Up(X,≤) and (X,A) is a ring of sets containing X and ∅. If
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a ∈ A then we define −a := X \ a, and we write −A := {−a | a ∈ A}. A
ring of upsets (X,≤, A) is called

1. refined if for all x, y ∈ X such that x 6≤ y there exists an a ∈ A such
that x ∈ a and y /∈ a;

2. compact if for all C ⊆ A ∪ −A with the finite intersection property
we have

⋂
C 6= ∅;

3. descriptive if it is refined and compact.

A morphism between two rings of upsets (X,≤, A) and (X ′,≤′, A′) is an
order-preserving function f : (X,≤) → (X ′,≤′) such that f−1(a′) ∈ A
for all a′ ∈ A′. We write ROU for the category of rings of upsets and their
morphisms, and D-ROU for its full subcategory whose objects are descriptive.

Note that, while in a ring of sets (X,A) the entire set and the empty
set need not be part of A, we legislated them into the definition of a ring of
upsets.

If A is a distributive lattice then we let PfA be the ring of upsets
(pf0A,⊆, Â), where Â = {â | a ∈ A} and â = {p ∈ pf0A | a ∈ p}.

1.26. Lemma. If A is a distributive lattice, then PfA is a descriptive ring
of upsets.

Proof. If p 6⊆ q in pf0A then there must be some a ∈ A such that a ∈ p and
a /∈ q. This implies that p ∈ â and q /∈ â, so PfA is refined.

Next let C ⊆ Â∪−Â be a collection with the finite intersection property.
We prove that

⋂
C 6= ∅ by constructing a prime filter p ∈ PfA such that

p ∈
⋂
C. Define the sets F, I ⊆ A by

F = ↑{a1 ∧ · · · ∧ an ∈ A | n ∈ ω and â1, . . . , ân ∈ C}
I = ↓{c1 ∨ · · · ∨ cn ∈ A | n ∈ ω and − ĉ1, . . . ,−ĉn ∈ C}

Then F is a filter and I is an ideal by construction. We claim that F ∩ I = ∅.
Suppose not, then there exists some b ∈ A such that b ∈ F ∩ I. By definition
this means that there are â1, . . . , ân ∈ C such that a1 ∧ · · · ∧ an ≤ b and
−ĉ1, . . . ,−ĉm ∈ C such that b ≤ c1 ∨ · · · ∨ cm. But this implies

â1 ∩ · · · ∩ ân ∩ −ĉ1 ∩ · · · ∩ −ĉm = ∅,

which contradicts the assumption that C has the finite intersection property.
So F ∩ I = ∅. We can then use the prime filter lemma (see e.g. [316,
Lemma 1.4]) to find a prime filter p containing F and disjoint from I. By
construction we have p ∈

⋂
C.

If h : A → A′ is a homomorphism in DL then h−1 : (pf0A
′,⊆) →

(pf0A,⊆) is order-preserving. Moreover, (h−1)−1(â) = ĥ(a), so h−1 is a
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morphism in D-ROU. If we define Pfh = h−1 we obtain a contravariant
functor

Pf : DL→ D-ROU.

In the opposite direction, setting A(X,≤, A) = A and Af = f−1 gives
rise to a contravariant functor A : ROU→ DL.

1.27. Lemma. The assignment θ : idDL → A ◦Pf defined on components by
θA : A→ A(PfA) : a 7→ â is a natural isomorphism.

Proof. This follows from an easy verification.

Conversely, for each ring of sets we can define

η(X,≤,A) : (X,≤, A)→ Pf(A(X,≤, A)) : x 7→ x̂ := {a ∈ A | x ∈ a}.

This is easily shown to give rise to a natural transformation η : idROU →
Pf ·A. However, it need not be an isomorphism in ROU.

1.28. Lemma. Let (X,≤, A) be a ring of upsets. Then ηX : (X,≤, A) →
Pf(A(X,≤, A)) is injective if and only if (X,≤, A) is refined, and surjective
if and only if (X,≤, A) is compact.

Proof. The proof of this lemma is similar to that of Lemma 1.9.

It follows that every descriptive ring of upsets (X,≤, A) is isomorphic
to Pf(A(X,≤, A)). That is, η(X,≤,A) defines an order-isomorphism and θA
yields a compatible isomorphism between the admissible upsets. Thus we
obtain the following duality theorem.

1.29. Theorem. The contravariant functors pf : DL → D-ROU and A :
D-ROU→ DL establish a dual equivalence

DL ∼= D-ROU.

Proof. This follows from Lemmas 1.28 and 1.27.

We now recall the definition of a Priestley space, and show that the
category of Priestley spaces is isomorphic to D-ROU. This gives an alternative
proof of Priestley duality. Intuitively, Priestley spaces are partially ordered
Stone spaces.

1.30. Definition. A Priestley space is a tuple (X,≤, τ) where ≤ is a partial
order on X and τ is a topology on X such that (X, τ) is a compact topological
space and (X,≤, τ) satisfies the Priestley separation axiom:

if x 6≤ y then there exists a clopen upset a such that x ∈ a and y /∈ a.
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A Priestley morphism from (X,≤, τ) to (X ′,≤′, τ ′) is a function X → X ′

that is continuous and order-preserving. We write Pries for the category of
Priestley spaces and Priestley morphisms.

Priestley spaces are an alternative way to describe rings of upsets.

1.31. Lemma. D-ROU ∼= Pries.

Proof. Associate to a descriptive ring of upsets (X,≤, A) the Priestley space
(X,≤, τA), where τA is the topology generated by the subbase A ∪−A. This
is compact and satisfies the Priestley separation axiom because (X,≤, A) is
compact and refined.

Conversely, for a Priestley space X = (X,≤, τ) let ClpupX be the set of
clopen upsets of X. Then (X,≤,ClpupX) is easily seen to be a descriptive
ring of upsets. It can be shown in a similar way as in Lemma 1.13 that this
yields an isomorphism on objects.

The isomorphism on morphisms follows immediately from the definition
of morphisms in both categories.

By abuse of notation we denote by Pf : DL → Pries the functor that
takes a distributive lattice A to the Priestley space (pf0A,⊆, τA), where τA is
the topology on pf0A generated by {â | a ∈ A} ∪ {−â | a ∈ A}. Conversely,
we denote the functor that sends a Priestley space to its distributive lattice
of clopen upsets by Clpup : Pries→ DL.

1.32. Theorem (Priestley duality). The functors Pf : DL→ Pries and
Clpup : Pries→ DL establish a dual equivalence DL ≡op Pries.

Proof. Combine Theorem 1.29 and Lemma 1.31.

1.4 Esakia

In this section we show how Priestley duality can be restricted to a duality for
Heyting algebras. This duality was discovered by Esakia (in work independent
from Priestley) and first published in [148] as part of his vast body of research
on intuitionistic logic [151]. An English version can be found in [152], which
is a translation of Esakia’s book on Heyting algebras [150]. A proof that
Esakia spaces are Priestley spaces is given in [152, Theorem 3.2.22].

Heyting algebras play an important rôle in the field of intuitionistic logic,
as they provide the algebraic semantics of intuitionistic logic [100, 49]. The
duality presented in this section will be used throughout Chapter V and in
Section 13, where we extend intuitionistic logic with modal operators.

Recall that a Heyting algebra is a distributive lattice A with an additional
binary operator → that is residuated with respect to conjunction. This
means that for all a, b, c ∈ A

c ≤ a→ b iff c ∧ a ≤ b.
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A Heyting algebra homomorphism is a homomorphism that preserves all
distributive lattice connectives and →. We write HA for the category of
Heyting algebras and Heyting algebra homomorphisms.

Whereas rings of upsets (Definition 1.25) are not in common use, their
Heyting algebra counterpart is well known. They are general intuitionistic
Kripke frames, and provide semantics for intuitionistic logic. This is based
on the observation that Kripke frames can be used to interpret intuitionistic
formulae, where Heyting implication is interpreted as a boxed material
implication [263].

Similar to Subsection 1.3, we first exhibit a duality between Heyting
algebras and descriptive intuitionistic Kripke frames. We then derive from
this Esakia duality by giving an isomorphism between the categories of
descriptive intuitionistic Kripke frames and Esakia spaces.

1.33. Definition. A preordered intuitionistic Kripke frame is a preorder.
An intuitionistic Kripke frame is a poset. A bounded morphism between
(preordered) intuitionistic Kripke frames (X,≤) and (X ′,≤′) is an order-
preserving function f : (X,≤) → (X ′,≤′) such that for all x ∈ X and
y′ ∈ X ′:

if f(x) ≤′ y′ then there exists an y ∈ X such that x ≤ y and f(y) = y′

We write PreKrip and iKrip for the categories of (preordered) intuitionistic
Kripke frames and bounded morphisms.

1.34. Remark. An intuitionistic Kripke frame is usually defined either as a
preorder or a poset. In this thesis we will define them as posets because these
are closer to Esakia spaces (the topological spaces dual to Heyting algebras).

1.35. Definition. A general intuitionistic Kripke frame is a tuple (X,≤, A)
where (X,≤) is an intuitionistic Kripke frame and A ⊆ Up(X,≤) is a
collection of upsets which contains X and ∅ and is closed under binary
intersections, binary unions and under the map

⇒: Up(X,≤)×Up(X,≤)→ Up(X,≤) : (a, b) 7→ {x ∈ X | ↑x ∩ a ⊆ b}.

A descriptive intuitionistic Kripke frame is a general intuitionistic Kripke
frame (X,≤, A) that is refined and compact in the sense of Definition 1.25.
The elements of A are called admissible sets.

A general bounded morphism from (X,≤, A) to (X ′,≤′, A′) is a bounded
morphism f : (X,≤) → (X ′,≤′) such that f−1(a′) ∈ A for all a′ ∈ A′.
We write G-iKrip and D-iKrip for the categories of general and descriptive
intuitionistic Kripke frames, respectively, and general bounded morphisms.

Indeed, a descriptive intuitionistic Kripke frame is simply a descriptive
ring of upsets (Definition 1.25) such that A is closed under the map ⇒. Fur-
thermore, it follows immediately from the definition that a general bounded
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morphism is in particular a morphism in D-ROU. We will now show that
the duality between DL and D-ROU restricts to a duality between HA and
D-iKrip. We begin by restricting the functor A from the previous subsection.

1.36. Lemma. The functor A : D-ROU → DL restricts to a contravariant
functor D-iKrip→ HA.

Proof. Let (X,≤, A) be a descriptive intuitionistic Kripke frame. Then
we know that (A,X, ∅,∩,∪) is a distributive lattice. We claim that it is a
Heyting algebra. Define Heyting implication by⇒ (as in Definition 1.35). By
assumption this is a binary operator on A. Moreover it follows immediately
from the definition of ⇒ that for every c ∈ A we have c ⊆ a⇒ b iff c∩ a ⊆ b
(note that A is ordered by inclusion). So (A,X, ∅,∩,∪,⇒) is a Heyting
algebra.

Now let f : (X,≤, A) → (X ′,≤′, A′) be a general bounded morphism.
We know that f−1 : A′ → A is a distributive lattice homomorphism. In
order to prove that it is a Heyting homomorphism we need to show that
f−1(a′ ⇒ b′) = f−1(a′)⇒′ f−1(b′) for all a′, b′ ∈ A′, where we write ⇒′ for
the implication of A(X ′,≤′, A′). Suppose x ∈ f−1(a′ ⇒′ b′). We wish to
show that x ∈ f−1(a′) ⇒ f−1(b′). To this end, we show that every y ∈ X
that lies above x and is an element of f−1(a′) is also an element of f−1(b′). If
x ≤ y and y ∈ f−1(a′), then f(x) ≤′ f(y) and f(y) ∈ a′. So by assumption
f(y) ∈ b′ and therefore y ∈ f−1(b′). This proves that x ∈ f−1(a′)⇒ f−1(b′).

Now assume that x ∈ f−1(a′)⇒ f−1(b′). If f(x) ≤′ y′ for some y′ ∈ X ′
and y′ ∈ a′, then since f is bounded we can find some y ∈ X such that
x ≤ y and f(y) = y′. This implies y ∈ f−1(a′) and hence by assumption
y ∈ f−1(b′). Therefore y′ = f(y) ∈ b′. This proves x ∈ f−1(a′ ⇒′ b′). So f−1

is indeed a Heyting homomorphism.

Showing that Pf : DL → D-ROU restricts to a contravariant functor
HA→ D-iKrip requires some more work. We do so in the next two lemmas.
Recall that for a distributive lattice A and a ∈ A we defined θA(a) = â =
{p ∈ pf0A | a ∈ p}. So we can view Â as {θA(a) | a ∈ A}. In the next
lemmas we use this alternative notation because the expressions “under the
hat” get too wide. We will also drop the subscript A from θA(a) when it is
clear from context.

1.37. Lemma. Let A be a Heyting algebra. Then PfA is a descriptive
intuitionistic Kripke frame.

Proof. Let A be a Heyting algebra. Then PfA = (pf0A,⊆, Â) is a descriptive
ring of upsets, so we only have to show that Â is closed under ⇒. We claim
that for all a, b ∈ A we have θ(a)⇒ θ(b) = θ(a→ b). This proves the lemma,
since θ(a→ b) ∈ Â by definition.

To see this, we let p ∈ pf0A and we show that p ∈ θ(a) ⇒ θ(b) iff
p ∈ θ(a→ b). Assume p ∈ θ(a→ b). In order to show that p ∈ θ(a)⇒ θ(b)
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we have to prove that every prime filter containing p that is in θ(a) is also
in θ(b). So suppose q is a prime filter such that p ⊆ q and q ∈ θ(a). Then
we have a→ b ∈ q and a ∈ q. Since a ∧ (a→ b) ≤ b this implies b ∈ q and
hence q ∈ θ(b), as desired.

Next assume p /∈ θ(a → b). Then a → b /∈ p. Let F be the filter
{c ∧ a | c ∈ p}. Then b /∈ F because if it were we would have c ∧ a ≤ b for
some c ∈ p, but this implies c ≤ a→ b and hence a→ b ∈ p, a contradiction.
So the ideal I = ↓≤b is disjoint from F . Therefore we can use the prime
filter lemma (see e.g. [316, Lemma 1.4]) to find a prime filter q containing
F but not b. By construction p ⊆ q and a ∈ q and b /∈ q. Therefore
p /∈ θ(a)⇒ θ(b).

1.38. Lemma. Let h : A → A′ be a Heyting homomorphism. Then
h−1 : PfA′ → PfA is a general bounded morphism between descriptive
intuitionistic Kripke frames.

Proof. We know that h−1 : PfA′ → PfA is a morphism in D-ROU. In
order to prove that it is a general bounded morphism between descriptive
intuitionistic Kripke frames, we only have to show that it is bounded. So
let p′ ∈ PfA′ and suppose q ∈ PfA and h−1(p′) ⊆ q. In order to show that
there exists some q′ ∈ PfA′ such that p′ ⊆ q′ and h−1(q′) = q, we show that
the intersection of the set

C := {θ(a′) | a′ ∈ p′}︸ ︷︷ ︸
C1

∪{θ(h(a)) | a ∈ q}︸ ︷︷ ︸
C2

∪{−θ(h(b)) | b /∈ q}︸ ︷︷ ︸
C3

is nonempty. Indeed, if we can find some q′ ∈
⋂
C, then the fact that it is

in
⋂
C1 ensures p′ ⊆ q′, the fact that it is in

⋂
C2 implies that q ⊆ h−1(q′),

and we have h−1(q′) ⊆ q because it is in
⋂
C3.

Since PfA′ is compact, it suffices to show that C has the finite inter-
section property. Note that C2 and C3 are closed under finite intersections.
Furthermore,

⋂
C1 = ↑p′. Therefore, in order to show that C has the finite

intersection property, it suffices to show that

↑p′ ∩ θ(h(a)) ∩ −θ(h(b)) 6= ∅ (1.2)

for arbitrary a ∈ q and b /∈ q. So let us prove this.
Let a ∈ q and b /∈ q. Then q ∈ θ(a)∩−θ(b), and hence p′ ∈ (h−1)−1[↓(θ(a)∩

−θ(b))]. We have

(h−1)−1[↓(θ(a) ∩ −θ(b))] = (h−1)−1(−θ(a→ b))

= −(h−1)−1(θ(a→ b))

= −(θ(h(a))⇒ θ(h(b)))

= ↓(θ(h(a)) ∩ −θ(h(b)))

So p′ ∈ ↓(θ(h(a))∩−θ(h(b))). This implies that there exists some prime filter
in θ(h(a)) ∩−θ(h(b)) that lies above p′, which implies that (1.2) is true.
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1.39. Theorem. The dual equivalence between distributive lattices and
descriptive rings of upsets restricts to a duality

HA ≡op D-iKrip.

Proof. It follows form Lemmas 1.36, 1.37 and 1.38 that the duality from
Theorem 1.29 restricts to a duality between HA and D-iKrip.

1.40. Definition. An Esakia space is a Priestley space (X,≤, τ) such that
for every clopen subset c of (X, τ) the set ↓≤c := {x ∈ X | ∃y ∈ c s.t. x ≤ y}
is clopen as well. An Esakia morphism is a Priestley morphism that is also
a bounded morphism between the underlying posets. We write ES for the
category of Esakia spaces and morphisms.

Esakia spaces provide a topological perspective on descriptive intuitionis-
tic Kripke frames.

1.41. Lemma. D-iKrip ∼= ES

Proof. This is a restriction of the isomorphism given in Lemma 1.31. The
isomorphism on morphisms is immediate. So we only need to show that the
assignments from the proof of Lemma 1.31 send descriptive intuitionistic
Kripke frames to Esakia spaces and vice versa.

For the latter, note that the collection of clopen upsets of an Esakia space
(X,≤, τ) is closed under the map ⇒, defined as in Definition 1.35, because
a⇒ b = X \ ↓≤(a \ b). Since a, b are clopen so is a \ b. By definition ↓≤(a \ b)
is a clopen downset, so ultimately a⇒ b is a clopen upset.

For the converse, let (X,≤, A) be a descriptive intuitionistic Kripke frame
and (X,≤, τA) its corresponding Priestley space. Then an arbitrary clopen
set in the topology τA is of the form a = (a1 ∩ −b1) ∪ · · · ∪ (an ∩ −bn) for
clopen upsets a1, . . . , an, b1, . . . , bn. We then have

↓≤a = ↓≤(a1 ∩ −b1) ∪ · · · ∪ ↓≤(an ∩ −bn)

= −(a1 ⇒ b1) ∪ · · · ∪ −(an ⇒ bn)

and this is a clopen downset, because it is the finite union of complements of
sets of the form ai ⇒ bi, which are in A hence clopen upsets.

1.42. Definition. Denote the restriction of Pf : DL→ Pries to a contravari-
ant functor HA → ES by Pf′. Similarly, let Clp′up : ES → HA be the
restriction of Clpup : Pries→ DL.

1.43. Theorem (Esakia duality). The functors Pf′ : HA → ES and
Clp′up : ES→ HA establish a dual equivalence HA ≡op ES.

Proof. Combine Lemma 1.41 and Theorem 1.39.
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2 Duality for (implicative) semilattices

There are many different representation theorems and dualities for classes
of (meet-)semilattices. For example, in [25] Balbes gives a representation
theorem for prime semilattices and implicative semilattices by means of prime
filters. Dualities for distributive semilattices are given by Celani [89] and
Hansoul and Poussart [212], a duality for distributive pseudocomplemented
semilattices can be found in [93], and Celani and González proved a duality
for mildly distributive semilattices [94]. A duality between meet-semilatices
and certain (unstructured) topological spaces was given both by Jipsen and
Moshier [317] and by Celani and González [95]. A duality for distributive
meet-semilattices which restricts to ordinary Priestley duality was developed
by Bezhanishvili and Jansana [43]. A comparison between the approaches
from [89] and [43] can be found in [153].

In this section we recite a duality for meet-semilattices due to Hofmann,
Mislove and Stralka, that we will call HMS duality. It was first proven in [218,
Chapter I], and alternative proofs can be found in [129] and Theorem 4.7
in [111, Chapter 4]. Intuitively, HMS duality arises from Priestley duality
for distributive lattices (from Subsection 1.3) in two steps:

1. Replace poset with meet-semilattice;

2. Replace upset with filter.

Applying this procedure to the definition of a Priestley space, we obtain
spaces of the form (X,>,∧, τ) where (X,>,∧) is a meet-semilattice and
(X, τ) is a compact topological space, that satisfies the HMS separation
axiom:

if x 6≤ y then there exists a clopen filter a such that x ∈ a and y /∈ a.

Indeed, these will form the spaces of HMS duality.
The appeal of HMS duality lies in the fact that its spaces are simple

adaptations of Priestley spaces. As such, they give rise to an intuitive
notion of descriptive frames for the propositional logic corresponding to
meet-semilattices, and modal extensions thereof. We will encounter these in
Section 14.

After having recalled HMS duality in Subsection 2.1, we shift focus to
implicative meet-semilattices. These form the algebraic semantics of the
meet-implication fragment of intuitionistic logic, which has been studied for
example by Curry [125, Section 4.C], and more recently by Bezhanishvili,
Coumans, Van Gool and De Jongh [57], and by Font and Moraschini [161].
A desirable property of the category of implicative meet-semilattices is
that it is finitely generated, whereas the category of Heyting algebras is
not. Implicative meet-semilattices have also been studied outside the scope
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of intuitionistic logic, for example by Nemitz and Whaley [326, 327, 328].
In [315] Monteiro gives a set of equational axioms for implicative meet-
semilattices, thus proving that the category of implicative meet-semilattices
and homomorphisms is a variety of algebras.

As for semilattices, there are various dualities for implicative semilattices.
Köhler proved a duality for finite implicative semilattices [253] and a duality
for implicative semilattice by means of spectral spaces was given by Celani [90].
A different duality for implicative semilattices which generalises Esakia
duality was given by Bezhanishvili and Jansana [44], as a restriction of their
Priestley-style duality for distributive semilattices [43].

In Subsection 2.4 we obtain a duality for implicative meet-semilattices
by restricting HMS duality. On passing, we provide a Hilbert-style axioma-
tisation for the (>,∧,→)-fragment of intuitionistic logic in Subsection 2.2,
and we we give a frame semantics for this logic by means of a special class
of (intuitionistic) Kripke frames in Subsection 2.3.

Origins of the material. The duality for meet-semilattices presented
in Subsection 2.1 is a reformulation of HMS duality [218, Chapter I]. The
material from Subsections 2.2, 2.3 and 2.4 is based on joint work with Dirk
Pattinson, which resulted in a paper that has been accepted for publica-
tion [202]. The content presented in this section is from preliminary section
and the appendix of [202]; the main results of [202] constitute Section 14.

2.1 Hofmann-Mislove-Stralka duality

Our approach towards proving HMS duality is similar as in Section 1. Rather
than topologising right away, we first derive a duality with a suitable variation
of fields of sets. We will see in Definition 2.6 that this notion is obtained
by subjecting rings of upsets (from Definition 1.25) to our two-step strategy
outlined above. Before doing this, we recall some basic definitions concerning
semilattices.

2.1. Definition. A meet-semilattice (with top) is a poset in which every
finite subset has a greatest lower bound, called the meet. The meet of two
elements a and b is denoted by a ∧ b and the meet of the empty set is
the top element >. A meet-semilattice homomorphism is a function that
preserves meets of finite sets (hence >). We sometimes write (X,>,∧) for
the meet-semilattice corresponding corresponding to a poset (X,≤). We can
recover ≤ from (X,>,∧) via x ≤ y iff x ∧ y = x.

The category of meet-semilattices (with top) and meet-semilattice ho-
momorphisms is denoted by SL. It forms a variety of algebras, and the free
meet-semilattice on a set X is given by finite subsets of X (intuitively, these
are finite meets), with ∧ given by union and top element ∅.
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Throughout this text, by semilattice we always mean meet-semilattice
with top.

For future reference, we mention the following lemma.

2.2. Proposition. Let f : (X,>,∧) → (X ′,>′,∧′) be a semilattice homo-
morphism. Then

1. f is a regular monomorphism if and only if it is injective;

2. f is an epimorphism if and only if it is surjective.

Proof. The second item is proven in [250]. We prove the first item.
Let f : X → Y be a regular mono. Then there exists a parallel pair

of morphisms g1, g2 : Y → Z such that f is the equaliser of g1, g2. Since
equalisers (or more generally, limits) in varieties of algebras are computed as
in Set, we find that f is injective.

Next, suppose f : X → Y is injective. Define Z to be the free semilattice
generated by the symbols [y1, y2], where y1, y2 ∈ Y , subject to the relations

1. [>Y ,>Y ] = >Z
2. [y1 ∧ y′1, y2 ∧ y′2] = [y1, y2] ∧Z [y′1, y

′
2]

3. [f(x),>Y ] = [>Y , f(x)] for all x ∈ X

Define g1 : Y → Z : y 7→ [y,>Y ] and g2 : Y → Z : y 7→ [>Y , y]. These are
homomorphisms. We claim that f is the equaliser of g1 and g2. Clearly
y ∈ f [X] implies that g1(y) = g2(y) by definition of Z. Conversely, if
y /∈ f [X] then we wish to show that g1(y) 6= g2(y). (We know that y 6= >Y
because >Y = f(>X).) We claim that it is impossible to use the given
relations to turn [y,>Y ] into [>Y , y]. We cannot use the third relation, so
we can only use the second one. At best, this allows us to write [y,>Y ] =
[y1,>Y ] ∧Z · · · ∧Z [yn,>Y ], where y = y1 ∧Y · · · ∧Y yn and y < yi for all i.
(We do not want y = yi because we are trying to get rid of the y.) But then
there must be some yi such that yi /∈ f [X], for otherwise we would have
y ∈ f [X]. An inductive argument now shows that we are always left with
a term of the form [yi,>Y ], and the remaining terms, rewritten as [>Y , yj ],
cannot make [>Y , y].

2.3. Definition. A filter of a semilattice A is a non-empty up-closed subset
that is closed under finite meets. A prime downset is a down-closed subset d
of A that satisfies: if a ∧ a′ ∈ d then a ∈ d or a′ ∈ d. A subset p ⊆ A is a
filter of A if and only if its complement −p = A \ p is a prime downset.

Let 2 be the two-element semilattice and p ⊆ A. Then the characteristic
map χp : A→ 2, which sends the elements of p to > and all other elements
to ⊥, is a semilattice morphism if and only if p is a filter.

The collection of filters of a semilattice forms a semilattice itself. This
gives rise to a contravariant functor SL→ SL.
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2.4. Definition. We write fil0A for the collection of filters of a semilattice
A. With top element A and meet ∩, this forms the semilattice filA :=
(fil0A,A,∩). We can extend this assignment to a contravariant functor
fil : SL → SL by defining the action of fil on a morphism h : A → A′ by
filh : filA′ → filA : p′ 7→ h−1(p′).

For every a ∈ A the collection â = {p ∈ filA | a ∈ p} is a filter in filA.
This gives rise to a morphism ηA : A → fil(filA) : a 7→ â. In fact, the
collection η = (ηA)A∈SL : idSL → fil · fil is a natural transformation. To
see this, suppose h : A → B is a homomorphism in SL, and let a ∈ A and
p ∈ fil(filB). Then we have

p ∈ (fil(filh))(ηA(a)) iff h−1(p) ∈ ηA(a)

iff a ∈ h−1(p) iff h(a) ∈ p iff p ∈ ηB(h(a)).

2.5. Proposition. The functor fil : SL→ SL is dually adjoint to itself. It
defines a dual adjunction between SL and itself with units η.

Proof. We verify that filηA ◦ ηfilA = idfilA. Let a ∈ A and p ∈ filA. Then
we have

a ∈ filηA(ηfilA(p)) iff ηA(a) ∈ ηfilA(p) iff p ∈ ηA(a) iff a ∈ p.

This completes the proof.

In order to obtain a duality for semilattices we equip one side of the
dual adjunction with a collection of subsets that contains the entire set and
is closed under finite intersections. This resembles to approach towards
dualities for Boolean algebras and distributive lattices using fields of sets
(Definition 1.6) and rings of upsets (Definition 1.25).

Interestingly, this is closely related to a well-known notion from probability
theory called a π-system. A π-system is a pair (X,A) where X is a set and
A ⊆ PX is closed under binary intersections. The importance of π-systems
is witnessed by the fact that if two probability measures agree on a π-system,
then they agree on the corresponding σ-algebras generated by the π-systems.
This and other properties of π-systems can be found in e.g. [442, 245, 206].

Just like we adapted the notion of a ring of sets to that of a ring of upsets,
we now define π-systems of filters as the combination of a semilattice and a
π-system.

2.6. Definition. A π-system of filters is a tuple (S,>,∧, A) such that
(S,>,∧) is a semilattice, (S,A) is a π-system, S ∈ A, and each a ∈ A is a
filter of (S,>,∧). It is called

• refined if for all x, y ∈ S such that x 6≤ y there exists an a ∈ A such
that x ∈ a and y /∈ a;
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• compact if for every C ⊆ A ∪ −A with the finite intersection property,
we have

⋂
C 6= ∅.

(Recall that −A := {S \ a | a ∈ A}.) A π-system of filters that is refined and
compact is called descriptive.

A morphism between π-systems of filters (S,>,∧, A) and (S′,>′,∧′, A′) is
a semilattice homomorphism f : (S,>,∧)→ (S′,>′,∧′) such that f−1(a′) ∈
A for all a′ ∈ A′. We denote by SOF the category whose objects are π-systems
of filters and whose morphisms are as defined above. Its full subcategory of
descriptive π-systems of filters is denoted by D-SOF.

Let A be a semilattice and filA = (fil0A,A,∩) its semilattice of filters.
Let Â = {â | a ∈ A}. Then

ℱilA := (fil0A,A,∩, Â)

is a π-system of filters. Moreover, we claim that it is descriptive.

2.7. Lemma. If A is a semilattice then ℱilA is a descriptive π-system of
filters.

Proof. If p 6⊆ q then there exists some a ∈ A such that a ∈ p and a /∈ q. This
implies that p ∈ â and q /∈ â, so filA is refined.

Next suppose C ⊆ Â ∪ −Â has the finite intersection property. In order
to prove that

⋂
C is nonempty, we construct a filter p that is in it. Let

p0 = {a1 ∧ · · · ∧ an | n ∈ ω and â1, . . . , ân ∈ C}

and define p = ↑p0. (The empty meet, i.e. the case where n = 0, is taken to
be top element.) We claim that p ∈

⋂
C.

Clearly for each element of C of the form â, for some a ∈ A, we have
p ∈ â by construction. Let b ∈ A be such that −b̂ ∈ C and suppose towards
a contradiction that p /∈ −b̂. Then p ∈ b̂ so b ∈ p. By definition this means
that there are â1, . . . , ân ∈ C such that a1 ∧ · · · ∧ an ≤ b. But this implies
â1 ∩ · · · ∩ ân ∩ −b̂ = ∅, a contradiction with the assumption that C has the
finite intersection property. We conclude that p ∈

⋂
C.

If h : A→ A′ is a semilattice homomorphism, then a routine verification
shows that h−1 : ℱilA′ → ℱilA defines a morphism in D-SOF. Therefore,
setting ℱilh = h−1 yields a contravariant functor

ℱil : SL→ D-SOF.

In the converse direction we can define a contravariant functor A :
D-SOF→ SL by setting A(X,>,∧, A) = A (viewed as a semilattice with top
element X and meets given by ∩) and Af = f−1. We will now show that
ℱil and A establish a dual equivalence between SL and D-SOF by giving
natural isomorphisms θ : idSL → A ·ℱil and η : idD-SOF → ℱil ·A.
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2.8. Lemma. The assignment θ : idSL → A ·ℱil defined on components by
θA : A→ A(ℱilA) : a 7→ â := {p ∈ ℱilA | a ∈ p} is a natural isomorphism.

Proof. Straightforward.

2.9. Lemma. For a descriptive π-system of filters X = (X,>,∧, A), define

ηX : X → ℱil(AX) : x 7→ x̂ := {a ∈ A | x ∈ a}.

Then the assignment η = (ηX)X∈D-SOF : idD-SOF → ℱil · A is a natural
isomorphism.

Proof. It is straightforward to see that ηX preserves meets and the top
element. Furthermore,

η−1
X (â) =

{
x ∈ X | ηX(x) ∈ â

}
=
{
x ∈ X | a ∈ ηX(x)

}
=
{
x ∈ X | x ∈ a

}
= a

so ηX is a morphism in D-SOF.
In order to prove that it is an isomorphism, it suffices to prove that it

is bijective, because a bijective semilattice homomorphisms is a semilattice
isomorphism. It is then easy to see that the π-system structure is preserved
and reflected as well. Injectivity of ηX follows from the fact that X is
differentiated: If x 6≤ y then there exists some a ∈ A such that x ∈ a and
y /∈ a so that a ∈ θX(x) while a /∈ ηX(y). For surjectivity, we use the following
claim.

2.9.1. Claim. Let p ∈ ℱilA. Then for all a ∈ A we have a ∈ p iff
⋂
p ⊆ a.

Proof of Claim. Clearly, if a ∈ p then
⋂
p ⊆ a. Conversely, if

⋂
p ⊆ a ∈ A,

then by compactness there exists a finite number a1, . . . , an ∈ p such that
a1 ∩ · · · ∩ an ⊆ a. Since filters are closed under finite meets this implies
a1 ∩ · · · ∩ an ∈ p and since filters are upwards closed we find a ∈ p.

Now suppose given some p ∈ ℱilA. In order to prove surjectivity, we
show that the set

C =
{
a ∈ A | a ∈ p

}
∪
{
−b | b ∈ A, b /∈ p

}
has a nonempty intersection. By construction, y ∈

⋂
C then implies p =

ηX(y). To show that
⋂
C is nonempty, by compactness of X it suffices to prove

that C has the finite intersection property. So let {a1, . . . , an,−b1, . . . ,−bm} ⊆
C such that ai ∈ p and bj /∈ p. Then Claim 2.9.1 implies that for each bj
we have

⋂
p 6⊆ bj , hence there exists xj ∈

⋂
p such that xj /∈ bj . Let

x = x1 ∧ · · · ∧ xm, then x /∈ bj for all j, so x ∈ −bj for all j. Moreover, since
each xj ∈

⋂
p and

⋂
p is a filter on (X,∧,>), we have x ∈

⋂
p. In particular

this implies x ∈ ai for all i, and therefore x ∈ a1 ∩ · · · ∩ an ∩−b1 ∩ · · · ∩−bm.
So C has the finite intersection property.

Finally, naturality of η follows from a routine verification.
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As a corollary of Lemmas 2.9 and 2.8 we obtain the following theorem.

2.10. Theorem. The contravariant functors ℱil : SL → D-SOF and A :
D-SOF→ SL establish a dual equivalence SL ≡op D-SOF.

We can also take a topological perspective on descriptive π-systems
of filters, by means of semilattices with a Stone topology. Such spaces
arise from subjecting the definition of a Priestley space to the two-step
strategy discussed at the start of this section, namely, replacing “poset” with
”semilattice” and “upset” with “filter.”

2.11. Definition. An M-space is a tuple X = (X,>,∧, τ) where (X,>,∧)
is a semilattice and τ is a topology for X such that (X, τ) is a compact
topological space and X satisfies the HMS separation axiom:

for all x, y ∈ X, if x 6≤ y then
there exists a clopen filter a such that x ∈ a and y /∈ a.

We write MSpace for the category of M-spaces and continuous semilattice
homomorphisms.

2.12. Remark. Alternatively, we can characterise an M-space as a semilattice
(X,>,∧) together with a topology τ such that (X, τ) is a Stone space and
the collection of clopen filters and their complements forms a subbase for τ .

2.13. Remark. In [111, Chapter 4, Theorem 4.7] the category SL is shown
to be dually equivalent to a category denoted by IScP+SL∼ (the notation
is borrowed from op. cit.) Here, if Y is a class of semilattices with a
Stone topology, IY,ScY and P+Y denote the closure of Y in the class of
meet-semilattices with a Stone topology under isomorphic copies, closed
substructures and direct products, respectively. A direct computation shows
that IScP+SL∼ corresponds precisely to the category MSpace.

2.14. Theorem. D-SOF ∼= MSpace.

Proof. If X = (X,>,∧, A) is a descriptive π-system of filters, define τA to be
the topology on X generated by A∪−A. Then (X, τA) is compact topological
space because X is compact, and (X,>,∧, τA) satisfies the HMS separation
axiom because X is refined.

Conversely, if X = (X,>,∧, τ) is an M-space, letting ClpfX be the collec-
tion of clopen filters yields a descriptive π-system of filters (X,>,∧,ClpfX).
It follows from Remark 2.12 that τ = τClpfX.

If X = (X,>,∧, A) is a descriptive π-system of filters and X = (X,>,∧, τA)
then A ⊆ ClpfX. In order to establish the correspondence on objects, we
wish to show that A = ClpfX. So suppose a ∈ ClpfX. We claim that
for each x ∈ a there exists some ax ∈ A such that x ∈ ax ⊆ a. To see
this, note that for each y /∈ a we have x 6≤ y, so that the fact that X is
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refined implies that there exists ax,y ∈ A such that x ∈ ax,y and y /∈ ax,y.
Then

⋂
{ax,y | y /∈ A} ⊆ a. Since X is compact and a is a clopen subset

of X, we can pick a finite number of such ax,y, say, ax,1, . . . , ax,n such that
ax,1 ∩ · · · ∩ ax,n ⊆ a. Set ax := ax,1 ∩ · · · ∩ ax,n.

Thus we have a =
⋃
{ax | x ∈ a}, where each ax ∈ A. Again by

compactness we can choose a finite subcover a1, . . . , am such that a =
a1 ∪ · · · ∪ am. We claim that a = ai for one of the ai. Suppose towards a
contradiction that a 6= ai for all i, then for each i we can find zi ∈ a such
that zi /∈ ai. Then z1∧ · · · ∧ zn ∈ a because a is a filter, and z1∧ · · · ∧ zn /∈ ai
for all i, a contradiction. So a = ai for one of the i, and therefore a ∈ A.

This establishes an isomorphism between objects of D-SOF and MSpace.
The isomorphism on morphisms follows immediately from the definitions of
morphisms in both categories.

We have the following interesting lemma about filters in M-spaces.

2.15. Lemma. Let X = (X,>,∧, τ) be an M-space and c ⊆ X a filter in
(X,>,∧). Then the following are equivalent:

1. c is closed in (X, τ);

2. c is a principal filter;

3. c is the intersection of all clopen filters that contain it.

Proof. (1 ⇒ 2) Let c be closed and suppose towards a contradiction that
it is not principal. Then for each x ∈ c there exists some y ∈ c such that
x 6≤ y. Therefore, using the HMS separation axiom (Definition 2.11) we can
find for each x ∈ c a clopen filter bx containing x such that c 6⊆ ax. Then
c ⊆

⋃
x∈c ax is an open cover of c, and by compactness we can find a finite

subcover, say c ⊆ ax1 ∪ · · · ∪ axn . By construction, for each for the axi there
exists a yi ∈ c such that yi /∈ axi . But this implies y1 ∧ · · · ∧ yn ∈ c because
c is a filter, while y1 ∧ · · · ∧ yn /∈ axi for all 1 ≤ i ≤ n, a contradiction.

(2 ⇒ 3) Suppose c is of the form ↑x for some x ∈ X. Then for each y /∈ c
we have x 6≤ y, so by the HMS separation axiom we can find a clopen filter
ay such that x ∈ ay and y /∈ ay. Since ay is a filter we have c = ↑x ⊆ ay. It
follows that c =

⋂
{ay | y /∈ c}.

(3 ⇒ 1) This follows from the fact that an arbitrary intersection of
clopens sets is closed.

2.16. Definition. Define ℱil : SL→ MSpace by sending a semilattice A to
the semilattice of filters filA with a topology τA generated by

â =
{
p ∈ filA | a ∈ p

}
, −â =

{
p ∈ filA | a /∈ p

}
,

where a ranges over A. For a morphism h define ℱilh = h−1. Then
ℱil : SL→ MSpace defines a contravariant functor.
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In the opposite direction, define the contravariant functor Clpf : MSpace→
SL by sending an M-space X to its collection of clopen filters, viewed as a semi-
lattice with meet ∩ and top X. For a continuous semilattice homomorphism
h set Clpfh = h−1.

Note that the elements of ℱilA, filA and fil0A are the same but each
of these is equipped with a different additional structure. Combining Theo-
rems 2.10 and 2.14 yields the following theorem, originally due to Hofmann,
Mislove and Stralka [218].

2.17. Theorem (HMS duality). The contravariant functors ℱil : SL→
MSpace and Clpf : MSpace→ SL establish a dual equivalence

MSpace ≡op SL.

2.2 The (>,∧,→)-fragment of intuitionistic logic

Before proving our next duality, we investigate the logic that arises as the
(>,∧,→)-fragment of intuitionistic logic. Since we could not find a reference
where it is proven that the Hilbert-style system for this fragment (defined in
Definition 2.19 below) is sound and complete with respect to the equational
system that arises from implicative semilattices, this subsection is devoted
to proving such a result.

2.18. Definition. The language MI is given by the grammar

ϕ ::= > | p | ϕ ∧ ϕ | ϕ→ ϕ

where p ranges over Prop, some set of proposition letters.

When writing down formulae, we use standard operator precedence and
assume that ∧ binds more tightly than →.

2.19. Definition. The Hilbert-style deductive system for the meet-implication
fragment of intuitionistic propositional logic is given by the axioms

(H1) p→ (q → p)

(H2) (p→ (q → r))→ ((p→ q)→ (p→ r))

(H3) (p ∧ q)→ p

(H4) (p ∧ q)→ q

(H5) p→ (q → (p ∧ q))

(H6) >
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If Γ is a set of formulae and ϕ is a formula, we say that ϕ is deducible in ℋ
from Γ if Γ `ℋ ϕ can be derived using the rules

(ass)
Γ `ℋ ϕ

(if ϕ ∈ Γ) (ax)
Γ `ℋ ϕ

(if ϕ ∈ H) (mp )
Γ `ℋ ϕ Γ `ℋ ϕ→ ψ

Γ `ℋ ψ

where H is the set of substitution instances of the axioms (H1) – (H6) above.
We write ℋ ` ϕ if ∅ `ℋ ϕ.

We write MI for the smallest set of MI-formulae that contains the
axioms (H1) to (H6) and is closed under the given rules.

Our goal is to show that this Hilbert system is equivalent to the equational
system used to axiomatise implicative meet semilattices in the literature (see
e.g. [326]) introduced next.

2.20. Definition. An implicative semilattice is a tuple (A,>,∧,→) such
that (A,>,∧) is a semilattice and → is a binary operator satisfying

c ≤ a→ b iff c ∧ a ≤ b

for all a, b, c ∈ A. An implicative semilattice homomorphism is a map
that preserves the top element, conjunctions and implications. We write
ISL for the category of implicative semilattice and implicative semilattice
homomorphisms.

These give rise to the following equational system.

2.21. Definition. Let ℰ be the equational system consisting of

(E1) ϕ ∧ (ψ ∧ χ) = (ϕ ∧ ψ) ∧ χ
(E2) ϕ ∧ ψ = ψ ∧ ϕ
(E3) ϕ ∧ ϕ = ϕ

(E4) ϕ ∧ > = ϕ.

The set of provable equations in ℰ is the least set of equations containing all
substitution instances of (E1) – (E4) above that is closed under the rules of
equational reasoning

(ref)
ϕ = ϕ

(sym)
ϕ = ψ

ψ = ϕ

(trans)
ϕ = ψ ψ = χ

ϕ = χ
(cong)

ϕ1 = ψ1 ϕ2 = ψ2

ϕ1 ◦ ϕ2 = ψ1 ◦ ψ2

for ◦ ∈ {∧,→}, as well as the residuation equivalence (displayed as a pair of
rules)

ϕ ∧ ψ ≤ χ
ϕ ≤ ψ → χ

ϕ ≤ ψ → χ

ϕ ∧ ψ ≤ χ
where we write, as usual, ϕ ≤ ψ for ϕ ∧ ψ = ϕ.
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We will establish soundness and completeness of ℋ with respect to ℰ.
That is, ℋ ` ϕ iff ℰ ` ϕ = > for all ϕ ∈MI. We begin with a few simple
facts on derivability in ℋ, where Γ is a set of formulae, and ϕ,ψ, χ, ξ are
formulae. The first is the admissibility of weakening.

2.22. Lemma (Weakening). If Γ `ℋ ϕ then Γ, ψ `ℋ ϕ.

Proof. The proof is a routine induction on derivations.

The next two facts are used in the proof of the deduction theorem.

2.23. Lemma.

1. Γ `ℋ ϕ→ ϕ;

2. If Γ `ℋ ϕ then Γ `ℋ ψ → ϕ.

Proof. For the second item, note that Γ `ℋ ϕ → (ψ → ϕ) by (H1). As
Γ `ℋ ϕ by assumption, an application of (mp) gives Γ `ℋ ψ → ϕ.

For the first claim, note that we have the following three instances of
axioms
(1) Γ `ℋ (ϕ→ ((ϕ→ ϕ)→ ϕ))→ ((ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ)) (H2)
(2) Γ `ℋ ϕ→ ((ϕ→ ϕ)→ ϕ) (H1)
(3) Γ `ℋ ϕ→ (ϕ→ ϕ) (H1)

whence we may conclude that

(4) Γ `ℋ (ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ) (mp 2 1)
(5) Γ `ℋ ϕ→ ϕ (mp 3 4)

as required.

With these preparations, we are now ready for the deduction theorem.

2.24. Lemma (Deduction Theorem). We have Γ `ℋ ϕ→ ψ if and only
if Γ, ϕ `ℋ ψ.

Proof. For “only if” assume that Γ `ℋ ϕ→ ψ. Using weakening (Lemma 2.22)
we obtain that Γ, ϕ `ℋ ϕ → ψ. As Γ, ϕ `ℋ ϕ by (ass), an application of
(mp) yields the claim.

We show “if” by induction on the derivation of Γ, ϕ `ℋ ψ. If Γ, ϕ `ℋ ψ
has been derived using (ass), we distinguish the cases ψ ∈ Γ and ϕ = ψ. In the
first case, Γ `ℋ ψ (again using (ass)) whence Γ `ℋ ϕ→ ψ using Lemma 2.23.
If ϕ = ψ, then Lemma 2.23 again gives Γ ` ϕ→ ϕ, i.e. Γ ` ϕ→ ψ.

If ψ ∈ H is a substitution instance of (H1) – (H6), then Γ ` ψ (for the
same reason), and again Lemma 2.23 gives Γ ` ϕ→ ψ.

The final case to consider is that Γ, ψ was derived using (mp ). This
means that there is a formula χ and shorter derivations of Γ, ϕ `ℋ χ→ ψ
and Γ, ϕ `ℋ χ. We apply the induction hypotheses and instantiate (H2) to
obtain
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(1) Γ `ℋ ϕ→ (χ→ ψ) (IH)
(2) Γ `ℋ ϕ→ χ (IH)
(3) Γ `ℋ (ϕ→ (χ→ ψ))→ ((ϕ→ χ)→ (ϕ→ ψ)) (H2)

which allows us to use (mp ) twice to obtain that

(4) Γ `ℋ (ϕ→ χ)→ (ϕ→ ψ) (mp 1 3)
(5) Γ `ℋ ϕ→ ψ (mp 2 4)

as required, which finishes the proof.

Our reasoning so far is valid in minimal logic. The next lemma describes
the mechanics of reasoning with conjunction, both on the left and on the
right.

2.25. Lemma. Γ `ℋ ϕ ∧ ψ if and only if both Γ ` ϕ and Γ `ℋ ψ. Also, for
any formula χ ∈MI, Γ, ϕ ∧ ψ `ℋ χ if and only if Γ, ϕ, ψ `ℋ χ.

Proof. The first claim is straightforward. Note that Γ `ℋ ϕ→ (ψ → (ϕ∧ψ))
by (ax). Now apply (mp) twice. For the converse, we have that both
Γ `ℋ (ϕ ∧ ψ) → ϕ and Γ `ℋ (ϕ ∧ ψ) → ψ and we obtain the claim using
(mp). We turn to the second statement.

First suppose that Γ, ϕ∧ψ ` χ. By the deduction theorem, Γ `ℋ ϕ∧ψ →
χ. Using weakening this gives Γ, ϕ, ψ `ℋ (ϕ ∧ ψ)→ χ. On the other hand,
we have Γ, ϕ, ψ `ℋ ϕ and Γ, ϕ, ψ `ℋ ψ using (ass) so that the first part of
this lemma gives Γ, ϕ, ψ `ℋ ϕ ∧ ψ. We then get Γ, ϕ, ψ `ℋ χ from (mp).

Conversely, suppose that Γ, ϕ, ψ `ℋ χ. It is easy to see that Γ, ϕ∧ψ `ℋ ϕ,
as Γ, ϕ ∧ ψ `ℋ ϕ ∧ ψ by (ass). Also, Γ, ϕ ∧ ψ `ℋ (ϕ ∧ ψ) → ϕ by (ax) so
that applying (mp) gives Γ, ϕ ∧ ψ ` ϕ. A symmetric argument shows that
Γ, ϕ ∧ ψ `ℋ ψ. Using the deduction theorem and weakening, we obtain
Γ, ϕ ∧ ψ `ℋ ϕ → (ψ → χ) from our assumption Γ, ϕ, ψ `ℋ χ. As both
Γ, ϕ ∧ ψ `ℋ ϕ and Γ, ϕ ∧ ψ `ℋ ψ, applying (mp) twice yields Γ, ϕ ∧ ψ `ℋ χ
as desired.

We now have collected all required prerequisites for the soundness of the
equational system ℰ with respect to ℋ.

2.26. Proposition. If ℰ ` ϕ = ψ, then ℋ ` ϕ→ ψ and ℋ ` ψ → ϕ.

Proof. The proof proceeds by induction on the derivation. We first show that
ℋ ` ϕ→ ψ and ℋ ` ψ → ϕ for all substitution instances of the equations
(E1) – (E4).

We begin with (E1), i.e. associativity. By Lemma 2.25 we have that
ϕ,ψ, χ `ℋ ϕ ∧ ψ, and a second application yields ϕ,ψ, χ `ℋ (ϕ ∧ ψ) ∧ χ.
Applying the second part of the same lemma twice now gives ϕ∧ (ψ ∧ χ) `ℋ
(ϕ ∧ ψ) ∧ χ. Therefore ℋ ` (ϕ ∧ (ψ ∧ χ)) → ((ϕ ∧ ψ) ∧ χ). A symmetric
argument shows that ℋ ` ((ϕ ∧ ψ) ∧ χ)→ (ϕ ∧ (ψ ∧ χ)).
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For commutativity, i.e. (E2), note that ϕ,ψ ` ψ ∧ ϕ by Lemma 2.25
whence ϕ ∧ ψ `ℋ ψ ∧ ϕ by the same lemma. The deduction theorem gives
ℋ ` ϕ ∧ ψ → ψ ∧ ϕ. Swapping ϕ and ψ gives the converse implication.

We turn to (E3), idempotency. Note that ℋ ` (ϕ ∧ ϕ) → ϕ by (ax).
The converse direction, i.e. ℋ ` ϕ → (ϕ ∧ ϕ) follows from observing that
ϕ → (ϕ ∧ ϕ) is a consequence of Lemma 2.25 and an application of the
deduction theorem.

For identity, that is (E4), note that ϕ∧> → ϕ is an instance of (H3). We
show the converse direction, i.e. ℋ ` ϕ→ (ϕ ∧ >). As ϕ `ℋ ϕ and ϕ `ℋ >
by (ass) and (ax), respectively, Lemma 2.25 gives that ϕ `ℋ ϕ ∧ >, and an
application of the deduction theorem yields the claim.

We turn to the laws of equational logic. For (ref), note that ℋ ` ϕ→ ϕ
by Lemma 2.23. If ℰ ` ϕ = ψ has been derived from ℰ ` ψ = ϕ using
symmetry, the claim is immediate as the inductive hypothesis.

Now assume that ℰ ` ϕ1∧ϕ2 = ψ1∧ψ2 has been derived using congruence
from ℰ ` ϕ1 = ψ1 and ℰ ` ϕ2 = ψ2. We only show that ℋ ` (ϕ1 ∧ ϕ2) →
(ψ1∧ψ2) as the other implication is almost identical. Applying the deduction
theorem to the induction hypotheses (the shorter derivations of ϕ1 = ψ1 and
ϕ2 = ψ2) we obtain that ϕ1 `ℋ ψ1 and ϕ1 `ℋ ψ2. Using weakening and
Lemma 2.25 this gives ϕ1, ϕ2 ` ψ1 ∧ ψ2 and applying Lemma 2.25 again,
together with the deduction theorem, gives ℋ ` (ϕ1 ∧ ϕ2)→ (ψ1 ∧ ψ2).

For the second congruence law, assume that ℰ ` ϕ1 → ϕ2 = ψ1 → ψ2 has
been derived using congruence from ℰ ` ϕ1 = ψ1 and ℰ ` ϕ2 = ψ2. Again,
we only demonstrate that ℋ ` (ϕ1 → ϕ2) → (ψ1 → ψ2). The induction
hypotheses for the derivations of ϕ1 = ψ1 and ϕ2 = ψ2 imply ℋ ` ψ1 → ϕ1

and ℋ ` ϕ2 → ψ2, respectively. We obtain:

(1) ϕ1 → ϕ2, ψ1 `ℋ ψ1 → ϕ1 (IH) and weakening
(2) ϕ1 → ϕ2, ψ1 `ℋ ϕ1 (mp) using (ass) and (1)
(3) ϕ1 → ϕ2, ψ1 `ℋ ϕ2 (mp) using (2) and (ass)
(4) ϕ1 → ϕ2, ψ1 `ℋ ϕ2 → ψ2 (IH) and weakening
(5) ϕ1 → ϕ2, ψ1 `ℋ ψ2 (mp) using (3) and (4)

so that a double application of the deduction theorem yields the claim,
i.e. ℋ ` (ϕ1 → ϕ2)→ (ψ1 → ψ2).

This leaves the residuation rules. First assume that ℰ ` ϕ ≤ ψ → χ has
been concluded from ℰ ` ϕ∧ψ ≤ χ. Unfolding the definition of ≤, we assume
that ℰ ` (ϕ ∧ ψ) ∧ χ = ϕ ∧ ψ and show that both ℋ ` (ϕ ∧ (ψ → χ))→ ϕ
and ℋ ` ϕ → (ϕ ∧ ψ → χ). The former is a substitution instance of (ax).
For the latter, note that the inductive hypothesis for the shorter derivation
ℰ ` ϕ∧ψ = (ϕ∧ψ)∧χ implies that ℋ ` (ϕ∧ψ)→ (ϕ∧ψ)∧χ. The deduction
theorem and Lemma 2.25 give ϕ,ψ `ℋ (ϕ ∧ ψ) ∧ χ. Another application of
the same lemma, together with the deduction theorem yields ϕ `ℋ ψ → χ.
Again, using Lemma 2.25 and (ass), we obtain ϕ `ℋ ϕ ∧ (ψ → χ). Applying
the deduction theorem finally yields ℋ ` ϕ→ ϕ ∧ (ψ → χ) as required.
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Now assume that ℰ ` ϕ ∧ ψ ≤ χ has been derived from ℰ ` ϕ ≤ ψ → χ.
Again unfolding ≤, we assume that ℰ ` ϕ ∧ (ψ → χ) = ϕ and have to
show that ℋ ` (ϕ ∧ ψ) ∧ χ → ϕ ∧ ψ and ℋ ` ϕ ∧ ψ → (ϕ ∧ ψ) ∧ χ.
The former is a substitution instance of axiom (H3). For the latter, note
that the inductive hypothesis, coupled with the deduction theorem, gives
ϕ `ℋ ϕ∧ψ → χ. Applying Lemma 2.25 and the deduction theorem a second
time gives ϕ,ψ `ℋ χ. Now we apply Lemma 2.25 again to obtain ϕ∧ψ `ℋ χ.
Using (ass) and Lemma 2.25 yet again, this entails ϕ ∧ ψ `ℋ (ϕ ∧ ψ) ∧ χ. A
final application of the deduction theorem yields the claim.

This finishes the analysis of all cases in the derivation, and hence the
proof.

The first part of the promised equivalence of the systems ℰ and ℋ is now
an easy corollary.

2.27. Corollary. Suppose that ℰ ` ϕ = >. Then ℋ ` ϕ.

Proof. Using the previous lemma, we obtain that ℋ ` > → ϕ. As ℋ ` > by
(H6), the claim follows from (mp).

Our next goal is the converse of the above corollary. That is, we will
prove that ℋ ` ϕ implies ℰ ` ϕ = >. As before, we split the proof into
several lemmas. Throughout, and as before, we write ϕ ≤ ψ as a shorthand
for ϕ ∧ ψ = ϕ.

2.28. Lemma. We have ℰ ` ϕ = ψ if and only if ℰ ` ϕ ≤ ψ and ℰ ` ψ ≤ ϕ.
Also, we always have that ℰ ` ϕ ≤ >.

Proof. Given ℰ ` ϕ ≤ ψ and ℰ ` ψ ≤ ϕ, we have that ϕ = ϕ ∧ ψ by
unfolding ϕ ≤ ψ, and ψ = ψ ∧ ϕ by unfolding ψ ≤ ϕ. Hence ℰ ` ϕ = ψ
using symmetry and transitivity. If conversely ℰ ` ϕ = ψ, we have that
ϕ ∧ ψ = ϕ ∧ ϕ = ψ using congruence, reflexivity, (E3) and transitivity.
Similarly, one shows that ℰ ` ψ ∧ϕ = ψ. The second statement, ℰ ` ϕ ≤ >,
unfolds to ℰ ` ϕ ∧ > = ϕ which is (E4).

2.29. Lemma. The following are deducible in ℰ:

1. ℰ ` ϕ ∧ ψ = (ϕ ∧ ψ) ∧ (ϕ→ ψ);

2. ℰ ` ϕ ∧ ψ = ϕ ∧ (ϕ→ ψ).

Proof. For the first item, note that (ϕ ∧ ψ) ∧ (ϕ ∧ ψ) = ϕ ∧ ψ is an instance
of (E3). Using associativity (E1) and congruence, this gives ((ϕ∧ψ)∧ϕ)∧ψ =
ϕ ∧ ψ. Given that (ϕ ∧ ψ) ∧ ϕ = ϕ ∧ ψ is easily established using (E1), (E2)
and (E3), this yields ((ϕ ∧ ψ) ∧ ϕ) ∧ ψ = (ϕ ∧ ψ) ∧ ϕ. By residuation, this
yields (ϕ ∧ ψ) ∧ (ϕ→ ψ) = ϕ ∧ ψ. For the second item, it suffices to show
that ℰ ` ϕ ∧ (ϕ→ ψ) = (ϕ ∧ ψ) ∧ (ϕ→ ψ) by transitivity. It follows from
symmetry and Lemma 2.28 that ϕ→ ψ ≤ ϕ→ ψ and residuation then yields
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(ϕ→ ψ)∧ϕ ≤ ψ. Spelling out ≤ now yields ((ϕ→ ψ)∧ϕ)∧ψ = (ϕ→ ψ)∧ϕ
and the statement now follows from using (E1) and (E2).

We can now establish the converse of Corollary 2.27.

2.30. Lemma. If ℋ ` ϕ, then ℰ ` ϕ = >.

Proof. We proceed by induction on the derivation of ℋ ` ϕ, and begin
with the axioms. Suppose ϕ = ψ → (χ → ψ) is an instance of (H1). As a
consequence of Lemma 2.28 it suffices to show that ℰ ` > ≤ ψ → (χ→ ψ).
By residuation this follows from > ∧ ψ ≤ χ→ ψ, which in turn follows from
(> ∧ ψ) ∧ χ ≤ ψ. The last item follows from observing that

(> ∧ ψ) ∧ χ = (ψ ∧ >) ∧ χ = ψ ∧ χ = χ ∧ ψ = χ ∧ (ψ ∧ ψ) = (χ ∧ ψ) ∧ ψ
= (ψ ∧ χ) ∧ ψ = ((ψ ∧ >) ∧ χ) ∧ ψ = ((> ∧ ψ) ∧ χ) ∧ ψ

is a valid chain of equalities in ℰ.

Now suppose that ϕ = (ψ → (χ → ξ)) → ((ψ → χ) → (ψ → ξ)) is an
instance of (H2). Again, we observe that

(ψ → (χ→ ξ)) ∧ (ψ → χ) ∧ ψ
= (ψ ∧ (ψ → (χ→ ξ))) ∧ (ψ → χ)

= (ψ ∧ (χ→ ξ)) ∧ (ψ → χ)

= (ψ ∧ (ψ → χ)) ∧ (χ→ ξ)

= (ψ ∧ χ) ∧ (χ→ ξ)

= ψ ∧ (χ ∧ (χ→ ξ))

= ψ ∧ (χ ∧ ξ)

is a valid chain of equalities in ℰ, where we have used associativity and
commutativity, as well as Lemma 2.29. Similar to the previous case, it now
suffices to prove

ℰ ` > ≤ (ψ → (χ→ ξ))→ ((ψ → χ)→ (ψ → ξ)).

To see this, note that ψ∧ (χ∧ξ) ≤ ξ is clearly derivable in ℰ. By congruence,
we obtain (ψ → (χ → ξ)) ∧ (ψ → χ) ∧ ψ ≤ ξ which yields (ψ → (χ →
ξ)) ∧ (ψ → χ) ≤ ψ → ξ by residuation. Applying residuation again gives
ψ → (χ → ξ) ≤ (ψ → χ) → (ψ → ξ). Combining congruence and (E4) we
obtain > ∧ (ψ → (χ→ ξ)) ≤ (ψ → χ)→ (ψ → ξ) from which we conclude
that > ≤ (ψ → (χ → ξ)) → ((ψ → χ) → (ψ → ξ)) using residuation one
more time. This completes the case of (H2).

Now suppose ϕ = (ψ∧χ)→ ψ, i.e. ℋ ` ϕ is established as a substitution
instance of (H3). It suffices to show that > ≤ (ψ ∧ χ)→ ψ, and in turn, this
is established once we show that > ∧ (ψ ∧ χ) ≤ ψ. The latter unfolds to
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(> ∧ (ψ ∧ χ)) ∧ ψ = > ∧ (ψ ∧ χ). This follows from commutativity, identity
and symmetry.

If ϕ = (ψ ∧ χ) → ψ, i.e. ℋ ` ϕ is a substitution instance of (H4), the
argument is analogous to the previous case.

Now suppose that ℋ ` ϕ was obtained as ϕ is a substitution instance
of (H5), that is, ϕ = ψ → (χ → (ψ ∧ χ)). It suffices to show that > ≤
ψ → (χ → (ψ ∧ χ)). By symmetry we have ψ ∧ χ = ψ ∧ χ and it follows
from (E4) and commutativity that (>∧ψ)∧χ = ψ ∧χ. This in turn implies
> ∧ (ψ ∧ χ) ≤ ψ ∧ χ so that by residuation we get > ∧ ψ ≤ χ → (ψ ∧ χ).
Applying residuation again gives > ≤ ψ → (χ→ (ψ ∧ χ)) as required.

The last case of substitution instances that we need to consider is the
case ϕ = >, i.e. instances of (H6). We need to show that ℰ ` > = >, which
is (an instance of) the equational axiom of reflexivity.

The last missing item of the proof is to consider ℋ ` ϕ to be derived
using modus ponens. So suppose we have ℋ ` ϕ → ψ and ℋ ` ϕ. By
induction hypothesis, we have that ℰ ` ϕ→ ψ = > and ℰ ` ϕ = >. For the
claim it suffices to show that ℰ ` > ≤ ψ by Lemma 2.28. From the inductive
hypothesis, we obtain > = ϕ → ψ by symmetry, and, using the second
inductive hypothesis ϕ = >, also > = > → ψ by congruence. Lemma 2.28
then gives > ≤ > → ψ which gives > ∧ > ≤ ψ by residuation. Using (E3)
and congruence, this finally yields > ≤ ψ as required.

2.3 Frames for the (>,∧,→)-fragment of intuitionistic logic

We explain how MI-formulae can be interpreted in a special type of Kripke
frames, called in implicative Kripke frames or I-frames. We begin by recalling
some basic facts about distributive and implicative semilattices.

2.31. Definition. A semilattice A is called distributive if for all a, b, c ∈ A,
whenever a ∧ b ≤ c there exist a′, b′ such that a ≤ a′, b ≤ b′ and c = a′ ∧ b′.

In a distributive meet-semilattice A we can define the smallest filter
containing two given filters p and q by

〈p, q〉 = {a ∧ b | a ∈ p, b ∈ q}.

To see that this is again a filter, note that > ∈ 〈p, q〉 because > = > ∧ >
and > ∈ p,> ∈ q; the set 〈p, q〉 is closed under meets because p and q are,
so (a ∧ b) ∧ (a′ ∧ b′) = (a ∧ a′) ∧ (b ∧ b′); and it is up-closed precisely by
distributivity.

We collect some basic facts about distributive and implicative semilattices.

2.32. Lemma.

1. The (>,∧)-reduct of any distributive lattice is a distributive semilattice.
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2. The (>,∧)-reduct of an implicative semilattice is distributive.

3. If (A,>,∧) is a distributive semilattice, then (fil0A,A,∩,⇒) is an
implicative semilattice, where

(p⇒ q) = {a ∈ A | ∀b ∈ A, if a ≤ b and b ∈ p then b ∈ q}.

4. If (A,>,∧,→) is an implicative semilattice, then so is (fil0A,A,∩,⇒).

Proof. The first item is obvious, the second is proven in [42, Proposition
2.1], and the fourth item follows from the second and third. So we are left
to prove item (3).

It follows immediately from the definition of p ⇒ q that for all filters
r ∈ fil0A we have r ⊆ (p⇒ q) if and only if r∩ p ⊆ q. Since (fil0A,A,∩,⇒)
is ordered by inclusion, this proves that ⇒ is residuated with respect to ∩.
Furthermore, we claim that p⇒ q is a filter, i.e. an element of fil0A. Clearly,
it is upward closed and contains >. So let a, b ∈ p⇒ q and suppose c ∈ A is
such that a ∧ b ≤ c and c ∈ p. Then there exist a′, b′ ∈ A such that a ≤ a′

and b ≤ b′ and a′ ∧ b′ = c. This implies a′ ∈ p because c ≤ a′ and a′ ∈ p⇒ q
because a ≤ a′, so that a′ ∈ q. Similarly we find b′ ∈ q. It follows that c ∈ q
because c = a′ ∧ b′ and q is a filter. This proves that a ∧ b ∈ p ⇒ q, and
hence p⇒ q is a filter.

The fact that the meet-implication reduct of a Heyting algebra is an
implicative semilattice implies that any sound semantics for intuitionistic logic
also provides a sound semantics for MI. The best-known frame semantics
of intuitionistic logic is given by intuitionistic Kripke frames.

However, we will use a more restricted version of intuitionistic Kripke
frames as our semantics. The main advantage of this restriction is that it
lies closer to the duality for implicative semilattices proven in Subsection 2.4.
Moreover, its completeness implies completeness with respect to intuitionistic
Kripke frames in a straightforward way. We exploit the fact that the collection
of filters of a distributive semilattice is an implicative semilattice and use
these as semantics for MI-formulae. Since every (distributive) semilattice
carries an underlying partial order given by x ≤ y iff x∧ y = x, we can think
of the frame semantics as intuitionistic Kripke frames with extra properties.
When using them as frame semantics, we refer to distributive semilattices
as implicative Kripke frames or I-frames, both to stress their rôle as frame
semantics, and because morphisms between I-frames are not the same as
semilattice homomorphisms.

For future reference, we also define M-frames. These are semilattices
viewed as frames for the logic with connectives > and ∧. The filters play the
rôle of interpretants.

2.33. Definition. An M-frame a semilattice viewed as a relational frame.
That is, an M-frame is is a poset (X,≤) with finite meets. An M-frame
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morphism is a semilattice morphism. We write MFrm for the category of
M-frames and M-frame morphisms.

Indeed, MFrm is the same as SL, but carrying a different name to stress
its rôle as frame semantics rather than algebraic semantics.

We can define bounded morphisms between semilattices as follows.

2.34. Definition. Let (X,>,∧) and (X ′,>′,∧′) be two semilattices and write
≤ and ≤′ for the induced partial orders. We call a semilattice homomorphism
f : (X,>,∧)→ (X ′,>′,∧′) bounded if for all x ∈ X and y′ ∈ X ′:

if f(x) ≤′ y′ then there exists an y ∈ X such that x ≤ y and f(y) = y′.

2.35. Definition. An implicative Kripke frame or I-frame is a distributive
semilattice, viewed as a relation frame. An I-frame morphism f : (X,≤)→
(X ′,≤′) is a bounded semilattice homomorphism. We write IFrm for the
category of I-frames and I-frame morphisms.

As announced, I-frames are simply distributive semilattices, viewed as
a special kind of relational frame. We define I-models as I-frames with a
valuation. Rather than using upsets as interpretants of our language, we use
filters. These are natural interpretants because the collection of filters of a
distributive semilattice is closed under intersection and implication, but not
under unions.

2.36. Definition. A valuation for an I-frame (X,≤) is a function V that
assigns to each proposition letter p a filter of (X,≤), and an I-model is an
I-frame together with a valuation. An I-model morphism from (X,≤, V )
to (X ′,≤′, V ′) is an I-frame morphism f : (X,≤) → (X ′,≤′) satisfying
V = f−1 ◦ V ′.

The interpretation of MI-formulae in an I-model M = (X,≤, V ) is given
recursively via

M, x  > iff always

M, x  p iff x ∈ V (p)

M, x  ϕ ∧ ψ iff M, x  ϕ and M, x  ψ

M, x  ϕ→ ψ iff ∀y ∈ X, if x ≤ y and M, y  ϕ then M, y  ψ

We write M  ϕ if M, x  ϕ for all x ∈ X. For an I-frame (X,≤) we write
(X,≤)  ϕ if M  ϕ for every I-model M based on (X,≤).

Clearly every I-model is also an intuitionistic Kripke model, and formulae
are interpreted in the same way as in intuitionistic Kripke models. Further-
more, an I-model morphism is in particular a bounded morphism between
intuitionistic Kripke models. Since these preserve truth of intuitionistic
formulae we have:
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2.37. Proposition. Let M = (X,≤, V ) and M′ = (X ′,≤′, V ′) be two I-
models, and f : M → M′ an I-model morphism. Then for all x ∈ X and
ϕ ∈MI,

M, x  ϕ iff M′, f(x)  ϕ.

For future reference, we prove that the category IFrm has coproducts.
We begin by giving an explicit definition of coproducts in SL, which we know
exist because SL is a variety of algebras.

2.38. Lemma. Let {(Xi,>i,∧i) | i ∈ I} be an I-indexed collection of
semilattices. Let X be the set of functions x : I →

⋃
{Xi | i ∈ I} such that

• x(i) ∈ Xi for each i ∈ I; and

• x(i) 6= >i for only finitely many i ∈ I.

Define > ∈ X as the function I → X : i 7→ >i and define ∧ on X coordinate-
wise. Then (X,>,∧) is a semilattice, and it is the coproduct of the (Xi,>i,∧i)
in SL.

Proof. Define inclusion maps gi : (Xi,>i,∧i)→ (X,>,∧) by

gi(x) : I →
⋃{

Xi | i ∈ I
}

: j 7→
{
x if i = j
>j otherwise

It is obvious that these are semilattice homomorphisms. Now suppose
(Z,>Z ,∧Z) is another semilattice and for each i ∈ I we have a semilattice
homomorphism fi : (Xi,>i,∧i) → (Z,>Z ,∧Z). Then we can define f :
(X,>,∧)→ (Z,>Z ,∧Z) by sending x ∈ X to

∧
{fi(x(i)) | x(i) 6= >i}. This

is a finite conjunction by assumption and we have fi = f ◦ gi for all i ∈ I
by construction. Furthermore, it is easy to verify that f is a semilattice
homomorphism and f is uniquely fixed by its action on elements of the form
gi(x) for some i ∈ I. So it is a unique mediating map, and (X,>,∧) is indeed
the coproduct in SL.

2.39. Lemma. Let {(Xi,>i,∧i) | i ∈ I} be an I-indexed collection of
distributive semilattices. Then their coproduct in SL is distributive as well.

Proof. Immediate consequence of the coordinate-wise computation of con-
junctions.

2.40. Lemma. The category IFrm has coproducts, and they are computed as
in SL.

Proof. First note that the inclusion maps gi : Xi → X are bounded. This
follows from the fact that all elements lying above gi(x), for some x ∈ Xi,
must be of the form gi(y) for some y ∈ X.

Now suppose Z is a distributive semilattice and for each Xi we have a
bounded semilattice morphism fi : Xi → Z. Then we know from the proof of
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Lemma 2.38 that there exists a unique semilattice homomorphism f : X → Z
such that f ◦ gi = fi for all i ∈ I. We claim that f is also bounded.

Suppose x ∈ X, z ∈ Z and f(x) ≤Z z. Let I ′ = {i ∈ I | x(i) 6= >i}. This
is a finite set and by definition f(x) =

∧
i∈I′ fi(x(i)). Since Z is assumed

to be distributive and
∧
i∈I′ fi(x(i)) ≤ z, there exist elements zi ∈ Z for

each i ∈ I ′ such that
∧
i∈I′ zi = z and fi(x(i)) ≤ zi. Since the fi are

assumed to be bounded, for each i ∈ I ′ we can find some yi ∈ Xi such
that x(i) ≤ yi and fi(yi) = zi. Now let y ∈ X be such that y(i) = yi
for i ∈ I ′, and y(i) = >i otherwise. Then x ≤ y by construction, and
f(y) =

∧
i∈I′ fi(yi) =

∧
i∈I′ zi = z. So f is a bounded morphism.

2.4 Duality for implicative semilattices

We restrict the duality for semilattices from Subsection 2.1 to a duality for
implicative semilattices. This will be used in Section 14, where we study
modal extensions of the meet-implication fragment of intuitionistic logic.
The restriction of HMS duality to a duality for implicative semilattices is
analogous to the restriction of Priestley duality to Esakia duality. To the best
of our knowledge, this duality for implicative semilattices has not appeared
in the literature before.

2.41. Definition. A general I-frame is a π-system of filters (X,>,∧, A) such
that (X,>,∧) is an I-frame (i.e. a distributive semilattice) and A is closed
under the map ⇒ : fil(X,>,∧)× fil(X,>,∧)→ fil(X,>,∧) defined by

(a⇒ b) =
{
x ∈ X | ∀y ∈ X, if x ≤ y and y ∈ a then y ∈ b

}
(Here ≤ denotes the order induced by ∧.) It is called descriptive if it is
refined and compact in the sense of Definition 2.6.

A general I-frame morphism from (X,>,∧, A) to (X ′,>′,∧′, A′) is an
I-frame morphism f : (X,>,∧)→ (X ′,>′,∧′) such that f−1(a′) ∈ A for all
a′ ∈ A′. We write G-IFrm and D-IFrm for the categories whose objects are
general I-frames and descriptive I-frames, respectively, with general I-frame
morphisms as morphisms.

We need the following property of descriptive I-frames in Lemma 2.45
below.

2.42. Lemma. Let (X,>,∧, A) be a descriptive I-frame and a, b1, . . . , bn ∈ A.
Then

↓(a ∩ −b1 ∩ · · · ∩ −bn) = ↓(a ∩ −b1) ∩ · · · ∩ ↓(a ∩ −bn).

Proof. The inclusion from left to right is immediate. So suppose x ∈ X
is in the right hand side. Then for each i ∈ {1, . . . , n} we can find some
yi ∈ a ∩ −bi such that x ≤ yi. Set y := y1 ∧ · · · ∧ yn. Then y ∈ a because a
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is a filter, and x ≤ y because x ≤ yi for all i. Moreover y ∈ −bi for each i
because y ≤ yi and −bi is a downset (since it is the complement of a filter).
Therefore y ∈ a∩−b1 ∩ · · · ∩−bn, and hence x ∈ ↓(a∩−b1 ∩ · · · ∩−bn).

2.43. Lemma. The functor A : D-SOF → SL restricts to a contravariant
functor D-IFrm → ISL, which sends a descriptive I-frame (X,>,∧, A) to
(A,X,∩,⇒).

Proof. Let (X,>,∧, A) be a descriptive I-frame. Then we know that (A,X,∩)
is a semilattice. By assumption ⇒ is a binary operator on A. It follows
immediately from the definition of⇒ that for every c ∈ A we have c ⊆ a⇒ b
iff c ∩ a ⊆ b (note that A is ordered by inclusion). So (A,X,∩,⇒) is an
implicative semilattice.

Now let f is a general I-frame morphism, then it can be shown as in
Lemma 1.36 that it is also an implicative semilattice homomorphism.

If A is an implicative semilattice, then by ℱilA we mean the (descriptive)
π-system of filters obtained from applying ℱil to the semilattice reduct of
A. We claim that ℱilA is in fact a descriptive I-frame.

If A is an implicative semilattice and a ∈ A, then we write θ(a) = {p ∈
fil0A | a ∈ p}.

2.44. Lemma. Let A be an implicative semilattice. Then ℱilA is a descrip-
tive I-frame.

Proof. Let A be an implicative semilattice. Then ℱilA = (fil0A,A,∩, Â)
is a descriptive π-system of filters, so we only have to show that Â is
closed under ⇒. It can be proven in a similar way as in Lemma 1.37 that
θ(a) ⇒ θ(b) = θ(a → b) for all a, b ∈ A (and it is not even necessary to
invoke the prime filter lemma). This proves the lemma because θ(a→ b) ∈ Â
by definition.

Finally, we prove that the restriction of ℱil to ISL → D-IFrm is well
defined on morphisms as well. This requires an analogue of Lemma 1.38.
As we will see, while the general idea of the proof is the same, the move to
implicative semilattices requires some extra care.

2.45. Lemma. Let h : A→ A′ be an implicative semilattice homomorphism.
Then ℱilh = h−1 : ℱilA′ → ℱilA is a general I-frame morphism.

Proof. We know that h−1 : ℱilA′ → ℱilA is a morphism in D-SOF. There-
fore, in order to prove that it is a general I-morphism between descriptive
I-frames, we only have to show that it is bounded. So suppose p′ ∈ ℱilA′

and q ∈ ℱilA and h−1(p′) ⊆ q. In order to show that there exists some
q′ ∈ ℱilA′ such that p′ ⊆ q′ and h−1(q′) = q, it suffices to show that the set

C := {θ(a′) | a′ ∈ p′}︸ ︷︷ ︸
C1

∪{θ(h(a)) | a ∈ q}︸ ︷︷ ︸
C2

∪{−θ(h(b)) | b /∈ q}︸ ︷︷ ︸
C3
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is nonempty. Indeed, if we can find some q′ ∈
⋂
C, then the fact that it is

in
⋂
C1 ensures p′ ⊆ q′, the fact that it is in

⋂
C2 implies that q ⊆ h−1(q′),

and we have h−1(q′) ⊆ q because it is in
⋂
C3.

Since ℱilA′ is compact, it suffices to show that C has the finite intersec-
tion property. Note that C2 is closed under finite intersections. Furthermore,⋂
C1 = ↑p′. Therefore, in order to show that C has the finite intersection

property, it suffices to show that

↑p′ ∩ θ(h(a)) ∩ −θ(h(b1)) ∩ · · · ∩ −θ(h(bn)) 6= ∅ (2.1)

for arbitrary a ∈ q and b1, . . . , bn /∈ q.
Let a ∈ q and b1, . . . , bn /∈ q. Then q ∈ θ(a) ∩ −θ(b1) ∩ · · · ∩ −θ(bn), and

hence p′ ∈ (h−1)−1[↓(θ(a) ∩ −θ(b1) ∩ · · · ∩ −θ(bn))]. We have

(h−1)−1[↓(θ(a) ∩ −θ(b1) ∩ · · · ∩ −θ(bn))]

= (h−1)−1[↓(θ(a) ∩ −θ(b1)) ∩ · · · ∩ ↓(θ(a) ∩ −θ(bn))]

= (h−1)−1[↓(θ(a) ∩ −θ(b1))] ∩ · · · ∩ (h−1)−1[↓(θ(a) ∩ −θ(bn))]

= (h−1)−1(−θ(a→ b1)) ∩ · · · ∩ (h−1)−1(−θ(a→ bn))

= −(h−1)−1(θ(a→ b1)) ∩ · · · ∩ −(h−1)−1(θ(a→ bn))

= −[θ(h(a)→ h(b1))] ∩ · · · ∩ −[θ(h(a)→ h(bn))]

= ↓[θ(h(a)) ∩ θ(h(b1))] ∩ · · · ∩ ↓[θ(h(a)) ∩ θ(h(bn))]

= ↓[θ(h(a)) ∩ θ(h(b1)) ∩ · · · ∩ θ(h(bn))]

= ↓[(h−1)−1(θ(a)) ∩ (h−1)−1(θ(b1)) ∩ · · · ∩ (h−1)−1(θ(bn))]

(The first and seventh equalities follow from Lemma 2.42.) So p′ ∈ ↓(θ(h(a))∩
−θ(h(b1))∩ · · · ∩−θ(h(bn))). This implies that there exists some prime filter
in θ(h(a)) ∩ −θ(h(b1)) ∩ · · · ∩ −θ(h(bn)) that lies above p′, which implies
that (2.1) is true.

2.46. Theorem. The dual equivalence between semilattices and descriptive
π-systems of filters restricts to a duality

ISL ≡op D-IFrm.

Proof. It follows from Lemmas 2.43, 2.44 and 2.45 that the duality from
Theorem 2.10 restricts to a duality between ISL and D-IFrm.

We now take a topological perspective. Recall that an Esakia space is a
Priestley space such that the collection of clopen upsets is closed under ⇒.
I-spaces relate to M-spaces in the same way.

2.47. Definition. An I-space is an M-space X = (X,>,∧, τ) such that for
every two clopen filters a, b, the set

(a⇒ b) = {x ∈ X | ∀y ∈ X, if x ≤ y and y ∈ a then y ∈ b}
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is a clopen filter as well.
An I-space morphism is a bounded M-space morphism. We write ISpace

for the category of I-spaces and I-space morphisms.

2.48. Lemma. D-IFrm ∼= ISpace.

Proof. This follows immediately from Theorem 2.14 and the definitions of
descriptive I-frames and I-spaces and their morphisms.

2.49. Definition. Define ℱil′ : ISL→ ISpace to be the functor that sends
an implicative semilattice A to (fil0A,A,∩, τA), where (fil0A,A,∩) is the
semilattice of filters of A and τA is the topology generated by

θ(a) = {p ∈ fil0A | a ∈ p}, −θ(a) = {p ∈ fil0A | a /∈ p},

where a ranges over A. For an implicative semilattice homomorphisms
h : A→ A′, define ℱil′h = h−1 : ℱil′A′ → ℱil′A.

In the opposite direction, define Clp′f : ISpace → ISL by sending an
I-space X to its implicative semilattice of clopen filters. For an I-space
morphism f : X→ X′, define Clp′ff = f−1 : Clp′fX

′ → Clp′fX.

2.50. Theorem. The contravariant functors ℱil′ : ISL→ ISpace and Clp′f :
ISpace→ ISL establish dual equivalence ISL ≡op ISpace.

Proof. Combine Theorem 2.46 and Lemma 2.48.

We give an alternative characterisation of I-spaces that resembles more
closely the usual definition of an Esakia space. This also shows that the
semilattice underlying an I-space or descriptive I-frame is always distributive,
hence an I-frame.

2.51. Proposition. An M-space X = (X,∧,>, τ) is an I-space if and only
if (X,∧,>) is distributive and for every clopen subset c of X, the set ↓c is
clopen as well.

Proof. It follows from Theorem 2.50 that (X,>,∧) is isomorphic to fil(Clp′fX).

If X is an I-space then Clp′fX is an implicative semilattice and hence

Lemma 2.32 implies that fil(Clp′fX) is distributive.
For the second condition, suppose c is an clopen subset. Since the

topology τ is generated by the clopen filters of X and the collection of clopen
filters is closed under finite intersections, c can be written as the union
c = c1 ∪ · · · ∪ cm, where each cj is of the form a ∩ −b1 ∩ · · · ∩ −bn for some
a, b1, . . . , bn ∈ Clp′fX. Then ↓c = ↓c1 ∪ · · · ∪ ↓cm, so it suffices to prove
that the individual disjoints are clopen. That is, it suffices to prove that
for all a, b1, . . . , bn ∈ Clp′fX the set ↓(a ∩ −b1 ∩ · · · ∩ −bn) is clopen. As a
consequence of Lemma 2.42 we have

↓(a ∩ −b1 ∩ · · · ∩ −bn) = ↓(a ∩ −b1) ∩ · · · ∩ ↓(a ∩ −bn)

= −(a⇒ b1) ∩ · · · ∩ −(a⇒ bn)
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By assumption a ⇒ bi is clopen for all 1 ≤ i ≤ n. Since the collection of
clopens is closed under taking complements and finite intersections, we find
that ↓(a ∩ −b1 ∩ · · · ∩ −bn) is clopen as well, hence ↓c is clopen.

For the converse, suppose X = (X,>,∧, τ) is an M-space such that
(X,>,∧) is distributive and for all clopen sets c the set ↓c is clopen as
well. In order to show that it is an I-space we need to prove that a ⇒ b
is a clopen filter for all a, b ∈ ClpfX. Since a and b are clopen, so is
a ∩ −b. By assumption this implies that ↓(a ∩ −b) is clopen, and therefore
(a⇒ b) = −(a∩−b) is clopen as well. It follows from an argument similar to
that in Lemma 2.42 that a⇒ b is a filter, so ClpfX is closed under ⇒.

Given that MI is sound and complete with respect to implicative semi-
lattices by construction, Theorem 2.50 implies completeness with respect
to descriptive I-frames (X,>,∧, A), where propositional variables are inter-
preted as admissible filters (i.e. filters in A). This in turn entails the following
completeness theorem:

2.52. Theorem. The logic MI is complete with respect to the classes of

1. descriptive I-frames;

2. I-frames;

3. intuitionistic Kripke frames.

Proof. For the first item, if MI 6` ϕ then there is an algebraic model (i.e. an
implicative semilattice with a valuation) where ϕ does not evaluate to >.
But this implies that the dual I-space model does not validate ϕ. The second
and third item follow since, in particular, I-space models are I-models, and
I-models are intuitionistic Kripke models

Finally, we note that MI is not the same as the (>,∧,→)-fragment
of classical propositional logic. This is witnessed by the fact that Peirce’s
formula

((p→ q)→ p)→ p

is valid classically but not intuitionistically. Therefore, as a consequence of
Theorem 2.52 it is not valid in MI.
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III

Dualities with ears

One way to obtain dualities is to extend existing ones. That is, we add
extra structure such as additional operators or relations to both sides of
a duality in a way that it retains its dual nature. An example of such a
duality is Jónsson-Tarski duality for modal algebras. This can be viewed
as a modification of Stone duality where we add to Boolean algebras an
additional unary operator, and to Stone spaces a relation satisfying certain
conditions. This method of obtaining dualities lies at the heart of many
results, such as the duality for positive modal algebras [97] and the duality
between Aumann algebras and Markov processes [164] (which builds on
the duality between σ-perfect measurable spaces and σ-spatial σ-Boolean
algebras [391, Sections 24 and 32]).

A more structured approach towards extending existing dualities is to use
algebras and coalgebras. These are dual categorical concepts that depend on
an endofunctor on some category. In short, an ℒ-algebra for an endofunctor ℒ
on some category A consists of an object A ∈ A and a morphism α : ℒA→ A
in A (called the structure map). The category A is sometimes referred to as
the base category. Dually, a T -coalgebra for an endofunctor T : C→ C is a
pair (X, γ) such that γ : X → TX is a morphism in C.

If we have a duality between, say, categories A and C, then extending the
objects of A with an additional operator does not always have an obvious
dual counterpart. Indeed, the duality acts on objects and morphisms only,
so unless the additional operator is an object or a morhism we cannot simply
take its dual. The appeal of using algebras and coalgebras lies in the fact
that we can dualise the entire algebra or coalgebra, because it consists of
an object and a morphism. If additionally the endofunctors ℒ on A and T
on C are dual (we will define what this means in Section 3), then we can
transform every ℒ-algebra into a T -coalgebra and vice versa, and this gives
rise to a duality between (the categories of) ℒ-algebras and T -coalgebras.

Intuitively, this means that using algebras and coalgebras allows us

63
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Figure 3.1: The Mickey Mouse diagram of duality.

A C

p

s
ℒ T

to isolate the essentially part of the duality. Rather than proving the
entire duality, the proof reduces to showing that the functors describing the
additional structure are dual. The required categories and functors can be
summarised as in Figure 3.1, which should clarify the title of this chapter.1

Obtaining new dualities via this method hinges on the ability to view
the categories under consideration as categories of algebras or coalgebras.
Fortunately, it turns out that many categories of interest to mathematicians,
logicians and computer scientists can be viewed in such a way. For example,
we will see in Subsection 3.1 below that modal algebras are algebras for an
endofunctor on BA, and Kripke frames are coalgebras for an endofunctor on
Set.

This chapter revolves around dualities for modal logics over a classical
propositional base. This means that we will lift Stone duality and Tarski
duality to new dualities. The general strategy is as follows.

1. Describe the algebraic semantics of the logic as algebras for an endo-
functor ℒ on a category A. The ability to do this relies on the shape
of the axioms of the logic under consideration. Given axioms of the
right shape, we will see that this is the easiest step.

2. Given a duality for the category A, find a functor T that is dual to
ℒ. Here we see that we use an existing base duality. The duality of
functors isolates the essential (new) part of the duality.

3. Show that T -coalgebras are equivalent to descriptive frames. Depending
on the setting, we may or may not have a notion of descriptive frame
already. If we do, the proof of the duality is completed by proving
that the category of T -coalgebras is isomorphic to the category of
descriptive frames. If we do not, then the notion of T -coalgebra may
suggest a suitable definition of descriptive frame.

Section 3 sets the stage for the remainder of this thesis. We formally
define algebras and coalgebras and, guided by the example of Jónsson-Tarski

1The term “duality with ears” was introduced to my by Yde Venema.
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duality for modal algebras, we show how to use these to lift Stone duality
to Jónsson-Tarski duality. As a second example, we lift Tarski duality to
a duality for the category of Kripke frames, known as Thomason duality.
This should give us intuition of how to use algebras and coalgebras to our
advantage. Additionally, for future reference we recall the basic definitions
of monotone modal logic, neighbourhood logic, and coalgebraic logic.

Next, in Section 4 we investigate dualities for classes of (descriptive)
neighbourhood frames. Given a suitable collection of axioms, we describe
how to obtain a duality of functors and, as a consequence, a duality for the
relevant class of (descriptive) neighbourhood frames. We instantiate this to
obtain a large number of dualities, including both known and new ones.

Finally, we give a duality for instantial neighbourhood logic in Section 5.
This is particularly interesting because instantial neighbourhood logic has
an infinite number of modal operators (one for each natural number). As an
application of the duality we prove completeness, a Hennessy-Milner theorem,
bisimilarity-somewhere-else, and a Goldblatt-Thomason theorem.

3 Algebras and coalgebras

In this section we discuss important prerequisites for the remainder of
this thesis. It does not contain any new material, but summarises known
definitions and results that we need in later sections. The purpose of the
section is threefold:

First, we introduce the definitions of algebras and coalgebras, accompa-
nied and motivated by detailed examples from modal logic. Guided by the
well-known example of (semantics for) normal modal logic, we explore how
one can extend Stone duality and Tarski duality to more complex dualities.
Specifically, we investigate how Stone duality can help us account for an
additional finite-meet-preserving operator on Boolean algebras, and how
Tarski duality gives rise to a duality for sets with relations.

Second, in this section we fix notation for a number of constructions
and definitions. These include (the categories of) Kripke frames, monotone
frames and neighbourhood frames, and functors such as the Vietoris functor.

Lastly, many of the later sections contain ideas and definitions given in
this section. For example:

• All sections in Chapters III and IV make use of algebras and coalgebras,
and Chapter V aims at generalising coalgebraic logic.

• The Vietoris functor defined in Definition 3.12 makes an appearance
in Remark 4.42 and plays a key rôle in Section 5. It also serves as
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inspiration for variations defined in Definitions 6.16 and 9.18.

• Many future sections build on the idea of monotone modal logic (re-
called in Subsection 3.3.2). This includes adaptations over a positive
propositional base (Sections 7 and 8), over an intuitionistic base (in
Subsections 9.3.3 and 12.2) and over a base logic consisting of top,
conjunctions and implication (Subsection 14.6).

Overview of the section. In Subsection 3.1 we introduce the (dual)
notions of algebra and coalgebra, and explain how they help us isolate the
new or additional part of the duality. We use this to give a proof of Jónsson-
Tarski duality [240, 241]. The (co)algebraic proof we give can also be found
in [271].

Subsequently, in Section 3.2 we explore what happens to Tarski duality
(from Subsection 1.2) if we add relations to sets. That is, we derive a duality
for objects of the form (X,R), where X is a set and R is a relation on X, and
appropriate morphisms. Interestingly, the dual structures are a particular
type of modal algebras: they are modal algebras based on a complete atomic
Boolean algebra where the additional operator preserves all meets, rather
than just finite ones.

In Subsection 3.3 we outline what happens if we extend Boolean algebras
with a monotone or an arbitrary operator, rather than a meet-preserving
one. From a logical point of view, such structures correspond to monotone
modal logic [103, 209, 210] and modal logic with a free modality [388, 332].

Finally, in Subsection 3.4 we recall some basic notions of coalgebraic
logic. This is a uniform way to add modal operators to logics with coalgebras
serving as frame semantics. We will see that both algebras and coalgebras
naturally appear in this framework.

3.1 Stone duality with an extra operator

Normal modal logic arises from extending classical propositional logic with a
unary operator that satisfies the axioms

p ∧ q = (p ∧ q), > = >,

and the congruence rule
ϕ↔ ψ

ϕ↔ ψ
. (3.1)

The algebraic semantics of this logic is obtained by extending Boolean
algebras with a unary operator that preserves finite meets. Such structures
are called modal algebras, and they are the objects of the category MA,
defined in Definition 3.1.
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The frame semantics of normal modal logic is given by Kripke frames. A
Kripke frame is a set X together with a relation R. The additional relation
R is used to interpret . A state x satisfies ϕ if every y ∈ X such that
xRy satisfies ϕ. Jónsson-Tarski duality establishes a duality between modal
algebras and Kripke frames with extra structure. We give a proof of this
duality, making use of the general notions of algebra, coalgebra and dual
functors.

3.1.1 Operators as homomorphisms

We formally define modal algebras.

3.1. Definition. A modal algebra is a pair (B, ) where B is a Boolean
algebra and : B → B is a function on B such that > = > and (a∧ b) =
a∧ b for all a, b ∈ B. A homomorphism between modal algebras (B, ) and

(B′, ′) is a Boolean homomorphism h : B → B′ such that h( b) = ′(h(b))
for all b ∈ B. Modal algebras and their morphisms constitute the category
MA.

Modal algebras look a lot like Boolean algebras. In light of Stone duality,
it therefore seems reasonable to expect that we can find dual structures that
look like Stone spaces. But how can we use Stone duality to transfer the
additional operator from Boolean algebras to Stone spaces? If this additional
operator were a Boolean homomorphism, we could simply take its Stone
dual and describe the dual of a modal algebra (B, ) as a pair consisting of
the Stone space X dual to B, and a continuous function X→ X dual to .
Unfortunately, is not a homomorphism.

But we can relate it to a Boolean homomorphism. Intuitively, we can
modify the function : B → B in such a way that it becomes a Boolean
homomorphism. If we view B as a set then we can freely generate a new
Boolean algebra FB from it. In order to distinguish rôles of b ∈ B as elements
in the Boolean algebra B on the one hand and formal generators of FB on
the other hand, we denote the formal generator corresponding to b by b.
So FB is generated by the set { b | b ∈ B}.

We can now view as a function { b | b ∈ B} → B, so by the definition
of free (Boolean) algebras it extends uniquely to a Boolean homomorphism
h : FB → B. Indeed, every function : B → B gives rise to a Boolean
homomorphism h : FB → B. Conversely, if h : FB → B is a homomorphism,
then we can define h : B → B by h(b) = h( b). If we start with a function

: B → B and compute h : FB → B, then h (b) = h ( b) = b, so

h = .
However, not every homomorphism h : FB → B gives rise to a meet-

preserving function h : B → B. It is meet-preserving if and only if
h( (a∧ b)) = h( a)∧ h( b). We can legislate this identity into existence by
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stipulating that in FB the following equations hold:

(a ∧ b) = a ∧ b, > = >. (3.2)

That is, we take the quotient of FB with the smallest congruence generated
by (3.2), where a and b range over B. If we denote this quotient by KB then
we have:

3.2. Proposition. For a Boolean algebra B, functions : B → B that
preserve the top element and binary conjunctions correspond bijectively with
homomorphisms h : KB → B.

Proof. Let : B → B be a function and define h : KB → B on generators
by h ( b) = b. In order to prove that this is well defined, we have to show
that the images of the equations in (3.2) under h are still valid. That is,
h ( (a ∧ b)) = h ( a ∧ b) and h ( >) = h (>). This is indeed the case,
as

h ( (a ∧ b)) = (a ∧ b) = a ∧ b = h ( a) ∧ h ( b) = h ( a ∧ b)

and
h ( >) = > = > = h (>).

Conversely, for a homomorphism h : KB → B we define h : B → B : b 7→
h( b). It is easy to see that these preserve finite meets, and as shown above
we have h = . In order to show that h

h
= h it suffices to verify that

they coincide on the generators of KB, because these determine h
h

and h
uniquely. If b is such a generator, then h

h
( b) = h(b) = h( b). This

proves the bijection.

So we now have a way to use Stone duality to transfer the operator to
the topological side of Stone duality: if (B, ) is a modal algebra, then its
dual Stone space structure is a pair (X, r), where X is the dual of B, and r
is the dual of h . That is,

r = Ufh : UfB → Uf(KB)

X

∼=

Conversely, for every pair (X, r) where X is a Stone space with dual Boolean
algebra B and r : X → Uf(KB) is a continuous function, we get a modal
algebra (B, ).

This still does not look very satisfactory. The description of the codomain
of r in particular is rather cumbersome. Fortunately, we can describe this
codomain in a much more convenient way using the Vietoris hyperspace
construction, which turns a Stone space X into the Stone space VX. This
will give rise to a bijective correspondence between modal algebras and
continuous functions of the form X→ VX in Stone:{

: B → B
} 1-1←→

{
r : X→ VX

}
.
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3.3. Definition. The Vietoris hyperspace of a Stone space X is the Stone
space VX which has the closed subsets of X as elements, and is endowed
with the topology generated by the subbase

a =
{
c ∈ VX | c ⊆ a

}
, a =

{
c ∈ VX | c ∩ a 6= ∅

}
,

where a ranges over ClpX.

This means that the topology of VX is the smallest topology containing
all sets of the form a, a.

The construction of the Vietoris hyperspace traces back to Vietoris [428],
who defined a more general version acting on compact Hausdorff spaces. It
is proven in e.g. [306, Theorems 4.2 and 4.9] or [272, Corollary 2.10 and
Lemma 2.11] that this construction turns a Stone space into a Stone space.
A localic perspective on the Vietoris functor can be found in [236, Section
III.4].

3.4. Remark. The subbasic clopens of the Vietoris space are usually denoted
by a and a. In this thesis we use a box and diamond with a “V” in it to
distinguish the symbols from other types of boxes and diamonds in use. We
will use the same notation when defining variations of the Vietoris functor,
such as in Definitions 6.16 and 9.18.

3.5. Proposition. If X is a Stone space and B is its dual Boolean algebra,
then we have

VX ∼= Uf(KB).

Proof. Let us view B as the Boolean algebra of clopen subsets of X, so
conjunction is given by intersection and the top element is X.

Let c ∈ VX (so c is a closed subset of X). Define the ultrafilter pc, viewed
as a homomorphism pc : KB → 2, on generators by

pc( a) =

{
> if c ⊆ a
⊥ otherwise

In order to show that this is well defined, we need to show that the images
of the generators of KB under pc satisfy the relations from (3.2). Suppose
a, b ∈ B, then we have

pc( (a ∩ b)) = > iff c ⊆ a ∩ b
iff c ⊆ a and c ⊆ b
iff pc( a) = > and pc( b) = >
iff pc( a ∧ b) = >

For the second equation, note that the top element of B is X, and pc( X) =
> = pc(>), regardless of c. So pc is a homomorphism KB → 2, hence an
ultrafilter.
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This gives rise to a function ξ : VX → Uf(KB) which sends c to pc.
We claim that this is in fact a homeomorphism. It suffices to prove that
it is continuous and a bijection, because a continuous bijection in Stone is
automatically a homeomorphism. For continuity, note that the topology on
Uf(KB) is generated by sets of the form θ( a) = {p ∈ Uf(KB) | a ∈ p}
and their complements, where a ranges over B (because every element in
KB can be obtained from elements of the form a and ¬ a by using finite
conjunctions and finite disjunctions). Continuity then follows from the fact
that

ξ−1(θ( a)) = {c ∈ VX | pc ∈ θ( a)} = {c ∈ VX | c ⊆ a} = a

and this is clopen because its complement is (X \ a), which is open in VX.
For injectivity, let c, c′ ∈ VX be distinct elements, and without loss of

generality assume c 6⊆ c′. Then there exists a clopen subset a of X containing
c′ such that c 6⊆ a. This implies ξ(c) = pc 6= pc′ = ξ(c′).

Finally, to see that ξ is bijective, suppose given an ultrafilter p ∈ Uf(KB),
viewed as a homomorphism. Define cp =

⋂
{a ∈ ClpX | p( a) = >}. Then

p( b) = > implies pcp( b) = > for all b ∈ B by construction. Conversely,
suppose pcp( b) = >. Then

cp =
⋂
{a ∈ ClpX | p( a) = >} ⊆ b.

By compactness there exists a finite number of such a’s, say, a1, . . . , an such
that a1 ∩ · · · ∩ an ⊆ b. This implies (a1 ∩ · · · ∩ an) ≤ b. Since p( ai) = >
for all these ai we have p( (a1 ∩ · · · ∩ an)) = p( a1)∧ · · · ∧ p( an) = >, and
therefore p( b) = >, as (a1 ∩ · · · ∩ an) ≤ b and p is a homomorphism.
We conclude that pcp = p, and therefore ξ is bijective.

Summarising what we have seen in this subsection, we obtain:

3.6. Proposition. We have a bijective correspondence between modal alge-
bras and pairs (X, r) where X is a Stone space and r : X→ VX a continuous
function.

3.1.2 Morphisms as diagrams

Next we investigate how to describe morphisms between modal algebras. It
turns out to be useful to extend the construction that takes B to KB to an
endofunctor on BA, which we also denote by K.

3.7. Definition. For a Boolean algebra B, let KB be the free Boolean
algebra generated by the set { b | b ∈ B} modulo the equations (a ∧ b) =
a ∧ b (where a, b ∈ B) and > = >. For a homomorphism h : B → B′

define Kh : KB → KB′ on generators via

Kh( b) = h(b).
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Then K : BA→ BA defines a functor.

The action of K on morphisms is motivated by the following observation.

3.8. Proposition. Let (B, ) and (B′, ′) be two modal algebras and write
β : KB → B and β′ : KB′ → B′ for their equivalent descriptions as Boolean
homomorphisms (via Proposition 3.2). Then a homomorphism h : B → B′

in BA is a modal algebra homomorphism h : (B, )→ (B′, ′) if and only if
the diagram

KB KB′

B B′

Kh

β β′

h

commutes in BA.

Proof. Suppose that h is a modal algebra morphism. In order to prove that
h ◦ β = β′ ◦Kh it suffices to show that both maps coincide on the generators
of KB. To this end, compute

h ◦ β( b) = h( b) = ′h(b) = β′( h(b)) = β′ ◦Kh( b).

Conversely, if the diagram commutes then we have

h( b) = h(β( b)) = β′(Kh( b)) = β′( h(b)) = ′h(b)

so that h is a modal algebra morphism.

The alternative descriptions of both modal algebras and the morphisms
between them can neatly be described using the concept of an algebra for a
functor.

3.9. Definition. Let ℒ be an endofunctor on a category A. An ℒ-algebra is
a pair (A,α) consisting of an object A ∈ A and a morphism α : ℒA→ A in A.
An ℒ-algebra morphism from (A,α) to (A′, α′) is an A-morphism h : A→ A′

such that

ℒA ℒA′

A A′

ℒh

α α′

h

commutes. We write Alg(ℒ) for the category of ℒ-algebras and ℒ-algebra
morphisms. If the functor ℒ is clear from context we sometimes drop it from
the notation and refer to algebras and algebra morphisms instead.

As a consequence of Propositions 3.2 and 3.8 we get the following theorem.

3.10. Theorem. We have an isomorphism of categories MA ∼= Alg(K).
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The dual notion of an algebra is that of a coalgebra.

3.11. Definition. Let T be an endofunctor on a category C. A T -coalgebra
is a pair (C, γ) where C is an object of C and γ : C → TC is a morphism in C.
A T -coalgebra morphism from (C, γ) to (C ′, γ′) is a C-morphism f : C → C ′

such that

C C ′

TC TC ′

f

γ γ′

Tf

commutes in C. We write Coalg(T ) for the category of T -coalgebras and
T -coalgebra morphisms. If the functor T is clear from context we will simply
refer to coalgebras and coalgebra morphisms.

How exactly do algebras and coalgebras relate? Let ℒ : A → A be
an endofunctor on any category A, and write ℒop : Aop → Aop for the
corresponding endofunctor on the opposite category. If (A,α) is an ℒ-
algebra then α is a morphism α : ℒA→ A in A. But this means that α also
defines a morphism A→ ℒopA in Aop, so that it defines a ℒop-coalgebra. It is
straightforward to verify that we get an isomorphism Alg(ℒ) ∼= Coalg(ℒop)op.

Now suppose that the category C is dual to A and we have a functor
T : C→ C as in the diagram below.

A C

A C

s
≡op

ℒ
p

T
s
≡op

p

(3.3)

If T is naturally isomorphic to s ·ℒ · p then

Coalg(T ) ≡ Coalg(s ·ℒ · p) ≡ Coalg(ℒop) ≡op Alg(ℒ).

We sometimes call the functors ℒ and T dual functors (with respect to the
duality between A and C).

Let us specify this to our setting. If we take Stone duality between BA
and Stone and let ℒ = K, then we have the following diagram.

BA Stone

BA Stone

Uf

≡op

K
Clp

Uf

≡op

Clp

If we know what the dashed arrow looks like, then we can characterise a
category that is dual to Alg(K) as a category of coalgebras.
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In a sense we already know a description of the functor on the dashed
arrow, we can simply take it to be the composition Uf ·K ·Clp. In fact, by
Proposition 3.5 we know that on objects this corresponds to the Vietoris
construction. We now extend the Vietoris construction the an endofunctor
V on Stone which is naturally isomorphic to Uf ·K ·Clp.

3.12. Definition. For a Stone space X, let VX be the set of closed subsets
of X endowed with the topology generated by the subbase

a = {c ∈ VX | c ⊆ a}, a = {c ∈ VX | c ∩ a 6= ∅},

where a ranges over ClpX. For a continuous function f : X→ X′ in Stone
let Vf : VX → VX′ : c 7→ f [c]. Then V : Stone → Stone defines a functor,
called the Vietoris functor.

Next, let us substantiate the claim that K and V are Stone-duals. This
also from Corollary 3.16 and Proposition 3.17 of [271].

3.13. Lemma. The functors K and V are dual (with respect to Stone
duality).

Proof. It suffices to give a natural isomorphism ξ : V → Uf ·K ·Clp. For
X ∈ Stone, define ξX as in the proof of Proposition 3.5. That is, we send an
element c ∈ VX to the ultrafilter pc. Then it follows from Proposition 3.5 that
the components of ξ are isomorphisms, so we only have to show naturality.

To this end, let f : X → X′ be a continuous function between Stone
spaces. We need to show that

VX Uf(K(ClpX))

VX′ Uf(K(ClpX′))

ξX

Vf Uf(K(Clpf))

ξX′

commutes. For this, it suffices to show that for every c ∈ VX the ultrafil-
ters Uf(K(Clpf))(ξX(c)) and ξX′(Vf(c)) contain the same generators of
K(ClpX) (now viewing ultrafilters as subsets). So let b′ be such a generator.
Then we have

b′ ∈ Uf(K(Clpf))(ξX(c))

iff K(Clpf)( b′) ∈ ξX(c)

iff f−1(b′) ∈ ξX(c)

iff c ⊆ f−1(b′)

iff f [c] ⊆ b′

iff Vf(c) ⊆ b′

iff b′ ∈ ξX′(Vf(c))

So ξ is a natural isomorphism.
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As a consequence of Lemma 3.13 and the preceding discussion we obtain
the following theorem.

3.14. Theorem. We have Alg(K) ≡op Coalg(V ).

3.1.3 Kripke frames and descriptive Kripke frames

Jónsson-Tarski duality tells us that the category of modal algebras is dually
equivalent to the category of descriptive Kripke frames. We now give a
coalgebraic proof of this fact by showing that the category of V -coalgebras
is isomorphic to the category of descriptive Kripke frames. We begin by
recalling the definitions of (descriptive) Kripke frames.

3.15. Definition. A Kripke frame is a pair (X,R) of a set X and a relation
R ⊆ X × X. A bounded morphism from (X,R) to (X ′, R′) is a function
f : X → X ′ such that for all x, y ∈ X and z′ ∈ X ′:

• If xRy then f(x)R′f(y);

• If f(x)R′z′ then there exists z ∈ X such that xRz and f(z) = z′.

The category of Kripke frames and bounded morphisms is denoted by KF.

3.16. Definition. A general Kripke frame is a tuple (X,R,A) such that
(X,R) is a Kripke frame, (X,A) is a field of sets, and A is closed under the
map

R : PX → PX : a 7→
{
x ∈ X | R[x] ⊆ a

}
.

It is called differentiated if the underlying field of sets is differentiated (see
Definition 1.8(1)), and compact if (X,A) is compact (Definition 1.8(2)). The
frame (X,R,A) is called tight if

∀a ∈ A(x ∈ Ra⇒ y ∈ a) implies xRy.

A descriptive Kripke frame is a general Kripke frame that is differentiated,
compact and tight.

A general frame morphism from (X,R,A) to (X ′, R′, A′) is a bounded
morphism f : (X,R) → (X ′, R′) such that f−1(a′) ∈ A for all a′ ∈ A′. We
write D-KF for the category of descriptive Kripke frames and general frame
morphisms.

Next we prove that D-KF is isomorphic to Coalg(V ). On objects, this
was already observed by Esakia [148] and Abramsky [2]. A formulation of
the isomorphism including morphisms can be found in [271, Theorem 3.13].

3.17. Theorem. We have D-KF ∼= Coalg(V ).
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Proof. Let (X,R,A) be a descriptive frame and write τA for the topology
on X generated by A. Then X = (X, τA) is a Stone space because (X,R,A)
is differentiated and compact. Define γR : X → VX : x 7→ R[x], where
R[x] := {y ∈ X | xRy}. Then tightness of (X,R,A) implies that γR is well
defined, and it is continuous because A is closed under R. So (X, γR) is a
V -coalgebra.

Conversely, for a V -coalgebra (X, γ) let X be the set underlying X
and define Rγ ⊆ X × X by xRγy iff y ∈ γ(x). Then (X,Rγ ,ClpX) is a
descriptive Kripke frame: ClpX is closed under R because γ is continuous
and Ra = γ−1( a), the frame is tight because γ(x) is closed in X for each
x ∈ X, and it is differentiated and compact because X is a Stone space.

A straightforward verification shows that these two assignments yield a
bijection between descriptive Kripke frames and V -coalgebras.

Let (X,R,A) and (X ′, R′, A′) be two descriptive Kripke frames and (X, γ)
and (X′, γ′) the corresponding V -coalgebras. We claim that f : X → X ′ if a
general frame morphism from (X,R,A) to (X ′, R′, A′) if and only if it is a
V -coalgebra morphism from (X, γ) to (X′, γ′). So suppose f : (X,R,A)→
(X ′, R′, A′) is a general frame morphism. Then f : X → X′ is continuous
because f−1(a′) ∈ A for all a′ ∈ A′. For x ∈ X we have

Vf(γ(x)) = f [γ(x)] = {f(y) ∈ X ′ | xRy} = {y′ ∈ X ′ | f(x)R′y′} = γ′(f(x))

where the third equality follows from boundedness of f , so f is a V -coalgebra
morphism. Conversely, if f is a V -coalgebra morphism then continuity of f
implies f−1(a′) ∈ A for all a′ ∈ A′. If xRy then y ∈ γ(x) so f(y) ∈ f [γ(x)] =
γ′(f(x)) so f(x)R′f(y). If f(x)R′y′ then y′ ∈ γ′(f(x)) = f [γ(x)], so there
must exists some y ∈ γ(x) such that f(y) = y′. Since y ∈ γ(x) implies xRy,
this proves that f is a bounded morphism.

We can now derive Jónsson-Tarski duality between normal modal algebras
and descriptive Kripke frames.

3.18. Theorem (Jónsson-Tarski Duality). We have MA ≡op D-KF.

Proof. Using Theorems 3.10, 3.14 and 3.17 we find

MA ∼= Alg(K) ≡op Coalg(V ) ∼= D-KF

as desired.

3.2 Tarski duality with relations

Instead of starting with a Boolean algebra and adding an operator, we
can also start with a set and add a relation. This indeed yields Kripke
frames, introduced in Definition 3.15. From a coalgebraic point of view, these
correspond to coalgebras for the powerset functor on Set.
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3.19. Definition. Let P : Set → Set be the functor that sends a set X
to its collection of subsets, and a function f : X → X ′ to the function
Pf : PX → PX ′ : a 7→ f [a] := {f(x) | x ∈ a}.

3.20. Theorem. We have KF ∼= Coalg(P).

Proof. On objects, this follows from identifying a relation R on a set X
with the function f : X → PX that sends x to its set of R-successors. On
morphisms, this follows from an argument similar to that in the proof of
Theorem 3.17.

Thomason provided a duality for the category of Kripke frames with a
subcategory of MA whose objects are based on complete atomic Boolean
algebras [411]. On objects, this duality can be traced back to Jónsson and
Tarski [240, Theorem 3.9]. More recently, a proof via algebras and coalgebras
was given [48]. In this section we recall this (co)algebraic proof. After
formally defining complete atomic modal algebras, we show how to view
them as algebras for the functor H on CABA. (Here we use the notation
from [48], deviating from our customary font for functors because ℋ is
already used to denote variations of functors whose coalgebras are monotone
frames or ordered variations thereof.) Subsequently, we prove that P and H
are Tarski duals, i.e. dual with respect to Tarski duality. This then implies
Thomason duality.

3.21. Definition. A complete atomic modal algebra (CAMA) is a modal
algebra (A, ) such that A is a complete atomic Boolean algebra and :
A → A distributes over arbitrary meets. A morphism between CAMAs
(A, ) and (A′, ′) is a complete -preserving homomorphism h : A → A′.
The category of CAMAs and morphisms is denoted by CAMA.

Next we define an endofunctor H on CABA, whose algebras correspond
to CAMAs. In [48, Definition 4.1] the functor H is defined as the left adjoint
to the forgetful functor from that maps CABAs to their underlying complete
meet-semilattices, which then restricts to an endofunctor on CABA. Here we
give a more direct definition, using generators and relations. In order to do
this, we need the definition of a complete congruence on a CABA.

3.22. Definition. A complete congruence on a CABA A is an equivalence
relation ∼ on the underlying set such that a ∼ b implies ¬a ∼ ¬b, and ai ∼ bi
for all i in some index set I implies

∧
i∈I ai ∼

∧
i∈I bi.

If ∼ is a complete congruence on A, then we can define the quotient
CABA A/∼. Writing [a] for the equivalence class of a, the CABA-operations
on A/∼ are defined by > = [>], ¬[a] = [¬a], and

∧
[ai] = [

∧
ai]. Furthermore,

the quotient map q : A→ A/∼ : a 7→ [a] is a complete homomorphism.
The collection of complete congruences on a CABA is closed under

arbitrary intersections. Therefore, if we have a collection R of equations on
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A (that is, a collection of equations of the form a = b, where a, b ∈ A), then
we can define the complete congruence generated by R to be the smallest
complete congruence ∼R that contains a ∼R b for all equations a = b in
R. Consequently, A/∼R is the largest quotient (= complete homomorphic
image) of A in which all equations in R hold.

3.23. Definition. For a CABA A, let HA be the free CABA generated by
the set { a | a ∈ A} modulo (the smallest complete congruence containing)
the relations ∧{

a | a ∈ A′
}

=
∧
A′

for any subset A′ ⊆ A. For a complete homomorphism h : A → A′ in
CABA, define Hh : HA → HA′ on generators by Hh( a) = h(a). Then
H : CABA→ CABA defines a functor.

3.24. Theorem. We have CAMA ∼= Alg(H).

Proof. The proof is similar to that of the isomorphism between modal
algebras and K-algebras, given in Subsections 3.1.1 and 3.1.2.

We wish to show that H and P are dual functors. The diagram in (3.3)
instantiates to:

CABA Set

CABA Set

cf

≡op

H
℘

P
cf

≡op

℘

Recall that ℘ sends a set to its powerset, viewed as a CABA, and cf takes
complete ultrafilters.

3.25. Lemma. The functors H and P are Tarski-duals.

Proof. We prove that P is naturally isomorphic to cf ·H · ℘. If X is a set
and u is a complete ultrafilter in cf(H(℘X)), then define

au :=
∧{

b ⊆ X | b ∈ u
}
∈ PX.

This yields a function ζX : cf(H(℘X)) → PX : u 7→ au. By definition
au ∈ u, because u is a complete ultrafilter. As a consequence, for any b ⊆ X

we have b ∈ u if and only if au ⊆ b.
Next we show that ζX is a bijection. If u, r ∈ cf(H(℘X)) are such that

au = ar, then b ∈ u if and only if b ∈ r for all b ⊆ X, so u and r coincide
on the generators of H(℘X). This implies u = r, so ζX is injective. For
surjectivity, let a be any subset of X. Define ua : H(℘X)→ 2 on generators
by ua( b) = > iff a ⊆ b. Then it is easy to see that ua(

∧
B) =

∧
{ua( b) |
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b ∈ B} for any subset B ⊆ A, and therefore ua extends uniquely to a
complete homomorphism. Moreover, ζX(ua) = a, so ζX is also surjective.

Now we have a transformation ζ = (ζX)X∈Set : cf ·H · ℘ → P that is
isomorphic on components (because the isomorphisms in Set are the bijective
functions). To see that it is natural, we have to prove that

cf(H(℘X)) PX

cf(H(℘X ′)) PX ′

ζX

cf(H(℘f)) Pf

ζX′

commutes in Set, for any function f : X → X ′. Let u ∈ cf(H(℘X)). Then
for any b′ ⊆ X ′ we have b′ ∈ cf(H(℘f))(u) iff f−1(b′) ∈ u. Therefore,

ζX′(cf(H(℘f))(u)) =
⋂{

b′ ⊆ X ′ | f−1(b′) ∈ u
}

=
⋂{

b′ ⊆ X ′ | ζX(u) ⊆ f−1(b′)
}

= f [ζX(u)]

= Pf(ζX(u))

This proves naturality, and hence ζ is a natural isomorphism.

We can use this duality of functors to prove Thomason duality.

3.26. Theorem (Thomason Duality). We have CAMA ≡op KF.

Proof. It follows from Lemma 3.25 that Alg(H) ≡op Coalg(P). We then get

CAMA ∼= Alg(H) ≡op Coalg(P) ∼= KF

as a consequence of Theorems 3.24 and 3.20.

Jónsson-Tarski duality and Thomason duality are closely related. Con-
sider the following functors:

• UKF : D-KF → KF is the forgetful functor that takes a descriptive
Kripke frame to its underlying Kripke frame;

• σ : MA → CAMA is the functor that sends a modal algebra to its
canonical extension (discussed in Subsection 4.4, see also [240, 171]);

• UMA : CAMA→ MA is the obvious forgetful functor;

• uℯ : KF → D-KF is the functor that sends a Kripke frame to its
ultrafilter extension [70, Definition 2.57].
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Then the following diagrams commute:

MA D-KF MA D-KF

CAMA KF CAMA KF

J-T duality

Theorem 3.18

σ UKF

J-T duality

Theorem 3.18

Thomason duality

Theorem 3.26

Thomason duality

Theorem 3.26

UMA uℯ (3.4)

We will encounter generalisations of the left diagram in Subsection 4.4.

3.3 Neighbourhood algebras and neighbourhood frames

In the previous subsections we have seen dualities for modal algebras and
complete atomic modal algebras. Each of these categories arose from a famil-
iar category (BA and CABA, respectively) with a meet-preserving operator

. But what happens if it satisfies weaker axioms, like monotonicity? Or no
axioms at all?

From the point of view of algebras not much changes. Indeed, we can
simply take the free algebra as in Definitions 3.1 and 3.21 and quotient out
the appropriate axioms. We briefly discuss two cases: where satisfies no
axioms at all, and where is monotone. Not only do these serve as additional
examples of algebra/coalgebra dualities, they are also used as inspiration
for related dualities in the realm of modal positive logic (Chapter IV) and
modal intuititionistic logic (Chapter V).

3.3.1 No axioms

3.27. Definition. A neighbourhood algebra is a pair (B, ) of a Boolean
algebra B and a function : B → B. A neighbourhood algebra morphism
from (B, ) to (B′, ′) is a Boolean homomorphism h : B → B′ such that
h( b) = ′h(b) for all b ∈ B. The category of neighbourhood algebras and
morphisms is denoted by NA.

A complete atomic neighbourhood algebra is a neighbourhood algebra
(B, ) such that B is complete and atomic. We write CANA for the sub-
category of NA of complete atomic neighbourhood algebras and complete
neighbourhood algebra morphisms.

3.28. Remark. In the literature [141], the structures from Definition 3.27
are called “modal algebras” and “complete atomic modal algebras.” We
refer to them as (complete atomic) neighbourhood algebras, in order to avoid
confusion with the (complete atomic) modal algebras for normal modal logic
from Definitions 3.1 and 3.21.
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The term “neighbourhood algebra” originates from [62] and is motivated
by the fact that the analogues of Kripke frames in this setting are given by
neighbourhood frames, defined in Definition 3.30 below.

Both NA and CANA are isomorphic to categories of algebras.

3.29. Proposition.

1. Let N : BA→ BA be the composition of the forgetful functor BA→ Set
and the free functor Set→ BA. Then

NA ∼= Alg(N).

2. Let ℒ : CABA → CABA be the composition of the forgetful functor
CABA→ Set and the free functor Set→ CABA. Then

CANA ∼= Alg(ℒ).

Proof. If B is a Boolean algebra, then NB is the free Boolean algebra
generated by the set { b | b ∈ B}. So a homomorphism NB → B is
uniquely determined by its action on elements of the form b. Now given a
neighbourhood algebra (B, ), define an N-algebra structure α : NB → B
via α ( b) = b. Conversely, an N-algebra α : NB → B gives rise to the
neighbourhood algebra (B, α) where αb = α( b). It is easy to verify that
these assignments prove the isomorphism of the first item on objects. The
verification on morphisms is a routine exercise. The second item can be
proven analogously.

Neighbourhood algebras serve as the algebraic semantics of the extension
of classical propositional logic with a unary modal operator that only satisfies
the congruence rule (3.1). Kripke frames do not provide adequate semantics
for this logic, because in Kripke frames the modal operator automatically
distributes over finite meets. Neighbourhood frames, which are defined next,
remedy this. This type of frame was discovered independently by Scott [386]
and Montague [314], and is also studied in [388, 103, 332].

3.30. Definition. A neighbourhood frame is a pair (X,N) where X is a
set and N : X → PPX is a function. A neighbourhood morphism between
neighbourhood frames (X,N) and (X ′, N ′) is a function f : X → X ′ such
that for all x ∈ X and a′ ∈ PX ′:

f−1(a′) ∈ N(x) iff a′ ∈ N ′(f(x)). (3.5)

The category of neighbourhood frames and neighbourhood morphisms is
denoted by NF.

Like Kripke frames, the category of neighbourhood frames is isomorphic
to the category of coalgebras for an endofunctor on Set.
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3.31. Definition. The contravariant powerset functor Q : Set→ Set maps a
set X to its powerset, and a function f : X → X ′ to Qf : QX ′ → QX : a′ 7→
f−1(a′). Composing the contravariant powerset functor with itself yields a
covariant endofunctor on Set that we denote by ℬ, i.e. ℬ = Q · Q.

3.32. Theorem. We have NF ∼= Coalg(ℬ).

Proof. The isomorphism on objects is obvious, so we only verify the isomor-
phism on morphisms. Let (X,N) and (X ′, N ′) be two neighbourhood frames
and f : X → X ′ a function, then we have to show that f satisfies (3.5) if
and only if

X X ′

ℬX ℬX ′

f

N N ′

ℬf

commutes. If (3.5) holds then

a′ ∈ N ′(f(x)) iff f−1(a′) ∈ N(x) iff a′ ∈ ℬf(N(x))

so the diagram commutes. Conversely, if the diagram commutes then it is
immediate from the definition of ℬ that (3.5) holds.

Došen [141] proved that CANA is dually equivalent to NF, and NA is dually
equivalent to the category of descriptive neighbourhood frames (defined in
Definition 4.38 below). In Section 4 we give new proofs of these dualities
using dualities of functors.

3.3.2 Monotone frames

We examine Boolean algebras with a monotone unary operator, called mono-
tone Boolean algebra expansions and abbreviated as BAMs. These provide
the algebraic semantics for monotone modal logic, and have been investigated
in [209, 210]. In the context of this thesis, they are important because the
positive modal logics discussed in Sections 7 and 8 are fragments of monotone
modal logic. In particular, monotone modal logic is used to derive important
properties such as the finite model property for the logic in Section 8. Fur-
thermore, in Subsections 9.3.3 and 12.2 we study an intuitionistic adaptation
of monotone modal logic.

3.33. Definition. A monotone Boolean algebra expansion (BAM) is a pair
(B, ) consisting of a Boolean algebra B and a function : B → B that
satisfies (a ∧ b) ≤ a for all a, b ∈ B. Together with -preserving Boolean
homomorphisms they constitute the category BAM.

The category BAM can be modelled as a category of algebras for an
endofunctor on BA.
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3.34. Definition. For a Boolean algebra B, let ℳB be the free Boolean
algebra generated by { b | b ∈ B} modulo (a ∧ b) ≤ b for all a, b ∈ B. If
h : B → B′ is a Boolean homomorphism then we define ℳh : ℳB →ℳB′

on generators by ℳh( b) = (h(b)). This defines a functor ℳ : BA→ BA.

3.35. Theorem. We have BAM ∼= Alg(ℳ).

Proof. The proof is analogous to the that of the isomorphism between modal
algebras and K-algebras given in Subsections 3.1.1 and 3.1.2.

The frame semantics of monotone modal logic is given by neighbourhood
frames where the monotonicity is built in, called monotone neighbourhood
frames or monotone frames.

3.36. Definition. A monotone frame is a neighbourhood frame (X,N) such
that for all x ∈ X and a ⊆ b ⊆ X, if a ∈ N(x) then b ∈ N(x). The full
subcategory of NF of monotone frames is denoted by MF.

For models based on monotone frames and the interpretation of monotone
modal logic in such models we refer to [209, Section 3.2]. We can model
monotone frames as coalgebras [209, Section 8.3].

3.37. Definition. For a set X let

ℋX = {W ⊆ PX | if a ∈W and a ⊆ b ∈ PX then b ∈W}.

For a function f : X → X ′ define

ℋf : ℋX → ℋX ′ : W 7→ {a′ ∈ PX ′ | f−1(a′) ∈W}.

Then ℋ defines an endofunctor on the category Set of sets and functions.

The functor ℋ is called UpP in [209, 210].

3.38. Theorem. We have MF ∼= Coalg(ℋ).

In [209, Section 7.5] a duality between BAMs and descriptive monotone
frames is given. We recall the definition of a descriptive monotone frame and
formulate the theorem. In order to be consistent with the terminology from
Section 4, we will refer to these frames as H-descriptive monotone frames.
The added “H” refers to the first letter of the (last) name of the author of
[209], Helle Hvid Hansen.

3.39. Definition. A H-descriptive monotone frame is a tuple (X,N,A) such
that

• (X,N) is a monotone frame;

• (X,A) is a descriptive field of sets;
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• A is closed under N : PX → PX : a 7→ {x ∈ X | a ∈ N(x)};
• For all x ∈ X and d ⊆ X, we have d ∈ N(x) iff there exists a subset
c ⊆ X such that

I c =
⋂
{a ∈ A | c ⊆ a} (i.e. c is closed in (X, τA));

I c ⊆ d; and

I for all b ∈ A, c ⊆ b implies b ∈ N(x).

A morphism from (X,N,A) to (X ′, N ′, A′) is a neighbourhood morphism
f : (X,N)→ (X ′, N ′) between the underlying monotone frames such that
f−1(a′) ∈ A for all a′ ∈ A′. We write HD-MF for the category of H-descriptive
monotone frames and their morphisms.

The final item of Definition 3.39 is the monotone counterpart of the
tightness condition for descriptive Kripke frames (see Definition 3.16). It is
an equivalent reformulation of the tightness condition from [209, Definition
7.30]. Theorem 7.36 of [209] now states:

3.40. Theorem (Hansen-Kupke duality). BAM ≡op HD-MF.

In [210], H-descriptive monotone frames were recognised as coalgebras for
an endofunctor on Stone. However, the duality between BAM and HD-MF is
not proven via a duality of functors. We will encounter a proof using dual
functors in Corollary 4.67.

A complete atomic counterpart of BAMs will be introduced in Para-
graph 4.2.1, where a Thomason style duality for the category of monotone
frames is given.

3.4 Coalgebraic logic

For future reference, we recall basic notions of coalgebraic logic. For a
comprehensive introduction we refer to [419, 268, 279]. We restrict our
attention to coalgebraic logic for endofunctors on Set.

Let Q : Set→ Set be the contravariant powerset functor. That is Q sends
a set X to its set of subsets, and a function f : X → X ′ to f−1 : QX ′ → QX.

3.41. Definition. An n-ary predicate lifting for an endofunctor T on Set is
a natural transformation

λ : Qn → Q ◦ T .

A set Λ of predicate liftings for T gives rise to a modal logic that can be
interpreted in T -coalgebras. Proposition letters can be defined via predicate
liftings, but sometimes it is more intuitive to treat them separately, as we
shall do here. We write Prop for an arbitrary but fixed set of proposition
letters.
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3.42. Definition. Let T be an endofunctor on Set and Λ a collection of
predicate liftings for T . The language L(Λ) is given by the grammar

ϕ ::= > | ⊥ | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ♥λ(ϕ1, . . . , ϕn)

where p ranges over Prop and λ ∈ Λ is n-ary.
A model for L(Λ) is a T -coalgebra together with a valuation of the

proposition letters, and we will call these T -models. The interpretation of
a formula ϕ ∈ L(Λ) is such a model M = (X, γ, V ) at x ∈ X is defined
recursively via

M, x  > iff always

M, x  ⊥ iff never

M, x  p iff x ∈ V (p)

M, x  ϕ1 ∧ ψ2 iff M, x  ϕ1 and M, x  ϕ2

M, x  ϕ1 ∨ ψ2 iff M, x  ϕ1 or M, x  ϕ2

M, x  ϕ1 → ψ2 iff M, x  ϕ1 implies M, x  ϕ2

M, x  ♥λ(ϕ1, . . . , ϕn) iff γ(x) ∈ λX(Jϕ1KM, . . . , JϕnKM)

Here JϕiKM := {x ∈ X |M, x  ϕi} denotes the truth set of ϕi in the model
M. Semantic entailment and validity are defined as expected.

We can turn the language L(Λ) into a logic by introducing axioms and
rules for the modalities.

3.43. Definition. A one-step axiom is a formula in ℒ(Λ) where each
proposition letter appears in the scope of precisely one modality. A one-step
axiom is called sound if it is valid in every T -model.

If Ax is a set of sound one-step axioms, then we define the logic L(Λ,Ax)
as be the logic obtained by extending an axiomatisation of classical proposi-
tional logic with the axioms from Ax, the rules of uniform substitution and
modus ponens, and the congruence rule

ϕ1 ↔ ψ1 · · · ϕn ↔ ψn
♥λ(ϕ1, . . . , ϕn)↔ ♥λ(ψ1, . . . , ψn)

.

The assumption that all axioms in Ax are one-step axioms allows us to
define the following functor.

3.44. Definition. For a Boolean algebra B, let ℒΛ,AxB be the free Boolean
algebra generated by

{♥λ(a1, . . . , an) | λ ∈ Λ n-ary, a1, . . . , an ∈ B}

modulo relations of the form ϕ′ = >, where ϕ ∈ Ax and ϕ′ arises from ϕ by
uniformly replacing proposition letters with elements from B.
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For a Boolean homomorphism h : B → B′, define ℒΛ,Axh : ℒΛ,AxB →
ℒΛ,AxB

′ on generators by

ℒΛ,Axh(♥λ(a1, . . . , an)) = ♥λ(h(a1), . . . , h(an)).

Then ℒΛ,Ax : BA→ BA defines a functor.

It can be shown that Alg(ℒΛ,Ax) provides the algebraic semantics of
L(Λ,Ax). (This also follows from the general theory in Subsection 9.4.) We
complete this section with three examples of coalgebraic logics.

3.45. Example. Recall that Kripke frames can be viewed as coalgebras for
the covariant powerset functor P. A Kripke model is a Kripke frame together
with a valuation of the proposition letters, so these correspond precisely to
P-models. Define the predicate lifting λ on components by

λX : QX → Q(PX) : a 7→ {b ∈ PX | b ⊆ a}.

Then the language L({λ}) corresponds with the language of normal modal
logic (via the translation that identifies and ♥λ).

An easy verification shows that the coalgebraic interpretation of formulae
ϕ ∈ L({λ}) coincides with the usual interpretation of formulae in normal
modal logic. In particular, if (X,R, V ) is a Kripke model and (X, γR, V ) is
its coalgebraic rendering, then for a state x ∈ X we have

x  ♥λϕ iff γR(x) ∈ λX(JϕK)
iff γR(x) ⊆ JϕK.

Thinking of γR(x) as the set of R-successors of x, this shows that x satisfies
♥λϕ if all its R-successors satisfy ϕ, which is the desired interpretation.

Lastly, let Ax consist of the one-step axioms

♥λ(p ∧ q)↔ ♥λp ∧ ♥λq, ♥λ> ↔ >.

Then it follows immediately from the definitions that ℒ{λ},Ax coincides with
K from Definition 3.7, the only difference being the symbol used to denote
the formal generators.

Similarly, neighbourhood logic and monotone modal logic can be recast
coalgebraically. We sketch these examples more briefly.

3.46. Example. Neighbourhood frames and models are used to interpret
the extension of classical propositional logic with a modality that satisfies
only the congruence rule. A state x is said to satisfy ϕ if the truth set of ϕ
is a neighbourhood of x. As a predicate lifting, this looks as follows. Let λ
be defined by

λX : QX → Q(ℬX) : a 7→ {W ∈ ℬX | a ∈W}.

Taking Ax = ∅, we find that ℒ{λ},Ax is naturally isomorphic to N from
Proposition 3.29(1), whose algebras are neighbourhood algebras.
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3.47. Example. In monotone modal logic we extend classical propositional
logic with a monotone modality. It is interpreted in those neighbourhood
frames where the collection of neighbourhoods at each point is upwards
closed under inclusion. This guarantees monotonicity of the modality if it is
interpreted as in neighbourhood frames. Coalgebraically, this corresponds to
the predicate lifting

λX : QX → Q(ℋX) : a 7→ {W ∈ ℋX | a ∈W}.

Together with the axiom ♥λ(a ∧ b) ∧ ♥λa ↔ ♥λ(a ∧ b), which is of course
equivalent to ♥λ(a ∧ b) → ♥λa, the procedure from Definition 3.44 yields
the functor ℳ from Definition 3.34, whose algebras are BAMs.

4 Dualities for neighbourhood frames

We take a closer look at dualities for classes of neighbourhood algebras
and neighbourhood frames. Neighbourhood algebras can be viewed as the
algebraic semantics of the extension of classical propositional logic with a
modal operator that satisfies only the congruence rule, sometimes referred
to as non-normal modal logic. Neighbourhood frames provide geometric
semantics for this logic. They were discovered independently by Scott
[386] and Montague [314] (see also [388, 103, 332]). As we have seen in
Theorem 3.32, neighbourhood frames can be viewed as coalgebras for the
double contravariant powerset functor ℬ = Q · Q : Set→ Set.

The category NF of neighbourhood frames is dual to the category CANA
of complete atomic neighbourhood algebras (CANAs). This was first proven
directly by Došen [141, Theorem 12], but as we will see in Example 4.22 it also
follows from a duality of functors. There are many interesting subcategories
of NF, such as the category of monotone neighbourhood frames, and dualities
for such categories arise as subdualities of the duality between NF and
CANA. In Section 4.1 we give a uniform approach to dualities for classes of
neighbourhood frames. Specifically, we show how infinitary one-step axioms
give rise to functor dualities between adaptations of ℒ and subfunctors of
ℬ. These, in turn, give rise to Thomason type dualities for subcategories of
CANA and NF. Subsequently, in Section 4.2 we instantiate the general theory
from Section 4.1 to obtain dualities for categories of monotone neighbourhood
frames, filter frames, neighbourhood contingency frames and convex frames.
Additional correspondence results then give rise to dualities for pretopological
spaces, topological spaces, and their various subcategories.

In Section 4.3 we shift our attention to dualities for (not necessarily
complete and atomic) neighbourhood algebras. It was proven by Došen [141]
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that the category of these is dual to the category of descriptive neighbour-
hood frames (defined below in Definition 4.38). We define an analogue of
the Vietoris endofunctor on Stone spaces and show that the category of
coalgebras for this endofunctor is isomorphic to the category of descriptive
neighboorhoud frames. This allows us to obtain a coalgebraic proof of the du-
ality between descriptive neighbourhood frames and neighbourhood algebras.
Furthermore, using a similar approach as in Section 4.1, we use one-step
axioms in the language of finitary modal logic to restrict this duality to other
classes of neighbourhood algebras studied in the literature such as normal
modal algebras and contingency algebras.

This restriction does not always correspond to known dualities. For
example, when restricting neighbourhood algebras to monotone Boolean
algebra expansions (see Definition 3.33 or [209, Chapter 7]) we do not obtain
the duality for monotone modal logic of Hansen and Kupke [210]. In fact,
the neighbourhood frames underlying the descriptive frames in the duality
obtained from our general theory need not be monotone! The descriptive
frames used by Hansen and Kupke can be obtained from ours through the
theory of canonical extensions. In Section 4.4 we explore this and provide
an axiom which guarantees that the constructions remain functorial. We use
this to give an alternative coalgebraic proof of the duality for BAMs [210].

4.1 Thomason type dualities for neighbourhood frames

In this section we derive Thomason type dualities for classes of neighbourhood
frames. We focus on classes of CANAs and classes of neighbourhood frames
that are described by so-called one-step axioms. As we will see, the corre-
sponding dualities are then obtained as algebra/coalgebra dualities. Indeed,
classes of CANAs defined by one-step axioms can be viewed as categories of
algebras for some endofunctor on CABA, and the corresponding classes of
neighbourhood frames as categories of coalgebras for an endofunctor on Set.
We can then obtain the desired duality as a duality of functors.

Our results generalise those in [48], where a functor duality is proved
between the endofunctor H on CABA whose algebras are CAMAs (see
Definition 3.21 and Theorem 3.24) and the covariant powerset functor P :
Set→ Set (Definition 3.19). In Example 4.23 we detail how the results of [48]
fit in our general scheme. The algebra/coalgebra dualities we obtain pave
the way for investigations of the resulting classes of frames using methods of
coalgebraic logic, such as developed in [419, 268].

As running examples, we derive Thomason duality for Kripke frames [411]
(see also Subsection 3.2) and Došen duality for neighbourhood frames [141,
Theorem 12]. Section 4.2 is dedicated to deriving new dualities for various
classes of neighbourhood frames using the theory from this section.
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4.1.1 Infinitary languages

We will work in a modal language with arbitrary conjunctions. Throughout
the paper, for each cardinal κ we fix a set of variables Vκ of cardinality κ
such that λ ≤ κ implies Vλ ⊆ Vκ for all cardinals λ, κ. Define Lκ to be the
set of formulae generated by the grammar

ϕ ::= v | > | ¬ϕ |
∧
i∈I ϕi

where v ∈ Vκ and I is some index set of cardinality < κ. We then define L
as the proper class that contains the formulae in Lκ for all cardinals κ.

The study of propositional and first-order languages with infinite con-
junctions was pioneered by Scott and Tarski [387] and Tarski [409]. In both
these references the size of conjunctions (and quantifiers) is bounded by
some cardinal. First-order logics that allow conjunctions and disjunctions
over arbitrary sets of formulae have also been studied comprehensively; see,
e.g. [101], [30, Part C], [32], and the references therein.

We extend the language L with a modal operator.

4.1. Definition. For each cardinal κ, define Lκ as the set of formulae
generated by the grammar

ϕ ::= v | > | ¬ϕ |
∧
i∈I

ϕi | ϕ

where v ∈ Vκ and I is an index set of cardinality < κ. We then define L
as the proper class that contains the formulae in Lκ for all cardinals κ. We
will think of elements of L as axioms.

Note that Lκ is the -free fragment of Lκ .

4.2. Definition. Let (A, ) be a CANA. An assignment for (A, ) is a
family of functions θκ : Vκ → A, where κ ranges over the cardinals, such that
θλ and θκ agree on all variables in Vλ whenever λ ≤ κ. Every assignment
θκ : Vκ → A can be extended in an obvious way to a map

θ̂κ : Lκ → A.

So an assignment gives rise to a map θ̂ : L → A that sends ϕ ∈ Lκ to

θ̂κ(ϕ) ∈ A.

1. If ϕ ∈ L , then we say that (A, ) validates ϕ and write (A, )  ϕ
if θ̂(ϕ) = > for every assignment θ : (Vκ)κ∈Card → A.

2. If Ax ⊆ L is a class of axioms, then we say that (A, ) validates Ax
and write (A, )  Ax if (A, )  ϕ for all ϕ ∈ Ax.
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We sometimes write θ : V → A for the family of assignments θκ : Vκ → A.
By v ∈ V we then mean a variable in Vκ for some κ, and θ(v) denotes θκ(v),
where κ is such that v ∈ Vκ. An assignment θ : V → A for a CABA A gives
rise to several other maps, listed in Table 4.1. Note that we use the font L
for languages, and ℒ for the endofunctor on CABA from Proposition 3.29(2).

Map Purpose See

θ̂ : L → A To evaluate axioms in a CANA (A, ) Def. 4.2

θ : (L )1 → ℒA To evaluate one-step axioms in ℒA Def. 4.7
θt : (L )1 → PA To evaluate one-step axioms as subsets

of the powerset of A
Def. 4.16

Table 4.1: Different maps arising from θ.

4.3. Definition. If Ax is a class of axioms, then we write CANA(Ax) for the
full subcategory of CANA whose objects validate Ax.

4.1.2 One-step axioms

Next we concentrate on the so-called one-step axioms. Intuitively, these are
formulae in L such that every variable occurs in the scope of precisely one
box. We will see that, in case Ax consists solely of one-step axioms, the
category CANA(Ax) is isomorphic to Alg(ℒAx) for some endofunctor ℒAx on
CABA.

4.4. Definition. For each cardinal κ, define (Lκ )1 as the set of formulae
generated by the grammar

ϕ ::= π | > | ¬ϕ |
∧
i∈I ϕi

where π ∈ Lκ and I is some index set of cardinality < κ. We then define
(L )1 as the proper class that contains the formulae in (Lκ )1 for all cardinals
κ. A one-step axiom is a formula ϕ ∈ (L )1.

4.5. Remark. When viewed as formulae in the modal language L , the
formulae in (L )1 are sometimes referred to as “formulae of modal depth
1” or “rank 1 formulae.” This justifies our notation. Observe that every
one-step axiom is in particular an axiom in the sense of Subsection 4.1.1.

4.6. Example.

1. Using standard abbreviations ⊥,→,↔, and
∨

, examples of one-step
axioms are v → (v ∨ u), v ∧ u↔ (v ∧ u), and∧

λ<κ

vλ ↔
( ∧
λ<κ

vλ

)
,
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where v, u, vλ ∈ Vκ and λ, κ are cardinals.

2. On the other hand, the axioms v → v, v → v, and v∧v ↔ v
are not one-step axioms.

The appeal of one-step axioms lies in the fact that they define endofunctors
on CABA in a structured way. All of these are subfunctors of ℒ : CABA→
CABA from Proposition 3.29(2). If ϕ is a one-step axiom and θ : V → A is
an assignment, then θ gives rise to a map θ : (L )1 → ℒA. Note that this
does not rely on any CANA-structure on A. Indeed, we can use the fact that
ϕ is of modal depth 1 and define θ as follows.

4.7. Definition. For a CABA A and assignment θ : V → A we define
θ : (L )1 → ℒA recursively via

θ( π) = θ̂(π),

for π ∈ L (which is well defined because π does not contain any boxes), and

θ(>) = >
θ(¬ϕ) = ¬θ(ϕ)

θ
(∧
i∈I

ϕi

)
=
∧
i∈I

θ(ϕi)

Intuitively, the endofunctor on CABA corresponding to a collection Ax
of one-step axioms sends A ∈ CABA to the free complete atomic Boolean
algebra generated by A modulo (instantiations of) the axioms, i.e. modulo
the relations θ(ϕ) = >, where ϕ ∈ Ax and θ is an assignment for A. Before
defining this functor, we recall the notion of a complete congruence on a
CABA.

4.8. Definition. A complete congruence on a CABA A is an equivalence
relation ∼ on the underlying set such that a ∼ b implies ¬a ∼ ¬b, and ai ∼ bi
for all i in some index set I implies

∧
i∈I ai ∼

∧
i∈I bi.

If ∼ is a complete congruence on A, then we can define the quotient
CABA A/∼. Writing [a] for the equivalence class of a, the CABA-operations
on A/∼ are given by > = [>A], ¬[a] = [¬a], and

∧
[ai] = [

∧
ai]. Furthermore,

the quotient map q : A→ A/∼ : a 7→ [a] is a complete homomorphism.
The collection of complete congruences on a CABA is closed under

arbitrary intersections. Therefore, if we have a collection R of equations on
A (that is, a collection of equations of the form a = b, where a, b ∈ A), then
we can define the complete congruence generated by R to be the smallest
complete congruence ∼R that contains a ∼R b for all equations a = b in
R. Consequently, A/∼R is the largest quotient (= complete homomorphic
image) of A in which all equations in R hold.
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4.9. Definition. Let Ax be a class of one-step axioms. Write Axκ := Ax∩Lκ

for the subset of one-step axioms from Lκ and Ax≤κ for the union
⋃
λ≤κ Axλ.

We call Ax increasing if for every CABA A and assignment θ : V → A, the
following condition holds: if κ is the cardinality of the powerset of ℒA and
θ(ϕ) = > for all ϕ ∈ Ax≤κ, then θ(ϕ) = > for all ϕ ∈ Ax.

The idea behind an increasing set of axioms is that, when we want to
take the quotient of a free CABA with axioms in a proper class Ax, we only
need to use axioms from Lκ , where κ is the cardinality of the powerset of
the free CABA. This ensures that the quotient is well defined. An example
of a class of axioms that is increasing is given after Example 4.11.

If Ax consists of a set of axioms (rather than a proper class), then
we can make it increasing by simply adding for each axiom ϕ ∈ Axκ, all
instantiations of ϕ where the variables are replaced by variables from Vλ
where λ < κ. In practice, when dealing with a set of axioms, we will not
make this explicit.

We are now ready to define an endofunctor ℒAx on CABA from an
increasing collection Ax of one-step axioms.

4.10. Definition. Let Ax be an increasing collection of one-step axioms.
For A ∈ CABA, define ℒAxA to be the free complete atomic Boolean algebra
generated by the set { a | a ∈ A} modulo the complete congruence ∼Ax

generated by {θ(ϕ) ∼Ax >}, where ϕ ranges over the axioms in Ax (with
replaced by ) and θ ranges over the assignments V → A for the variables in
ϕ. For a complete homomorphism h : A→ A′ define ℒAxh on generators by

ℒAxh( a) = h(a).

If Ax consists of a single axiom ax, then we write ℒ(ax) instead of ℒ{(ax)}.
Many well-known functors in modal logic can be obtained via Definition 4.10.
We give two examples.

4.11. Example. If we work with no axioms (i.e., Ax = ∅), then the
functor that arises from Definition 4.10 is precisely the functor ℒ from
Proposition 3.29(2).

In our next example we recover the endofunctor H : CABA→ CABA from
[48, Definition 4.1], where H sends a CABA A to the free CABA generated
by the complete meet-semilattice underlying A.

Intuitively, the CABA HA is the free CABA generated by the set { a |
a ∈ A} modulo

∧
b∈X b =

∧
X for every X ⊆ A. Although this looks like

the instantiation of a single one-step axiom, it is not. Indeed, if we define

ϕ =
∧
v∈Vκ

v ↔
(∧

Vκ

)



92 Dualities with ears

then the axiom ϕ only implies κ-distributivity. To remedy this, we work with
a class of axioms indexed by the class Card of cardinal numbers. For each
κ ∈ Card, define

(Cκ)
∧
{ v | v ∈ Vκ} ↔

∧
Vκ.

Now set
C∞ = {(Cκ) | κ ∈ Card}.

4.12. Example. Consider the increasing collection of axioms Ax = C∞.
Then the construction of Definition 4.10 yields the functor H from [48]. Its
algebras correspond to complete atomic modal algebras.

Thus, incidentally, the previous example also illustrates the need to allow
a proper class of axioms, rather than just a set.

Every ℒAx-algebra (A,α) gives rise to a complete atomic algebra (A, α),
where

α : A→ A : a 7→ α( a).

Furthermore, if ϕ ∈ Ax, then since θ̂(ϕ) ∼Ax > for all assignments θ : V → A,
we have (A, α)  ϕ. Conversely, if (A, ) is a CANA and (A, )  Ax, then
we can define an ℒAx-algebra structure map α : ℒAxA→ A on generators
by α ( a) = a. The fact that (A, )  Ax implies that α is well defined.

It is easy to see that the two assignments above define a bijection between
objects of Alg(ℒAx) and objects of CANA(Ax). We can extend this to a
natural isomorphism in a standard way.

4.13. Theorem. If Ax is an increasing collection of one-step axioms, then

Alg(ℒAx) ∼= CANA(Ax).

Proof sketch. The isomorphism on objects has already been sketched. To
prove the isomorphism on morphisms, let (A,α) and (A′, α′) be two ℒAx-
algebras with corresponding CANAs (A, ) and (A′, ′). We claim that a
complete homomorphism h : A→ A′ is an ℒAx-algebra morphism from (A,α)
to (A′, α′) if and only if it is a CANA-morphism from (A, ) to (A′, ′).

Note that h is an ℒAx-algebra morphism if and only if

h(α( a)) = α′(ℒAxh( a)) for all a ∈ A. (4.1)

Since α( a) = a and α′(ℒAxh( a)) = α′( h(a)) = ′h(a), (4.1) holds if
and only if

h( a) = ′(h(a)) for all a ∈ A.

In other words, (4.1) holds if and only if h is a CANA-morphism.

Going back to the class of axioms C∞ from Example 4.12, we see that
Theorem 4.13 generalises [48, Theorem 4.7]:

4.14. Example. Suppose Ax = C∞. Then ℒAx = H and CANA(Ax) ∼=
CAMA, so that

Alg(H) ∼= CAMA.
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4.1.3 A functor duality theorem

We now classify the atoms of ℒAxA as subsets of A. This then gives rise to
an endofunctor on Set which is a subfunctor of ℬ from Definition 3.31 and
which is dual to ℒAx. We make use of the following notation to characterise
the subsets of A we are interested in.

4.15. Definition. Let A be a set and a ∈ A. Define

a = {W ⊆ A | a ∈W}.

We can assign to each one-step axiom a subset of PA.

4.16. Definition. Let ϕ ∈ (L )1 be a one-step axiom, A a set, and θ : V → A
an assignment. Define θt(ϕ) to be the subset of PA given recursively by:

θt( v) = θ(v)

θt(>) = PA

θt(¬ϕ) = PA \ θt(ϕ)

θt(
∧
ϕi) =

⋂
{θt(ϕi)}

It then follows that:

θt(
∨
ϕi) =

⋃
{θt(ϕi)}

θt(ϕ→ ψ) = {W ⊆ A |W ∈ θt(ϕ)⇒W ∈ θt(ψ)}
θt(ϕ↔ ψ) = {W ⊆ A |W ∈ θt(ϕ)⇔W ∈ θt(ψ)}

We say that W is a ϕ-subset of A if W ∈ θt(ϕ) for every assignment θ of
the variables in V . If Ax is a collection of axioms, then we say that W is an
Ax-subset if W is a ϕ-subset for all ϕ ∈ Ax.

The next lemma witnesses the significance of Ax-subsets by proving a
bijective correspondence between atoms of ℒAxA and Ax-subsets of A. Recall
that atoms of a CABA A correspond bijectively to complete homomorphisms
into the two-element Boolean algebra 2. If a ∈ A is an atom, then pa : A→ 2,
given by pa(b) = > iff a ≤ b, defines a complete homomorphism. Conversely,
every complete homomorphism p arises in this way, where a =

∧
{b ∈ A |

p(b) = >}.

4.17. Lemma. Let A ∈ CABA and let Ax be an increasing collection of one-
step axioms. Then the atoms of ℒAxA correspond bijectively to Ax-subsets
of A.

Proof. We view atoms of ℒAxA as complete homomorphisms p : ℒAxA→ 2.
Since ℒAxA is defined by generators and relations, p is uniquely determined
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by its action on the generators of ℒAxA, i.e. the elements of the form b
with b ∈ A. Let Wp ⊆ A be the set

Wp = {b ∈ A | p( b) = >}. (4.2)

Conversely, given a subset W ⊆ A, we define pW : ℒAxA→ 2 on generators
by pW ( b) = > iff b ∈W .

In order to prove that these assignments are well defined, we use the
fact that complete homomorphisms p : ℒAxA→ 2 correspond to complete
homomorphisms p′ : ℒA→ 2 whose kernel contains the complete congruence
∼Ax generated by (instantiations of) the axioms in Ax (see Definition 4.10).
Therefore, for W ⊆ A, we let p′W : ℒA→ 2 be the complete homomorphism
defined by p′W ( b) = > iff b ∈W .

4.17.1. Claim. Let p : ℒA→ 2 be a complete homomorphism. Then for all
one-step axioms ϕ and assignments θ : V → A we have

p(θ(ϕ)) = > iff Wp ∈ θt(ϕ).

Proof of claim. We proceed by induction on the structure of ϕ. If ϕ = v,
where v is in one of the Vκ, then we have

p(θ( v)) = > iff p( θ(v)) = >
iff θ(v) ∈Wp

iff Wp ∈ (θ(v))

iff Wp ∈ θt( v)

Let ϕ = >. By definition, p(θ(ϕ)) = > for all complete homomorphisms p.
Since θt(ϕ) = PA, the result holds for ϕ = >. For negation, we have

p(θ(¬ϕ)) = > iff p(¬θ(ϕ)) = >
iff p(θ(ϕ)) = ⊥
iff Wp /∈ θt(ϕ) (inductive hypothesis)

iff Wp ∈ PA \ θt(ϕ) = θt(¬ϕ)

Finally, if ϕ =
∧
ϕi then

p(θ(
∧
ϕi)) = > iff p(

∧
θ(ϕi)) = >

iff
∧
p(θ(ϕi)) = >

iff Wp ∈ θt(ϕi) for all i (inductive hypothesis)

iff Wp ∈
⋂
θt(ϕi) = θt(

∧
ϕi)

This completes the proof of the claim.
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Now let p : ℒAxA→ 2 be a complete homomorphism. Then composing
the quotient map q : ℒA→ ℒAxA with p yields a complete homomorphism

p ◦ q : ℒA→ 2 (4.3)

whose kernel contains ∼Ax. Moreover, Wp = Wp◦q, where Wp◦q is defined
as in (4.2) for the complete homomorphism from (4.3), because q sends the
generator a of ℒA to the equivalence class of a in ℒAxA. Consequently,

Wp ∈ θt(ϕ) iff Wp◦q ∈ θt(ϕ) iff (p ◦ q)(θ(ϕ)) = > iff p(θ(ϕ)) = >.

Since θ(ϕ) ∼Ax > for all ϕ ∈ Ax, we have p(θ(ϕ)) = > for all ϕ ∈ Ax. Using
the claim, this proves that Wp is an Ax-subset.

Conversely, a similar computation shows that whenever W is an Ax-
subset, then the kernel of p′W : ℒA→ 2 contains ∼Ax, and hence p′W defines
a complete homomorphism pW : ℒAxA→ 2. In addition, for each b ∈ A we
have pWp( b) = > iff b ∈Wp iff p( b) = >, so pWp = p. Similarly, b ∈WpW

iff pW ( b) = > iff b ∈ W , and hence WpW = W . Thus, these assignments
define a bijection.

Guided by Lemma 4.17, we define an endofunctor on Set which we then
prove to be the Tarski-dual of ℒAx.

4.18. Definition. Let X be a set and Ax an increasing collection of one-step
axioms. Define ℬAxX to be the set of Ax-subsets of PX. For a function
f : X → X ′ in Set, define ℬAxf by

ℬAxf : ℬAxX → ℬAxX
′ : W 7→ {a′ ∈ PX ′ | f−1(a′) ∈W}.

If Ax consists of a single axiom ax, then we write ℬ(ax) instead of ℬ{(ax)}.

4.19. Proposition. The assignment ℬAx is a well-defined endofunctor on
Set.

Proof. Clearly ℬAxX is a set for every set X. Let f : X → X ′ be a function
and let W ∈ ℬAxX. We need to show that ℬAxf(W ) is in ℬAxX

′, that
is, ℬAxf(W ) is an Ax-subset of PX ′. But this follows from the fact that
ℬAxf(W ) ∈ a′ iff W ∈ f−1(a′). Functoriality of ℬAx follows from the
fact that ℬAx is a subfunctor of ℬ.

We are ready to prove the main result of this section.

4.20. Functor duality theorem. The functors ℒAx and ℬAx are dual
with respect to Tarski duality.

Proof. Define ζX : at(ℒAx(℘X)) → ℬAxX by p 7→ Wp. This defines an
isomorphism on objects by Lemma 4.17. We prove that the assignment
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ζ = (ζX)X∈Set : at · ℒAx · ℘ → ℬAx is natural by showing that for every
function f : X → X ′ the diagram

at(ℒAx(℘X)) ℬAxX

at(ℒAx(℘X ′)) ℬAxX
′

at(ℒAx(℘f))

ζX

ℬAxf

ζX′

commutes. To this end, let p be an atom of ℒAx(℘X)) viewed as a complete
homomorphism p : ℒAx(℘X)→ 2. Furthermore, let a′ ⊆ X ′. Then

a′ ∈ ℬAxf ◦ ζX(p) iff ζX(p)(f−1(a′)) = >
iff p( f−1(a′)) = >
iff p(ℒAx(℘f)( a′)) = >
iff at(ℒAx(℘f))(p)( a′) = >
iff a′ ∈ ζX′ ◦ at(ℒAx(℘f))(p)

This proves the theorem.

4.21. Corollary. For every increasing collection Ax of one-step axioms, we
have

Alg(ℒAx) ≡op Coalg(ℬAx).

4.22. Example. As the notation suggests, the functor ℬ∅ defined as in
Definition 4.18 using the empty set of axioms is precisely the functor ℬ from
Definition 3.31. We have seen that its coalgebras are neighbourhood frames.
Combining this with Example 4.11 and Theorem 4.20 yields that ℒ and
ℬ are Tarski-duals. As a consequence of Corollary 4.21, we derive Došen’s
duality [141] for neighbourhood frames via

CANA ∼= Alg(ℒ) ≡op Coalg(ℬ) ∼= NF.

4.23. Example. Let Ax = C∞ as in Example 4.14. For a set X, the set
ℬAxX consists of all collections of neighbourhoods that are upward closed
under inclusion and closed under arbitrary intersections. Such a collection is
uniquely determined by its smallest neighbourhood, and a straightforward
verification shows that ℬAx is naturally isomorphic to the covariant powerset
functor P : Set→ Set.

As a consequence of Theorem 4.20, we obtain that P is dual to H, a result
that was recently established in [48, Theorem 4.3]. Using the well-known fact
that P-coalgebras are Kripke frames and the observation that H-algebras
are CAMAs, we arrive at Thomason duality:

CAMA ∼= Alg(H) ≡op Coalg(P) ∼= KF.
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4.2 Applications

In this subsection we first derive dualities for various types of neighbourhood
frames using only one-step axioms and Corollary 4.21. This gives rise to
Thomason type dualities for monotone neighbourhood frames, contingency
neighbourhood frames, convex frames, and filter frames. Each of these is an
algebra/coalgebra duality.

Next we show how some of these restrict when we invoke further axioms,
which are not necessarily one-step axioms. These results can be seen as
correspondence results. Most notably, they allow us to obtain McKinsey-
Tarski duality for topological spaces (with interior maps) as an easy restriction
of the duality for filter frames. An overview of the dual equivalences discussed
in this section is given in Table 4.2.

4.2.1 Monotone neighbourhood frames

Monotone modal logic is a well-studied branch of modal logic (see, e.g. [103,
209, 210]). The standard semantics for monotone modal logic is given
by monotone (neighbourhood) frames. Recall that these are neighbourhood
frames (X,N) such that for each x ∈ X the collectionN(x) of neighbourhoods
is upward closed under inclusion as a subset of PX. We write MF for the
full subcategory of NF whose objects are monotone neighbourhood frames.
It is well known that MF ∼= Coalg(ℋ), where ℋ : Set→ Set takes a set X to
the collection of subsets of PX that are upward closed under inclusion (see
Subsection 3.3.2, [209, Theorem 8.11] or [210, Lemma 3.4]).

The algebraic semantics of monotone modal logic is given by monotone
Boolean algebra expansions (BAMs for short), see Definition 3.33 or [209,
Section 7]. A BAM is a neighbourhood algebra (A, ) such that : A→ A
is a monotone function (that is, a ≤ b implies a ≤ b), and BAM denotes
the full subcategory of NA whose objects are BAMs.

4.24. Definition. Let CABAM be the full subcategory of CANA whose
objects are also BAMs.

We can view CABAM as a category of algebras for an endofunctor on
CABA. To see this, consider the one-step axiom

(M) (u ∧ v)→ u

expressing monotonicity. As a consequence of Theorem 4.13, we have:

4.25. Corollary. CABAM ∼= Alg(ℒ(M)).

For a set X, the (M)-subsets of PX are precisely the ones that are
up-closed under inclusion. It then follows immediately from the definitions
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Axioms Algebras Objects See
Frames

None CANA Complete atomic neighbourhood algebras Exm. 4.22
NF neighbourhood frames

(Cont) CAContA Complete atomic contingency algebras Sec. 4.2.2
ContF Contingency frames

(Conv) CACA Complete atomic convex algebras Sec. 4.2.3
CNF Convex neighbourhood frames

(M) CABAM Complete atomic monotone BA expansions Sec. 4.2.1
MF Monotone neighbourhood frames

(N), (C) caMA Modal algebras over CABAs Sec. 4.2.4
FF Filter frames

(Cκ) κ-additive complete atomic modal algebras Rem. 4.30
κ-complete neighbourhood frames

C∞ CAMA Complete atomic modal algebras Exm. 4.23
KF Kripke frames

(N), (C), PreTopint Pretopological spaces Sec. 4.2.5
(T) PreInt Complete atomic pre-interior algebras

(N), (C), Topint Topological spaces Sec. 4.2.5
(T), (4) Int Complete atomic interior algebras

Table 4.2: Overview of pairs of dual categories.

that ℬ(M) defined as in Definition 4.18 coincides with ℋ : Set → Set from
Definition 3.37 (called UpP in [210, Section 3.1]). As a consequence of
Corollary 4.21, we obtain:

4.26. Theorem. The category MF of monotone neighbourhood frames is
dually equivalent to CABAM.

Proof. As a consequence of Theorem 4.20, the functors ℒ(M) and ℬ(M) = ℋ
are dual. Therefore, Corollary 4.21 implies that Alg(ℒ(M)) ≡op Coalg(ℋ).
The theorem now follows from the facts that CABAM ∼= Alg(ℒ(M)) by Corol-
lary 4.25, and MF ∼= Coalg(ℋ) by [210, Lemma 3.4].

4.2.2 Duality for neighbourhood contingency logic

A formula is called contingent if it is possibly true and possibly false. Oth-
erwise it is non-contingent, i.e. it is necessarily true or necessarily false.
Neighbourhood contingency logic was recently introduced in [156] to reason
about contingent formulae, and is investigated further in [20, 155]. The
non-contingency modality M is interpreted in a neighbourhood frame (X,N)
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by

x  Mϕ iff JϕK ∈ N(x) or X \ JϕK ∈ N(x),

As a consequence of this definition, the interpretation of formulae does not
distinguish whether a ∈ N(x) or X \ a ∈ N(x) or both. Therefore, it suffices
to only consider the neighbourhood frames (X,N) that satisfy: for all x ∈ X
and a ⊆ X,

a ∈ N(x) iff X \ a ∈ N(x).

We call such frames contingency frames and write ContF for the full category
of NF consisting of contingency frames. Then ContF is isomorphic to the
category of ℬ(Cont)-coalgebras, where (Cont) is the axiom

(Cont) v ↔ ¬v.

Corollary 4.21 implies that Coalg(ℬ(Cont)) ≡op Alg(ℒ(Cont)). As a conse-
quence of Theorem 4.13 we can describe the latter category of algebras
explicitly as the full subcategory of CANA whose objects are the CANAs
(A, ) satisfying a = ¬a for all a ∈ A. We call these complete atomic
contingence algebras and denote the category they form by CAContA. Thus,
putting the above together, we obtain:

4.27. Theorem. ContF ≡op CAContA.

4.2.3 Convex frames

Our next example concerns convex neighbourhood frames. These are neigh-
bourhood frames (X,N) such that N(x) is a convex subset of PX, meaning
that for all x ∈ X, if a, a′ ∈ N(x) and a ⊆ b ⊆ a′, then b ∈ N(x). Write
CNF for the full subcategory of NF whose objects are convex neighbourhood
frames.

As we will see in Subsection 4.4, convexity is closely related to the question
of functoriality of canonical extensions of neighbourhood frames. Convexity
is captured by the following axiom:

(Conv) (v ∧ v′) ∧ (v ∨ v′′)→ v

Therefore, CNF ∼= Coalg(ℬ(Conv)). We call the corresponding algebras com-
plete atomic convex algebras, and denote by CACA the full subcategory of
CANA whose objects are complete atomic convex algebras. Then CACA ∼=
Alg(ℒ(Conv)), and as a consequence of Corollary 4.21, we obtain:

4.28. Theorem. CNF ≡op CACA.
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4.2.4 Filter frames

For our final example given by one-step axioms, we consider filter frames [103,
Section 7.2]. These are of interest because they are as close as we can get to
topological spaces using only one-step axioms (see below). Recall that a filter
on a set X is a subset F ⊆ PX that is closed under finite intersections and
upward closed under inclusion. In particular, this implies that X ∈ F as X
is the empty intersection of subsets of X. A filter frame is a neighbourhood
frame (X,N) such that N(x) is a filter on X for each x ∈ X. Let FF be the
full subcategory of NF consisting of filter frames.

From the coalgebraic point of view, filter frames are ℬAx-coalgebras,
where Ax consists of the axioms

(N) >
(C) u ∧ v ↔ (u ∧ v)

We write ℬ∧ for ℬ{(N),(C)}. We then have FF ∼= Coalg(ℬ∧). As a consequence
of Corollary 4.21, we obtain the dual equivalence

Coalg(ℬ∧) ≡op Alg(ℒ∧), (4.4)

where ℒ∧ abbreviates ℒ{(N),(C)}.
Since (N) and (C) are the axioms that on the algebra side define modal

algebras, ℒ∧-algebras are simply modal algebras whose underlying Boolean
algebra is complete and atomic. We write caMA for the full subcategory of
CANA whose objects are modal algebras based on complete atomic Boolean
algebras. By contrast, recall that CAMA denotes the full subcategory of
CANA whose objects (A, ) are such that A is complete and atomic and
preserves arbitrary meets. Therefore, CAMA is a full subcategory of caMA.
Rephrasing (4.4) yields the following generalisation of Thomason duality:

4.29. Theorem. FF ≡op caMA.

4.30. Remark. If we require the collection of neighbourhoods at each state
to be closed under intersections of size < κ, where κ is some fixed cardinal,
then we obtain the κ-complete neighbourhood frames from [406, Section 4].
This corresponds to the axiom (Cκ), and yields a dual equivalence with
κ-additive complete atomic modal algebras. This category lies in between
CAMA and caMA.

4.2.5 Restrictions to dualities for topological spaces

If a collection of frames or algebras is not given by one-step axioms, we can
still derive dualities for them from correspondence results for the axioms
under consideration, but they are no longer algebra/coalgebra dualities.
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This allows us to derive other interesting dualities, such as McKinsey-Tarski
duality for topological spaces (and interior maps).

Topological spaces are obtained from filter frames by stipulating the
reflexivity and transitivity axioms (Cent) and (iv). Adding only (Cent) results
in the more general notion of pre-topological spaces. For a neighbourhood
frame (X,N) and a ⊆ X, let

N (a) = {y ∈ X | a ∈ N(y)}.

4.31. Definition. A pre-topological space is a filter frame that satisfies

(Cent) a ∈ N(x) implies x ∈ a.

A topological space is a pre-topological space that satisfies

(iv) a ∈ N(x) implies N (a) ∈ N(x).

4.32. Remarks.

1. The above definition of topological spaces in the language of neigh-
bourhood frames is well known, see for instance [441, Theorem 4.5].

2. The above definition of pre-topological spaces can for example be
found in [394, Appendix A].

3. Neighbourhood frames satisfying (Cent) are called centered [287, Sec-
tion 1.3], hence the abbreviation.

In the language of topological spaces, neighbourhood morphisms corre-
spond to maps that are both continuous and open. Such maps are often
called interior maps [359, Section III.3]. On the other hand, continuous
maps are the ones that satisfy only the left-to-right implication of (3.5).

We write PreTopint for the category of pre-topological spaces and interior
maps, and Topint for its full subcategory consisting of topological spaces.
Clearly both PreTopint and Topint are full subcategories of FF. Moreover, we
have:

PreTopint ∼= FF(Cent) and Topint ∼= FF(Cent, iv),

where FF(Cent) and FF(Cent, iv) are the full subcategories of FF whose objects
satisfy (Cent) and (Cent, iv), respectively.

The duals of topological spaces are given by complete atomic interior
algebras, and the duals of pre-topological spaces by complete atomic pre-
interior algebras.

4.33. Definition. A pre-interior algebra is a modal algebra (B, ) that
satisfies

(T) b ≤ b.
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If B is complete and atomic, (B, ) is a complete atomic pre-interior algebra.
An interior algebra is a pre-interior algebra (B, ) that satisfies

(4) b ≤ b.

If B is complete and atomic, (B, ) is a complete atomic interior algebra.

4.34. Remarks.

1. The dual concept of interior operator is that of closure operator.
Interior algebras were first introduced by McKinsey and Tarski [303]
in the language of closure operators and under the name of closure
algebras. Rasiowa and Sikorski [359] called these algebras topological
Boolean algebras. The name interior algebra is due to Blok [72].

2. Generalising closure on a powerset to pre-closure yields the notion of
Čech closure spaces [418, Definition 14.A.1]. This provides an alternate
language to talk about complete atomic pre-interior algebras.

Complete atomic pre-interior algebras are simply CANAs that satisfy
(N), (C), and (T). We write PreInt for the full subcategory of CANA whose
objects are pre-interior algebras. Then PreInt is a full subcategory of caMA.
Let Int be the full subcategory of PreInt consisting of interior algebras.

Given a neighbourhood frame (X,N) a straightforward verification (see,
e.g. [103, Section 7.4]) shows that:

(X,N) validates (Cent) iff its dual (℘X, N ) validates (T).

(X,N) validates (iv) iff its dual (℘X, N ) validates (4).

Thus, we arrive at the following duality theorems:

4.35. Theorem. The dual equivalence from Theorem 4.29 restricts to

PreInt ≡op PreTopint and Int ≡op Topint.

The object part of the dual equivalence Int ≡op Topint dates back to McK-
insey and Tarski [303], and the morphism part to Rasiowa and Sikorski [359,
Section III.3]. See [41] for more details.

4.36. Remark. Restricting Theorem 4.35 further gives rise to dualities
for the categories of T0-spaces, T1-spaces, P -spaces (that is, topological
spaces whose topology is closed under countable intersections), and Alexan-
drov spaces (topological spaces whose topology is closed under arbitrary
intersections), with interior maps as morphisms.

4.37. Remark. Other topology-like spaces are the so-called “generalised
topological spaces” of Császár [123]. Proving correspondence results for the
relevant axioms gives rise to a duality for such spaces in a similar manner as
for pre-topological spaces.
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The findings of this subsection are summarised in the following diagram.
The horizontal arrows indicate full inclusions of categories. The vertical
arrows denote dual equivalences, and are labelled with the relevant theorem
or example.

KF Top PreTop FF MF CNF NF

CAMA Int PreInt caMA CABAM CACA CANA
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4.3 Jónsson-Tarski type dualties

In this section we derive categorical dualities for classes of neighbourhood
algebras that are not necessarily complete and atomic. While this simplifies
the algebraic side of our story, it requires extra structure on the frame side
of the duality: we now have to work with descriptive neighbourhood frames
[141]. For this we work with one-step axioms in the standard modal language
with finitary connectives. As corollaries we derive Jónsson-Tarski duality for
modal algebras and Došen duality for neighbourhood algebras.

Our main contribution is to define an analogue of ℬ on Stone spaces. As
a result, we obtain a new endofunctor on Stone and show that the category
of coalgebras for this endofunctor is isomorphic to the category of descriptive
neighbourhood frames of [141, Section 2]. The Vietoris space of a Stone
space X is embeddable in this new hyperspace of X as a closed subspace.

4.3.1 Descriptive neighbourhood frames

We start by recalling the definition of a descriptive neighbourhood frame, first
introduced by Došen [141, Section 2]. However, to be in line with standard
practice in modal logic, our definition of general frames deviates slightly from
that of Došen in that Došen’s definition requires that all neighbourhoods are
admissible, while we view this as an additional tightness condition. So our
tight general frames correspond to Došen’s general frames.
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Subsequently, we define a new endofunctor on Stone generalising the Vi-
etoris endofunctor, and show that the category of descriptive neighbourhood
frames can be viewed as the category of coalgebras for this endofunctor.

4.38. Definition. A general (neighbourhood) frame is a tuple (X,N,A)
consisting of a neighbourhood frame (X,N) and a Boolean subalgebra A of
PX such that A is closed under N : PX → PX given by

Na =
{
x ∈ X | a ∈ N(x)

}
.

A general frame (X,N,A) is called differentiated if the underlying field of sets
(X,A) is differentiated (Definition 1.8(1)) and compact if (X,A) is compact
(Definition 1.8(2)). Furthermore, (X,N,A) is called tight if N(x) ⊆ A for
all x ∈ X. A descriptive (neighbourhood) frame is a general frame that is
differentiated, compact, and tight.

A general frame morphism from (X,N,A) to (X ′, N ′, A′) is a neighbour-
hood morphism f : (X,N)→ (X ′, N ′) such that f−1(a′) ∈ A for all a′ ∈ A′.
We denote the category of descriptive frames and general frame morphisms
by D-NF.

Let (X,N,A) be a descriptive frame. As usual, we can generate a
topology τA on X using A as a base. Since (X,A) is a descriptive field
of sets Lemma 1.13 tells us that X := (X, τA) is a Stone space and that
A = Clp(X, τA).

Since A = ClpX and N(x) ⊆ A, it makes sense to define a functor D
on Stone that sends X ∈ Stone to P(ClpX). The choice of topology on
P(ClpX) is motivated by the desire to turn DX into a Stone space, and is a
generalisation of the Vietoris topology.

4.39. Definition. The D-hyperspace DX of a Stone space X is the space
P(ClpX) whose topology is generated by the clopen subbase

a = {W ∈ P(ClpX) | a ∈W}, a = {W ∈ P(ClpX) | X \ a /∈W},

where a ranges over the clopen subsets of X. For a continuous function
f : X→ X′ between Stone spaces, define Df : DX→ DX′ by

Df(W ) = {a′ ∈ ClpX′ | f−1(a′) ∈W}.

4.40. Lemma. The assignment D defines an endofunctor on Stone.

Proof. To see that D is well defined, we first show that DX is a Stone space.
Zero-dimensionality of DX follows from the fact that its topology is generated
by a base that is closed under complementation. (Indeed, for all a ∈ ClpX
we have DX \ a = (X \ a) and DX \ a = (X \ a).) To see that DX
is Hausdorff, suppose that W,W ′ ∈ DX are distinct. Then there must be
an a ∈ ClpX such that either a ∈ W and a /∈ W ′, or a /∈ W and a ∈ W ′.
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In either case a and (X \ a) provide two disjoint open subsets of DX
separating W and W ′.

For compactness, by the Alexander subbase theorem, it suffices to prove
that every open cover consisting of subbasic (cl)opens has a finite subcover.
So suppose

DX =
⋃
a∈A

a ∪
⋃
b∈B

b, (4.5)

where A,B ⊆ ClpX. Consider

W = {X \ b | b ∈ B} ∈ DX.

By construction, this is in none of the b, so there must be a′ ∈ A such
that W ∈ a′. But this means a′ = X \ b′ for some b′ ∈ B. Consequently, if
V is an arbitrary element of DX such that V /∈ a′, then V ∈ DX \ a′ =

(X \ a′) = b′. Therefore,

DX = a′ ∪ b′,

so we have found a finite subcover of the cover in (4.5). Thus, DX is a Stone
space.

Finally, we show that D is well defined on morphisms. Let f : X→ X′
be a morphism in Stone. In order to prove that Df is continuous it suffices
to show that (Df)−1( a′) is clopen in DX for all a′ ∈ ClpX′. (The case for
diamonds follows by working with complements.) So let a′ ∈ ClpX′. Then

(Df)−1( a′) = {W ∈ DX | a′ ∈ Df(W )}
= {W ∈ DX | f−1(a′) ∈W} = f−1(a′),

which is clopen in DX. Consequently, D is well defined. Functoriality
follows from the fact that UD is a subfunctor of ℬU, where ℬ = Q · Q and
U : Stone→ Set is the forgetful functor.

4.41. Theorem. D-NF ∼= Coalg(D).

Proof. For the isomorphism on objects, if (X,N,A) is a descriptive neigh-
bourhood frame and τA is the topology on X generated by A, then N is a
function from X = (X, τA) to DX which is continuous because A is closed
under N defined in Definition 4.38. Thus, (X, N) is a D-coalgebra.

Conversely, a D-coalgebra (X, γ) gives rise to the descriptive neighbour-
hood frame (X,N,ClpX), where X is the set underlying X and N is defined
by N(x) = γ(x). Continuity of γ entails that ClpX is closed under N .

The isomorphism on morphisms follows from a routine verification.

4.42. Remark. The Vietoris functor V (see Definition 3.12) is a subfunctor
of D via the natural transformation ζ : V → D defined on components by

ζX : VX→ DX : c 7→ {a ∈ ClpX | c ⊆ a}.
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This gives rise to a functor ζ̄ : Coalg(V )→ Coalg(D), defined on objects by
sending (X, γ) ∈ Coalg(V ) to

X VX DXγ ζX

and on morphisms by ζ̄f = f . Specifically, if (X, γ) is a V -coalgebra, then the
corresponding D-coalgebra is given by (X, N), where N(x) = {a ∈ ClpX |
γ(x) ⊆ a}. The descriptive neighbourhood frames lying in the image of
ζ̄ are precisely those descriptive frames validating (N) and (C), see also
Subsection 4.2.4.

4.3.2 Functor dualities

Like we did in Subsection 4.1.3, we can use one-step axioms to prove that
certain quotient functors of N from Proposition 3.29(1) are Stone-dual to
subfunctors of D.

Since N is an endofunctor on BA, we can only take quotients with finitary
axioms. These are axioms that have finite conjunctions and disjunctions.
Since this implies that axioms can only contain a finite number of variables,
it suffices to work with a countable set of variables. Thus, we will work with
the standard modal language, viewed as a sublanguage of L .

4.43. Definition. A finitary axiom is a formula in the language Lω (defined
as in Definition 4.1). A finitary one-step axiom is a formula in the language
(Lω )1.

We define assignments and satisfaction of these axioms in neighbourhood
algebras as in Definition 4.2. That is, an assignment for a neighbourhood
algebra (B, ) is a function θ : Vω → B and extends uniquely to a map
θ̂ : Lω → B, and we say (B, )  ϕ if θ̂(ϕ) = > for every assignment θ.

Furthermore, the assignment θ gives rise to a map θ : (Lω )1 → NB
which interprets finitary one-step axioms in NB in the same manner as in
Definition 4.7.

4.44. Definition. Let Ax be a collection of finitary one-step axioms. For
B ∈ BA, define NAxB to be the free Boolean algebra generated by { b | b ∈
B} modulo the congruence relation ∼Ax generated by {θ(ϕ) ∼Ax >}, where
ϕ ranges over Ax and θ over the assignments Vω → B. For a homomorphism
h : B → B′ define NAxh on generators by NAxh( b) = h(b). Then NAx

defines a functor BA→ BA.

4.45. Example. Well-known functors can be obtained via the procedure of
Definition 4.44. Of course, if we take Ax = ∅, then we get N∅ = N. Similarly,
the axioms

(N) >
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(C) v ∧ v′ ↔ (v ∧ v′)

give rise to the endofunctor K on BA whose algebras are normal modal
algebras.

Like in Section 4.1, for each NAx we can define a dual functor DAx. The
functor DAx arises as a subfunctor of D. In particular, this means that for
every Stone space X, the space DAxX is a subspace of DX.

4.46. Definition. Let X be a Stone space and B its dual Boolean algebra of
clopens. For a finitary one-step axiom ϕ and an assignment θ : Vω → B of
the variables we define the clopen neighbourhood θt(ϕ) recursively by

θt( v) = θ(v)

θt(>) = PB

θt(¬ϕ) = PB \ θt(ϕ)

θt(ϕ ∧ ψ) = θt(ϕ) ∩ θt(ψ)

Let ϕ be a finitary one-step axiom. Then we call W ∈ DX a ϕ-subset of B if
W ∈ θt(ϕ) for every assignment θ of the variables in Vω. If Ax is a collection
of finitary one-step axioms, then we say that W is an Ax-subset if W is a
ϕ-subset for all axioms ϕ ∈ Ax.

The next lemma is an adaptation of Lemma 4.17 to the setting of
descriptive frames.

4.47. Lemma. Ultrafilters of NAxB correspond bijectively to Ax-subsets of
B.

Proof. The bijection is established by sending an ultrafilter of NAxB (viewed
as a homomorphism p : NAxB → 2) to the set

Wp = {b ∈ B | p( b) = >} ⊆ B, (4.6)

and by sending any Ax-subset W ⊆ B to the map pW : NAxB → 2 defined
on generators by pW ( b) = > iff b ∈ W . The remainder of the proof
can be obtained from the proof of Lemma 4.17 by replacing “ℒ” with “N,”
“ℒAx” with “NAx,” “complete homomorphism” with “homomorphism,” and
“complete congruence” with “congruence.”

We can now define the functor DAx in a similar manner as ℬAx from
Definition 4.18.

4.48. Definition. For a Stone space X, let DAxX be the subspace of DX
whose elements are Ax-subset of ClpX. For a continuous function f : X→ X′
let DAxf be the restriction of Df to DAxX.
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While for any set X the set ℬAxX is automatically a subset of ℬX, in
our current setting it is not guaranteed that DAxX is a Stone subspace of
DX. The next proposition ensures that this is indeed the case.

4.49. Proposition. DAx is an endofunctor on Stone.

Proof. Let X be a Stone space. In order to show that DAxX is again a Stone
space it suffices to prove that it is a closed subspace of DX. Note that θt(ϕ)
is a clopen subset of DX for any finitary one-step axiom ϕ and assignment
θ : Vω → ClpX. By definition, the set underlying DAxX is given by⋂

{θt(ϕ) | ϕ ∈ Ax, θ : Vω → ClpX} ⊆ DX. (4.7)

Since this is the intersection of clopen subsets of DX, it is a closed subset of
DX.

That DAx is well defined on morphisms can be proven as in Proposi-
tion 4.19, and functoriality of DAx follows from functoriality of D.

The next theorem is an analogue of Theorem 4.20 in the setting of
descriptive frames.

4.50. Functor duality theorem. Let Ax be a collection of finitary one-
step axioms. Then the functors NAx and DAx are dual with respect to Stone
duality.

Proof. We view ultrafilters as homomorphisms, so for example when we say
p ∈ Uf(NAx(ClpX)) we view p as a homomorphism NAx(ClpX)→ 2. For a
Stone space X, define the function ξX : Uf(NAx(ClpX))→ DAxX by p 7→Wp

(defined as in (4.6)). This yields a bijection on objects by Lemma 4.47.

To see that ξX is continuous, recall that the topology on DX is generated
by a and a, where a ranges over the clopens of X. So the topology on
DAxX is generated by

a ∩DAxX, a ∩DAxX,

where a ranges over the clopen subsets of X. Also, recall that for any
Boolean algebra B, the topology on UfB is generated by set of the form
θ(a) = {p ∈ UfB | p(a) = >}, where a ∈ B. Continuity of ξX now follows
from the fact that

ξ−1
X ( a ∩DAx(X)) = {p ∈ Uf(NAx(ClpX)) | p( a) = >} = θ( a)

is open in Uf(NAx(ClpX)), and similarly ξ−1
X ( a) = θ(¬ ¬a). Since ξX is

a continuous bijection between Stone spaces, it is a homeomorphism, i.e. an
isomorphism in Stone.
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Finally, we prove that the assignment ξ = (ξX)X∈Stone : Uf ·NAx ·Clp→
DAx is natural by showing that for every continuous function f : X→ X′ the
diagram

Uf(NAx(ClpX)) DAxX

Uf(NAx(ClpX′)) DAxX′

Uf(NAx(Clpf))

ξX

DAxf

ξX′

commutes. To this end, let p ∈ Uf(NAx(ClpX)) and a′ ∈ ClpX′. Then

a′ ∈ DAxf ◦ ξX(p) iff ξX(p)(f−1(a′)) = >
iff p( f−1(a′)) = >
iff p(NAx(Clpf)( a′)) = >
iff Uf(NAx(Clpf))(p)( a′) = >
iff a′ ∈ ξX′ ◦Uf(NAx(Clpf))(p).

This proves the theorem.

4.51. Corollary. For every set Ax of finitary one-step axioms, we have

Alg(NAx) ≡op Coalg(DAx).

Some well-known dualities are instantiations of Corollary 4.51.

4.52. Example. If we take Ax = ∅, then we recover Došen’s duality for
descriptive neighbourhood frames [141, Theorem 6]:

NA ∼= Alg(N) ≡op Coalg(D) ∼= D-NF.

4.53. Example. We can derive Jónsson-Tarski duality for normal modal
algebras as follows. As we pointed out in Remark 4.42, V = D{(N),(C)}.
Moreover, it is immediate from the definition that N{(N),(C)} = K so that
MA ∼= Alg(N{(N),(C)}). Therefore,

MA ∼= Alg(N{(N),(C)}) ≡op Coalg(D{(N),(C)}) ∼= Coalg(V ) ∼= D-KF.

Corollary 4.51 also gives rise to the notion of a descriptive contingency
frame, as shown in the next example.

4.54. Example. Since (Cont) is a finitary axiom, it gives rise to the notions of
contingency neighbourhood algebras, descriptive contingency neighbourhood
frames, and a duality between them. A contingency neighbourhood algebra is
a neighbourhood algebra (B, ) such that b = ¬b for all b ∈ B. We write
CNA for the full subcategory of NA of contingency neighbourhood algebras. A
descriptive contingency neighbourhood frame is a D(Cont)-coalgebra. Explicitly
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we can describe these as tuples (X,N,A) such that (X,N,A) is a descriptive
neighbourhood frame and (X,N) is a contingency neighbourhood frame.
Writing D-CNF for the full subcategory of D-NF whose objects are descriptive
contingency neighbourhood frames, we obtain:

CNA ∼= Alg(N(Cont)) ≡op Coalg(D(Cont)) ∼= D-CNF.

4.3.3 Forgetting incorrectly

Just like (Cont) in Example 4.54, the axiom (M) is also finitary. Therefore,
we get functors N(M) and D(M) (shorthand for N{(M)} and D{(M)}) such that
Alg(N(M)) ≡op Coalg(D(M)). Moreover, we have

Alg(N(M)) ∼= BAM.

Thus, one may think that the coalgebras in Coalg(D(M)) give a suitable notion
of descriptive monotone frames. However, care is needed: if we take a D(M)-
coalgebra and forget about the topology, we do not obtain a ℬ(M)-coalgebra.
Indeed, since only clopen sets are allowed to serve as neighbourhoods of a
state, the collection of neighbourhoods at a state need not be upward closed
under inclusion. We give an example of this phenomenon.

4.55. Example. Let X = N ∪ {∞} and generate a topology τ on X by the
finite subsets of N and cofinite sets containing ∞. Then X = (X, τ) is the
one-point compactification of the discrete space N. Clearly X is a Stone
space. Define γ : X→ D(M)X by

γ(x) = ClpX

for all x ∈ X. Then (X, γ) is a D(M)-coalgebra. However, (X, γ) does not
define a ℬ(M)-coalgebra because Nodd = {x ∈ N | x is odd } is not clopen,
hence it is not in γ(x), while both ∅ ∈ γ(x) and ∅ ⊆ Nodd.

A similar problem occurs with descriptive convex frames. In fact, Ex-
ample 4.55 also shows that if we forget about the topological structure of a
D(Conv)-coalgebra, then we do not necessarily end up with a ℬ(Conv)-coalgebra
because ∅ ⊆ Nodd ⊆ X and ∅, X ∈ γ(x). One way to remedy this is by
using canonical extensions. Such an approach was carried out in [209, 210]
for the special case of monotone frames. We explore this idea in the next
subsection.

4.4 Canonical extensions

In this section we discuss σ- and π-extensions of (descriptive) neighbourhood
frames and neighbourhood algebras. In general, these extensions are not
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functorial. However, we show that adding the convexity and co-convexity
axioms yields functoriality of σ- and π-extensions, respectively. We also show
that adding these axioms allows us to view descriptive frames as categories
of coalgebras. We use this to give an alternative coalgebraic proof of the
duality for monotone Boolean algebra expansions from [210].

4.4.1 σ- and π-exensions

There is an obvious forgetful functor D-NF→ NF. Although this forgetful
functor is conveniently simple, it has an undesirable property: it “leaves
gaps.” For example, if (X,N,A) is a monotone descriptive frame, then
(X,N) is not generally a monotone frame. Indeed, monotonicity now only
holds with respect to admissible sets (clopens). Similarly, if (X,N,A) is
a normal descriptive frame and RN is the relation that arises from N via
RN (x) =

⋂
N(x), then we would prefer that the underlying neighbourhood

frame be normal as well. This would be the case if (X,N) satisfied a ∈ N(x)
iff RN [x] ⊆ a for each a ⊆ X. Again, since N(x) contains only admissible
subsets of X, this need not be the case.2

To remedy this, we explore alternatives to the forgetful functor. These
are dual versions of the well-known σ- and π-extensions from the theory of
canonical extensions (see, e.g. [240, 171, 170, 172]).

4.56. Definition. Let A be a CABA and B a Boolean subalgebra of A.

1. B is called dense in A if every element in A is the join of meets of
elements in B.

2. We say that B is compact in A if for all sets S, T ⊆ B with
∧
S ≤

∨
T

in A, there exist finite S′ ⊆ S and T ′ ⊆ T such that
∧
S′ ≤

∨
T ′.

3. A canonical extension of a Boolean algebra B is a pair (Bσ, e) where
Bσ is a CABA and e : B → Bσ is a Boolean embedding such that
e[B] is dense and compact in Bσ.

4.57. Remark. It is well known [240] that the canonical extension of a
Boolean algebra is unique up to isomorphism, and can explicitly be described
as the powerset of the dual Stone space of B. Thus, we often speak of Bσ as
the canonical extension of B and view B as sitting inside Bσ.

Let : B → B be a function (not necessarily a homomorphism). Then
we can extend to a function Bσ → Bσ in several ways. Two well-known
extensions are the σ- and π-extensions. To define these, we recall the notions
of closed and open elements of Bσ [240, Definition 1.20].

2For example, let X = N∪{∞} be the one-point compactification of N with the discrete
topology and X the set underlying X. For each x ∈ X let N(x) be the collection of co-finite
subsets of X containing ∞. Then it is easy to see that (X,N,ClpX) is a descriptive
neighbourhood frame, that RN (x) = {∞}, but that {∞} /∈ N(x).
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We say that x ∈ Bσ is closed if it is a meet of elements from B, and x is
open if it is a join of elements from B. We write KB and OB for the sets of
closed and open elements of Bσ, respectively. The σ- and π-extensions of

: B → B are defined by:

σx =
∨{∧

{ b | b ∈ B and c ≤ b ≤ d} | c ∈ KB, d ∈ OB, c ≤ x ≤ d
}

πx =
∧{∨

{ b | b ∈ B and c ≤ b ≤ d} | c ∈ KB, d ∈ OB, c ≤ x ≤ d
}

These give maps σ, π : NA→ CANA, which in turn give rise to Σ,Π : D-NF→
NF by composing as follows:

Σ = at ◦ σ ◦Clp and Π = at ◦ π ◦Clp.

Thus we have the following diagram:

NA D-NF

CANA NF

Uf

σ π

Clp

Σ Π

at

℘

(4.8)

We point out that σ, π : NA→ CANA are not necessarily functors (see [45,
Example 3.4 and Remark 3.5]), and hence neither are Σ and Π. We shall
temporarily ignore this issue and focus solely on the action of σ and π on
objects.

We next define Σ and Π explicitly. For this we need the notions of closed
and open elements of (X,N,A). These are defined to be the closed and open
subsets of the topological space X = (X, τA), and denoted by KA and OA,
respectively. Finally, for c, d ∈ PX define [c, d] = {e ∈ PX | c ⊆ e ⊆ d}.

4.58. Definition. Let (X,N,A) be a descriptive neighbourhood frame.
Define the σ-extension of N by

Nσ(x) = {e ∈ PX | ∃c ∈ KA, d ∈ OA with c ⊆ e ⊆ d and [c, d]∩A ⊆ N(x)},

and set Σ(X,N,A) = (X,Nσ). Define the π-extension of N by

Nπ(x) = {e ∈ PX | ∀c ∈ KA, d ∈ OA with c ⊆ e ⊆ d
we have [c, d] ∩A ∩N(x) 6= ∅},

and set Π(X,N,A) = (X,Nπ).

4.59. Proposition. The following diagrams commute on objects, up to
natural isomorphism.

NA D-NF NA D-NF

CANA NF CANA NF

σ

Uf

Σ

Clp
π

Uf

Π

Clp

at

℘

at

℘
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Proof. Let (X,N,A) be a descriptive neighbourhood frame. Recall that

Na = {x ∈ X | a ∈ N(x)} for a ∈ A. Then (A, N ) is the dual modal
algebra of (X,N,A). It is well known that the canonical extension of A is
℘X. Write (X,N ′) for the neighbourhood frame dual to (Aσ, σ

N ). We aim
to show that for all x ∈ X and e ⊆ X we have e ∈ N ′(x) iff e ∈ Nσ(x). By
definition,

σ
Ne =

⋃{⋂
{ Na | a ∈ A, c ⊆ a ⊆ d} | c ∈ KA, d ∈ OA, c ⊆ e ⊆ d

}
.

Thus, e ∈ N ′(x) iff x ∈ σ
Ne, which happens iff there are closed c and open

d such that c ⊆ e ⊆ d and a ∈ [c, d] ∩A implies x ∈ Na. The latter means
that we have a ∈ N(x) for all such a, and hence c and d witness the fact
that e ∈ Nσ(x).

Similar reasoning proves the statement for π-extensions.

The extensions Σ and Π are closely related. To see this, we need the
notion of dual (descriptive) neighbourhood frames.

4.60. Definition. For a neighbourhood frame (X,N), define

N c : X → PPX : x 7→ {a ⊆ X | a /∈ N(x)}.

We call (X,N)c := (X,N c) the complement of (X,N).
If (X,N,A) is a descriptive neighbourhood frame, then we define

N c
A : X → PPX : x 7→ {a ∈ A | a /∈ N(x)}.

It is easy to see that (X,N c
A, A) is again a descriptive frame. We call

(X,N c
A, A) the complement of (X,N,A) and denote it by (X,N,A)c.

It is easy to see that ((X,N)c)c = (X,N). Moreover, (·)c : NF → NF
defines an involution, where f c = f for a neighbourhood morphism f . Similar
statements hold for descriptive frames and the descriptive complement.

4.61. Proposition. Let (X,N,A) be a descriptive neighbourhood frame.
Then

Π(X,N,A) = (Σ(X,N c
A, A))c.

Consequently, Σ(X,N,A) = (Π(X,N c
A, A))c.

Proof. Note that (Σ(X,N c
A, A))c = (X, ((N c

A)σ)c). We need to prove that
for all x ∈ X and e ⊆ X we have

e ∈ Nπ(x) iff e ∈ ((N c
A)σ)c(x). (4.9)

We do so by unravelling the definitions.
For x ∈ X and e ⊆ X we have e ∈ ((N c

A)σ)c(x) iff e /∈ (N c
A)σ(x). In other

words, e ∈ ((N c
A)σ)c(x) iff we can find no closed c ∈ KA and open d ∈ OA

such that c ⊆ e ⊆ d and [c, d] ∩ A ⊆ N c(x). Therefore, e ∈ ((N c
A)σ)c(x) iff

for all c ∈ KA and d ∈ OA such that c ⊆ e ⊆ d we have [c, d]∩A∩N(x) 6= ∅.
But this is exactly the definition of e ∈ Nπ(x), so (4.9) holds.
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4.4.2 σ- and π-descriptive frames

As we have seen in Subsection 4.3.3, we do not always have a forgetful
functor U : Coalg(DAx)→ Coalg(ℬAx). In particular, recall that convexity
and monotonicity are not preserved. This is, in part, solved by replacing U
with either Σ or Π.

If (X,N,A) is monotone, then the definition of Nσ simplifies to

Nσ(x) = {e ∈ PX | ∃c ∈ KA with c ⊆ e and [c,X] ∩A ⊆ N(x)}.

It is then easy to see that the neighbourhood frame Σ(X,N,A) = (X,Nσ)
is monotone as well. Next suppose (X,N,A) is convex and there are e, e′ ∈
Nσ(x) and e′′ ⊆ X such that e ⊆ e′′ ⊆ e′. Then by definition of Nσ we
have closed sets c, c′ and open sets d, d′ such that e ∈ [c, d], e′ ∈ [c′, d′],
[c, d] ∩ A ⊆ N(x) and [c′, d′] ∩ A ⊆ N(x). Since c ⊆ e ⊆ e′′ ⊆ e′ ⊆ d′,
convexity of (X,N,A) implies [c, d′]∩A ⊆ N(x). This, in turn, witnesses the
fact that e′′ ∈ Nσ(x). Therefore, (X,Nσ) is a convex neighbourhood frame.

Thus, on objects we have the following well-defined assignments:

Σ : Coalg(D(M))→ Coalg(ℬ(M))

and Σ : Coalg(D(Conv))→ Coalg(ℬ(Conv)).

From the connection between Σ and Π discussed in Proposition 4.61 we get
that

Π : Coalg(D(M))→ Coalg(ℬ(M))

and Π : Coalg(D(CoConv))→ Coalg(ℬ(CoConv))

are well-defined assignments as well. Here (CoConv) denotes the co-convexity
axiom:

(CoConv) v → (v ∧ v′) ∨ (v ∨ v′′)

On neighbourhood frames (X,N) this corresponds to N c(x) being convex
for all x ∈ X.

We can turn the assignments Σ and Π into “proper” forgetful functors
by incorporating the additional neighbourhoods that arise from Σ or Π into
the notion of a descriptive frame. This yields two alternative definitions of
descriptive frames: σ-descriptive and π-descriptive frames. In what follows we
will focus on σ-descriptive frames, leaving the dual treatment of π-descriptive
frames to the reader.

4.62. Definition. A σ-descriptive neighbourhood frame is a general neigh-
bourhood frame (X,N,A) that is differentiated and compact (see Defini-
tion 4.38) and satisfies the following modification of the tightness condition:
for all x ∈ X and e ∈ PX

e ∈ N(x) iff ∃c ∈ KA, d ∈ OA with c ⊆ e ⊆ d and [c, d] ∩A ⊆ N(x).
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We write D-NFσ for the category of σ-descriptive neighbourhood frames and
general neighbourhood morphisms.

If (X,N,A) is a descriptive neighbourhood frame, then (X,Nσ, A) is a
σ-descriptive neighbourhood frame. Conversely, given a σ-descriptive neigh-
bourhood frame (X,N,A), setting NA(x) = N(x) ∩ A yields a descriptive
neighbourhood frame (X,NA, A). It is straightforward to see that these two
assignments give rise to a bijective correspondence between objects in D-NF
and D-NFσ. Thus, the following diagram commutes on objects, where U is
the forgetful functor that does not add any neighbourhoods:

D-NF D-NFσ

NF

1-1

Σ U

While in descriptive neighbourhood frames (Definition 4.38) the tightness
condition stipulates that all neighbourhoods are admissible sets, σ-tightness
allows non-admissible sets to act as neighbourhoods too.

4.63. Remark. Let D-NFπ be the category of π-descriptive frames, defined
analogously to Definition 4.62. That is, a π-descriptive frame is a general
neighbourhood frame that is differentiated and compact and satisfies for all
x ∈ X and e ⊆ X:

e ∈ N(x) iff ∀c ∈ KA, d ∈ OA with c ⊆ e ⊆ d
we have [c, d] ∩A ∩N(x) 6= ∅.

We have that (X,N,A) is σ-descriptive iff (X,N c
A, A) is π-descriptive. More-

over, f : (X,N,A)→ (X ′, N ′, A′) is a general morphism between σ-descriptive
frames iff f is a general morphism between (X,N c

A, A) and (X ′, (N ′)cA, A
′).

Thus, we obtain an isomorphism between D-NFσ and D-NFπ.

Write D-NFσ(Ax) for the full subcategory of D-NF such that the axioms
in Ax are satisfied when interpreting the variables used in Ax as clopens.
Write also UAx : D-NFσ(Ax) → Coalg(ℬAx) for the functor that sends a
σ-descriptive neighbourhood frame to its underlying frame (viewed as a
coalgebra). If UAx is well defined, then it is automatically a functor, because
the additional (non-admissible) neighbourhoods of σ-descriptive frames en-
sure that every morphism in D-NFσ(Ax) is in particular a neighbourhood
morphism between the underlying neighbourhood frames.

While the introduction of σ-descriptive frames ensures that

UAx : D-NFσ(Ax)→ Coalg(ℬAx)

becomes a functor, it only moves the problem of functoriality elsewhere. In-
deed, we are not guaranteed that the category Alg(NAx) is dual to D-NFσ(Ax).

In Subsection 4.4.3 we will prove that whenever Ax implies (Conv), then



116 Dualities with ears

1. D-NFσ(Ax) is a category of coalgebras for an endofunctor Dσ
Ax on

Stone; and

2. NAx is dual to Dσ
Ax.

Combined, these give the dual equivalence

Alg(NAx) ≡op Coalg(Dσ
Ax) ∼= D-NFσ(Ax).

4.4.3 When are Σ and Π functors?

In this subsection we give a sufficient condition for Dσ
Ax to be a functor.

4.64. Definition. Let X be a Stone space with the underlying set X. We
write KX and OX for the closed and open sets of X and define DσX to be
the space consisting of W ⊆ PX that satisfy

e ∈W iff ∃c ∈ KX, d ∈ OX with c ⊆ e ⊆ d and [c, d] ∩ClpX ⊆W.

The topology on DσX is generated by the clopen subbase

a = {W | a ∈W}, a = {W | X \ a /∈W},

where a ranges over ClpX.

Using the fact that elements of DσX are determined uniquely by the
clopens of X they contain, combined with assignments similar to the ones
in the paragraph following Definition 4.62, it is easy to see that DσX is
homeomorphic to DX. Therefore, DσX is a Stone space. Moreover, W ∈ DσX
is an Ax-subset (see Definition 4.46) if and only if W ∩ClpX ∈ DX is an
Ax-subset. Thus, we define:

4.65. Definition. For a Stone space X, let Dσ
AxX be the subspace of DσX

whose elements are Ax-subsets. For a continuous function f : X → X′, we
define

Dσ
Axf : Dσ

AxX→ Dσ
AxX′ : W 7→ {w′ ⊆ X′ | f−1(w′) ∈W}.

Since Dσ
AxX is homeomorphic to DAxX, we have that Dσ

Ax sends a Stone
space to a Stone space. Furthermore, this implies that Dσ

Ax is naturally
isomorphic to DAx whenever the former is well defined. We prove that it is
well defined when Ax implies (Conv).

4.66. Theorem. Let Ax be a set of finitary one-step axioms such that Ax
implies (Conv). Then Dσ

Ax defines an endofunctor on Stone.
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Proof. We have seen that Dσ
Ax is well defined on objects, and functoriality is

straightforward. So we only have to prove that for every continuous function
f : X → X′, the assignment Dσ

Axf : Dσ
AxX → Dσ

AxX′ is a well-defined
continuous function.

Continuity follows from the fact that (Dσ
Axf)−1( a′) = f−1(a′) for all

a′ ∈ ClpX′. So all that is left is to prove is that Dσ
Axf(W ) ∈ Dσ

AxX′ for all
W ∈ Dσ

AxX. That is, we need to show that for all e′ ⊆ X ′,

e′ ∈ Dσ
Axf(W ) iff ∃c′ ∈ KX′, d′ ∈ OX′ with c′ ⊆ e′ ⊆ d′

and [c′, d′] ∩ClpX′ ⊆ Dσ
Axf(W ).

(4.10)

First assume e′ ∈ Dσ
Axf(W ). Then f−1(e′) ∈W , so there exist c ∈ KX

and d ∈ OX such that c ⊆ f−1(e) ⊆ d and [c, d] ∩ ClpX ⊆ W . Define
c′ = f [c] and d′ = X′ \ f [X \ d]. Since f is a continuous function between
Stone spaces it sends closed sets to closed sets, so c′ ∈ KX′ and d′ ∈ OX′.
Furthermore, we claim that c′ ⊆ e′ ⊆ d′. The first inclusion is obvious. For
the second, if x′ /∈ d′, then there is x ∈ X \ d such that f(x) = x′. But then
x /∈ d, so x /∈ f−1(e′), and hence x′ = f(x) /∈ e′.

We claim that c′ and d′ witness that the right-hand side of (4.10) holds.
Let a′ ∈ ClpX′ such that c′ ⊆ a′ ⊆ d′. Then c ⊆ f−1(a′) by definition
of c′. Furthermore, f−1(d′) ⊆ d. To see this, x /∈ d implies x ∈ X \ d, so
f(x) ∈ f [X \ d]. Therefore, f(x) /∈ X′ \ f [X \ d] = d′, and hence x /∈ f−1(d′).
Thus, f−1(a′) ⊆ d. By assumption this implies that f−1(a′) ∈ W . So
a′ ∈ Dσ

Axf(W ).

For the converse, suppose e′ ⊆ X ′ is such that the right-hand side holds.
Denote the relevant closed and open subsets of X′ witnessing this by c′ and
d′. We aim to show that f−1(e′) ∈W . To prove this, it suffices to show that
there exist a closed and open subsets c and d of X such that c ⊆ f−1(e′) ⊆ d
and [c, d] ∩ClpX ⊆W .

Take c = f−1(c′) and d = f−1(d′). By continuity of f these are closed
and open, respectively. Now let a ∈ ClpX be such that c ⊆ a ⊆ d. To prove
that a ∈ W , we construct b′1, b

′
2 ∈ ClpX′ such that b′1, b

′
2 ∈ Dσ

Axf(W ) and
f−1(b′1) ⊆ a ⊆ f−1(b′2). Convexity of W then implies that a ∈W .

To construct b′1, since c′ is closed, we have that c′ =
⋂
{k′ ∈ ClpX′ | c′ ⊆

k′}. Therefore,

c = f−1(c′) =
⋂{

f−1(k′) | k′ ∈ ClpX′ and c′ ⊆ k′
}
⊆ a.

Since a is clopen and the intersection is directed, we can find k′1 ∈ ClpX′ such
that c ⊆ f−1(k′1) ⊆ a. Similarly, since c′ =

⋂
{k′ ∈ ClpX′ | c′ ⊆ k′} ⊆ d′

we can find k′2 ∈ ClpX′ such that c′ ⊆ k′2 ⊆ d′. Setting b′1 = k′1 ∩ k′2 gives
an element in ClpX such that f−1(b′1) ⊆ a. Moreover, by construction
c′ ⊆ b′1 ⊆ d′, and hence b′1 ∈ Dσ

Axf(W ).
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To construct b′2, since d′ is open, we have d′ =
⋃
{k′ ∈ ClpX′ | k′ ⊆ d′}.

A similar argument to the one above yields b′2 satisfying all the required
properties. This proves a ∈W , hence f−1(e′) ∈W , completing the proof.

The definition of descriptive monotone frames from [210] coincides with
the definition of σ-descriptive neighbourhood frames satisfying monotonicity.
Recall that we write HD-MF for the category of such descriptive monotone
frames, as defined in Definition 3.39 and [210, Section 2.4.2]. The algebraic
semantics of monotone modal logic is given by monotone Boolean algebra
expansions (BAMs), and BAM denotes the full subcategory of NA whose
objects are BAMs. As a consequence of Theorem 4.66 we now obtain the
duality from [210, Theorem 2.11] as an algebra/coalgebra duality.

4.67. Corollary (Hansen-Kupke duality). BAM ≡op HD-MF.

Proof. One can prove that BAM ∼= Alg(N(M)) in the same way as in Proposi-
tion 3.29(1). Moreover, HD-MF ∼= Coalg(UpV ) [210, Theorem 3.12], where
UpV is the endofunctor on Stone defined in Definition 3.9 of op. cit. There
is a natural isomorphism ν : Dσ

(M) → UpV given on components by

νX : Dσ
(M)X→ UpVX : W 7→ {c ∈W | c is closed in X}.

This is injective because if W,V ∈ Dσ
(M) are distinct, then there exists

a ∈ ClpX such that a ∈ W and a /∈ V , or a /∈ W and a ∈ V . Since
clopen sets are in particular closed, this implies that νX(W ) 6= νX(V ), so
νX is injective. Moreover, it is surjective. To see this, observe that for all
W ∈ UpVX the set W ↑ = {e ⊆ X | ∃c ∈ W such that c ⊆ e} is in Dσ

(M)X
and satisfies νX(W ↑) = W . So ν is a bijective continuous function, hence a
homeomorphism.

Combining Theorems 4.50 and 4.66 yields that N(M) is dual to UpV .
The composition

BAM ∼= Alg(N(M)) ≡op Coalg(UpV ) ∼= HD-MF

proves the desired duality.

4.68. Corollary. Let Ax be a collection of finitary one-step axioms that
implies (Conv). Then

Alg(NAx) ≡op Coalg(Dσ
Ax).

Proof. Combine Corollary 4.51, Theorem 4.66, and the fact that DAx is
naturally isomorphic to Dσ

Ax to obtain

Alg(NAx) ≡op Coalg(DAx) ∼= Coalg(Dσ
Ax).
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4.69. Corollary. Let Ax be a collection of finitary one-step axioms that im-
plies (Conv). If the restriction ΣAx of Σ to Coalg(DAx) lands in Coalg(ℬAx),
then ΣAx is a functor.

Proof. If ΣAx is well defined, then so is UAx, and hence UAx is a functor
(as we pointed out after Remark 4.63). Since ΣAx can be obtained as the
composition of functors

Coalg(DAx) Coalg(Dσ
Ax) Coalg(ℬAx)

∼=

ΣAx

UAx

it is a functor as well.

We can now obtain relatively easily the commuting diagrams relating
the Jónsson-Tarski type and Thomason type dualities for a large class of
modal logics. These are analogues of the diagram for basic normal modal
logic depicted in (3.4) (left). We formulate this as a general statement, and
then instantiate it to basic monotone modal logic. Observe that this still
requires a preservation result reminiscent of a Sahlqvist theorem, proving that
validity of axioms on a σ-descriptive neighbourhood frame implies validity of
the axioms on the underlying neighbourhood frame (see, e.g., [377] or [70,
Section 5.6]). We leave the search for such theorems to future research.

4.70. Theorem. Let Ax be a collection of finitary one-step axioms that im-
plies (Conv). Suppose that for every Stone space X, every Ax-neighbourhood
W of DX is also an Ax-neighbourhood of ℬX, where X is the set underlying
X. Then the following diagram commutes

Alg(NAx) Coalg(DAx) Coalg(Dσ
Ax)

Alg(ℒAx) Coalg(ℬAx)

≡op

σ ΣAx

∼=

UAx≡op

4.71. Example. As we have seen, examples of such Ax are Ax = {(Conv)}
and Ax = {(M)}. The latter yields the following commuting diagrams, where
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all edges are functors:

Alg(N(M)) Coalg(D(M)) Coalg(Dσ
(M))

Alg(ℒ(M)) Coalg(ℬ(M))

BAM Coalg(D(M)) HD-MF

CABAM MF

≡op

σ

∼=

Σ(M)

U(M)≡op

≡op

σ

∼=

Σ(M)

U≡op

5 Instantial neighbourhood logic

A novel system of modal logic called Instantial Neighbourhood Logic (INL)
was recently introduced in [36]. It provides a system of modal logic for
reasoning about neighbourhood models in which modalities give existential
information about what kind of states occur in a neighbourhood of a current
state. Specifically, modal formulae are of the form

(ϕ1, . . . , ϕn;ψ),

and are true at a state x if x has a neighbourhood a such that each of the ϕi
is true at some state in a, and ψ is true at every state in a. Motivations for
investigating this logic range from topology to games, and from modelling
notions of evidence to belief revision.

Various aspects of INL have been studied, including its canonical rules
and formulae [413], proof theory [449, 450], and correspondence theory [451].
An examinations of its bisimulations, including a Van Benthem style charac-
terisation theorem, can be found in [197]. Furthermore, several interesting
restrictions and variations of INL are discussed in [36, Section 7], and dynamic
extensions have been studied in [35, 37, 38].

While instantial neighbourhood frames are the same as neighbourhood
frames, the approaches differ on morphisms. In order to ensure preservation
of INL-formulae we need to work with instantial neighbourhood morphisms,
rather than the neighbourhood morphisms from Definition 3.30. We will
define these below.

It was observed in [36, Section 7.5] that the category of instantial neigh-
bourhood frames and morphisms is isomorphic to Coalg(PP) (as oppose to
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the category of neighbourhood frames, which is isomorphic to Coalg(QQ), see
Subsection 3.3.1). Guided by our intuition for normal modal logic and Kripke
frames (which are P-coalgebras), this leads us to suspect that category of
descriptive instantial neighbourhood frames is (isomorphic to) the category
of VV -coalgebras, where V is the Vietoris functor. In this section we confirm
this suspicion. More precisely, we:

1. give the algebraic semantics for INL and recognise this as as a category
of algebras for an endofunctor J on BA;

2. prove that J is dual to VV ;

3. give a concrete definition of descriptive instantial neighbourhood
frames, and we prove that the category of these is isomorphic to
Coalg(VV ).

This can then be used in a number of applications, some of which are
discussed in Subsection 5.4.

The algebraic semantics distinguish themselves from any algebraic se-
mantics we have seen so far because each instantial neighbourhood algebra
is a Boolean algebra with a countably infinite number of operators.

It was observed by Lutz Schröder (private communication) that the logic
INL can be translated into the composition of standard modal logic with itself,
and vice versa, in a semantics-preserving manner. This suggests that we could
alternatively have represented the algebraic semantics of INL as algebras
for the functor K ·K, where K is the functor whose algebras correspond to
modal algebras (see Defition 3.7). Since K is dual to the Vietoris functor, the
dual equivalence of (K ·K)-algebras with double Vietoris coalgebras would
follow directly (in fact, as a special case of a more general result in [271]).
While this alternative approach has a certain elegance to it, we have opted
for a more direct representation of INL-algebras here. The main benefit is
that our proof gives a standard canonical model construction for INL and its
extensions, without a detour via a translation. This makes the duality better
suited for dealing with issues like canonicity and Sahlqvist completeness,
which we hope to address in future work. We obtain the equivalence of
INL-algebras with algebras for K ·K as a corollary.

Overview of the section. In Subsection 5.1 we recall the language INL
and the logic INL, its interpretation in instantial neighbourhood frames
and models, and a notion of instantial neighbourhood morphisms. We then
define the algebraic semantics of INL by means of instantial neighbourhood
algebras, which can be viewed as algebras for an endofunctor J on BA in
the standard way. In Subsection 5.2 we prove that J is Stone dual to VV ,
the double Vietoris functor on Stone. This automatically yields a duality
between the category of instantial neighbourhood algebras and Coalg(VV ).
Subsequently, in Subsection 5.3 we give an explicit definition of descriptive
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instantial neighbourhood frames. Finally, in Subsection 5.4 we use the duality
to prove completeness of extensions of INL, a Hennessy-Milner theorem and
a bisimilarity-somewhere-else result, and a Goldblatt-Thomason theorem.

Origin of the material. This section is based on joint work with Nick
Bezhanishvili and Sebastian Enqvist, published as [60]. The Goldblatt-
Thomason theorem given in Subsection 5.4.4 is not in [60], but was commu-
nicated at the presentation of the paper at the International Workshop on
Coalgebraic Methods in Computer Science (CMCS 2020).

5.1 Instantial neighbourhood logic and algebras

The language INL of instantial neighbourhood logic is given by the grammar

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | n(ϕ1, . . . , ϕn;ψ)

where p ranges over a set Prop of proposition letters, and n ∈ ω. Observe
that this means that we have an infinite number of modal operators: one for
each natural number. We usually drop the subscript n from n because it is
either clear from context or irrelevant. We abbreviate ⊥, ϕ ∨ ϕ, ϕ→ ψ and
ϕ↔ ψ as usual.

We now define the logic INL. Our definition differs slightly from the
one given in [36, Section 4], but is equivalent. We discuss the differences in
Remark 5.2. We use this adapted axiomatisation because it simplifies some
of the reasoning about the algebraic semantics.

5.1. Definition. The logic INL is the smallest set of INL-formulae con-
taining all substitution instances of propositional tautologies and following
axioms

(Norm) ¬ n(ϕ1, . . . , ϕn−1,⊥;ψ)

(Switch) n(ϕ1, . . . , ϕi, ϕi+1, . . . , ϕn;ψ)→ n(ϕ1, . . . , ϕi+1, ϕi, . . . , ϕn;ψ)

(Mon) n(ϕ1, . . . , ϕn;ψ)→ n(ϕ1, . . . , ϕn ∨ ϕ′n;ψ ∨ ψ′)
(Inst) n(ϕ1, . . . , ϕn;ψ)→ n(ϕ1, . . . , ϕn ∧ ψ;ψ)

(Case) n(ϕ1, . . . , ϕn;ψ)
iff → n+1(ϕ1, . . . , ϕn, χ;ψ) ∨ n(ϕ1, . . . , ϕn;ψ ∧ ¬χ)

(Weak) n+1(ϕ1, . . . , ϕn+1;ψ)→ n(ϕ1, . . . , ϕn;ψ)

(Dupl) n(ϕ1, . . . , ϕn;ψ)→ n+1(ϕ1, . . . , ϕn, ϕn;ψ)

and closed under the following rules

(MP)
ϕ→ ψ ϕ

ψ
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(RE)
ϕ↔ ψ χ

χ[ϕ/ψ]
,

Here, χ[ϕ/ψ] is the result of possibly replacing some occurrences of ϕ in χ
by ψ.

5.2. Remark. We briefly review the differences between the axiomatisation
for INL given here and in [36, Section 4]. First, we observe that the systems
coincide on the rules, and on the axioms (Inst) and (Case). Moreover, the
combination of (R-Mon) and (L-Mon) from [36] coincides with our (Mon).
To see that the remainder of our axioms is valid in the system from [36], note
that our (Norm) follows from (Norm) and (Weak) in [36], validity of (Switch)
is proven in [36, Lemma 4.2], and our (Weak) and (Dupl) are instances of
the similarly named axioms in [36]. Conversely, (Weak), (Dupl) and (Norm)
from [36] follow from (Weak), (Dupl), (Norm) and (Switch).

The frame semantics of instantial neighbourhood logic is given by in-
stantial neighbourhood frames, which are simply neighbourhood frames. The
difference becomes apparent when looking at morphisms between the frames.
Indeed, instantial neighbourhood morphisms are quite different from ordinary
neighbourhood morphisms, as defined in Definition 3.30.

5.3. Definition. An instantial neighbourhood frame (or IN-frame for
short) is a pair (X,N) comprised of a set X and a neighbourhood function
N : X → PPX, where P is the (covariant) powerset functor on Set. An
instantial neighbourhood model (or IN-model) is a tuple (X,N, V ) where
(X,N) is an instantial neighbourhood frame and V : Prop → PX is a
valuation of the proposition letters.

An instantial neighbourhood morphism (IN-morphism) from (X,N) to
(X ′, N ′) is a map f : X → X ′ such that

N ′(f(x)) = {f [a] | a ∈ N(x)},

for all x ∈ X. Here f [a] denotes the direct image of a under f . An IN-model
morphism between IN-models (X,N, V ) and (X ′, N ′, V ′) is an IN-morphism
f : (X,N)→ (X ′, N ′) such that

x ∈ V (p) iff f(x) ∈ V ′(p)

for all x ∈ X and p ∈ Prop.
Write INF and INM for the categories of instantial neighbourhood frames

and models, respectively, with their corresponding notion of morphism.

The interpretation of INL-formulae at a state x in an instantial neighbour-
hood model M = (X,N, V ) is defined recursively, where the propositional
cases are as usual and

x  (ϕ1, . . . , ϕn;ψ) iff ∃a ∈ N(x) s.t. M, y  ψ for each y ∈ a
and ∀i ∈ {1, . . . , n}, ∃y ∈ a s.t. M, y  ϕi.
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We write JϕKM := {x ∈ X | x  ϕ} and say that x satisfies ϕ if x ∈ JϕK.
Two states are called logically equivalent if they satisfy precisely the same
formulae.

The interpretation of the modalities can be conveniently reformulated
using the following notion of witnesses.

5.4. Definition. Let X be a set and w, a1, . . . , an, b subsets of X. We say
that w witnesses (a1, . . . , an; b) if w ∩ ai 6= ∅ for all i ∈ {1, . . . , n} and w ⊆ b.
We say that w co-witnesses (a1, . . . , an; b) if w ⊆ ai for some i ∈ {1, . . . , n}
or w ∩ b 6= ∅.

It is straightforward to see that in an instantial neighbourhood model
M = (X,N, V ) a state x satisfies (ϕ1, . . . , ϕn;ψ) if there is a neighbourhood
w ∈ N(x) witnessing (Jϕ1KM, . . . , JϕnKM; JψKM).

5.5. Definition. Let (X,N) be an instantial neighbourhood frame. Define
the map m ,n : (PX)n+1 → PX by

m ,n(a1, . . . , an; b) = {x ∈ X | ∃w ∈ N(x) that witnesses (a1, . . . , an; b)}.

When there is no danger of confusion we suppress the subscript n from m ,n

and simply write m .

Yet another way to view the interpretation of the modalities in an
instantial neighbourhood model M is via the equality

J (ϕ1, . . . , ϕn;ψ)KM = m (Jϕ1KM, . . . , JϕnKM, JψKM).

The algebraic semantics of INL is given by instantial neighbourhood
algebras. Such algebras consist of a Boolean algebra B and an ω-indexed
family of functions, reflecting the infinite number of modal operators in
INL. They play the same rôle for INL that modal algebras play for normal
modal logic (see e.g. [100, Section 7.5], [70, Section 5.2] or Definition 3.1) and
monotone Boolean algebras expansions for monotone modal logic (see [209,
Section 7.1], [210, Section 2.4.1] or Definition 3.33).

5.6. Definition. An instantial neighbourhood algebra (INA) is a pair
(B, ( n)n∈ω) consisting of a Boolean algebra B and an ω-indexed set of
functions n : Bn+1 → B satisfying the following (in)equalities for all n ∈ ω:

(B1) n(a1, . . . , an−1,⊥; b) = ⊥;

(B2) n(a1, . . . , ai, ai+1, . . . , an; b) = n(a1, . . . , ai+1, ai, . . . , an; b);

(B3) n(a1, . . . , an; b) ≤ n(a1, . . . , an ∨ a′n; b ∨ b′);
(B4) n(a1, . . . , an; b) ≤ n(a1, . . . , an ∧ b; b);
(B5) n(a1, . . . , an; b) ≤ n+1(a1, . . . , an, c; b) ∨ n(a1, . . . , an; b ∧ ¬c);
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(B6) n+1(a1, . . . , an+1; b) ≤ n(a1, . . . , an; b);

(B7) n(a1, . . . , an; b) ≤ n+1(a1, . . . , an, an; b).

A morphism between INAs (B, ( n)n∈ω) and (B′, ( ′
n)n∈ω) is a Boolean

homomorphism h : B → B′ which satisfies

h
(

n(a1, . . . , an; b)
)

= ′
n

(
h(a1), . . . , h(an);h(b)

)
for all ai, b ∈ B and n ∈ ω. The collection of INAs and INA morphisms
forms a category (a variety of algebras, in fact) denoted by INA.

Observe that (B2) allows us to put the ai in any desired order. In (B4)
equality holds because of (B3) and in (B7) equality hold because of (B6).

5.7. Remark. In the paper on which this section is based [60], instantial
neighbourhood algebras are referred to as Boolean algebras with instantial
operators (BAIOs). Here we call them instantial neighbourhood algebras to
more uniformly indicate the relation with the neighbourhood algebras from
Section 4. Indeed, instantial neighbourhood algebras relate to (descriptive)
instantial neighbourhood frames in the same way neighbourhood algebras
relate to (descriptive) neighbourhood frames.

Every instantial neighbourhood frame (X,N) gives rise to an INA, namely
its complex algebra.

5.8. Example. Let (X,N) be an IN-frame. Let ℘X be the powerset of X
viewed as a Boolean algebra. Then it is easy to verify that (℘X, (m ,n)n∈ω)
is an instantial neighbourhood algebra. This is called the complex algebra of
(X,N).

5.9. Example. Recall that Prop is an arbitrary but fixed set of propo-
sition letters. Write ϕ ≡ ψ if two formulae are provably equivalent in
INL and write [ϕ] for the equivalence class of ϕ under ≡. Then INL/≡
is an instantial neighbourhood algebra, where n([ϕ1], . . . , [ϕn]; [ψ]) is de-
fined as [ (ϕ1, . . . , ϕn;ψ)]. This is of course the free INA generated by
Prop, and is known as the Lindenbaum-Tarski algebra. We denote it by
L = (INL/≡, ( n)n∈ω).

Instantial neighbourhood algebras can be viewed as algebras for the
functor J : BA→ BA defined next.

5.10. Definition. For a Boolean algebra B, let JB be the Boolean algebra
generated by the set{

n(a1, . . . , an; b) | ai, b ∈ B,n ∈ ω
}

subject to the relations from Definition 5.6, where every occurrence of is
replaced by and the elements a1, . . . , an, b range over B.
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For a homomorphism h : B → B′ define Jh : JB → JB′ on generators by

(Jh)( n(a1, . . . , an; b)) = n(f(a1), . . . , f(an); f(b)).

The assignment J determines an endofunctor on BA.

When it is clear from context we usually drop the subscript n from
expressions of the form n(a1, . . . , an; b), and simply write (a1, . . . , an; b),
or even (~a; b).

5.11. Theorem. INA ∼= Alg(J).

Proof. This is straightforward, and resembles to proof of Theorem 3.10 which
is given in Subsection 3.1.

One may wonder whether an instantial neighbourhood algebra (B, ( n)n∈ω)
is determined uniquely by its reduct (B, 0).3 The following example answers
this negatively by giving two instantial neighbourhood algebras (B, ( n)n∈ω)
and (B, ( ′

n)n∈ω) based on the same Boolean algebra B, such that 0 = ′
0

and 1 6= ′
1.

5.12. Example. Let X = {x} be a one-element set and define neighbourhood
functions N,M : X → PPX by N(x) = {∅} and M(x) = {∅, X}. Then
(X,N) and (X,M) are finite instantial neighbourhood frames.

Let (℘X, ( n)n∈ω) be the complex algebra of (X,N) and (℘X, ( ′
n)n∈ω)

the complex algebra of (X,M). Then

0(∅) = ′
0(∅) = X and 0(X) = ′

0(X) = X.

But 1(X;X) = ∅, because no neighbourhood in N(x) touches X, while
′
1(X;X) = X is witnessed by X ∈M(x).

This raises the question whether 0 and 1 determine the action of all

n of an instantial neighbourhood algebra (B, ( n)n∈ω). After all, 1 allows
us to get a grip on instances and hence makes the operator much more
versatile. More generally, we may ask if there exists some natural number k
such that (B, ( n)n∈ω) is determined uniquely by the operators 1, . . . , k.
We generalise Example 5.12 to show that this is not the case.

5.13. Example. Let X = {x1, . . . , xk} be a k-element set. Define neigh-
bourhood functions N,M : X → PPX by

N(xi) = PX \ {X}, M(xi) = PX

for all xi ∈ X. Again, write (℘X, ( n)n∈ω) for the complex algebra of (X,N)
and (℘X, ( ′

n)n∈ω) the complex algebra of (X,M).

3This interesting question was asked by Zhiguang Zhao and forwarded to me by Nick
Bezhanishvili.
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Since N(xi) ⊆M(xi) we have

n(a1, . . . , am; b) ⊆ ′
n(a1, . . . , am; b)

for all a1, . . . , am, b ∈ PX. Furthermore, we claim that for all n < k we have

′
n(a1, . . . , an; b) ⊆ n(a1, . . . , an; b),

where a1, . . . , an, b ∈ PX. To see this, suppose x ∈ ′
n(a1, . . . , an; b). If

this is witnessed by c ∈ M(x) and c 6= X, then c ∈ N(x) and therefore
x ∈ ′

n(a1, . . . , ak−1; b). If X is the witness, then we must have b = X.
In this case we can pick for each of the aj an element yj ∈ aj and set
c = {y1, . . . , yn}. By construction c witnesses (a1, . . . , an; b). Furthermore,
c ∈ N(x) because c has less than k elements so c 6= X. Therefore, again,
x ∈ ′

n(a1, . . . , an; b). This proves that n and ′
n coincide for all n < k.

Finally, observe that

k

(
{x1}, . . . , {xk};X

)
= ∅ while ′

k

(
{x1}, . . . , {xk};X

)
= X.

The former follows from the fact that each c ∈ N(x) does not contain one of
the xi, hence has empty intersection with {xi}. The latter follows from the
fact that X ∈M(x) for all x ∈ X.

5.2 The double Vietoris functor and duality

As stated in the introduction, it seems reasonable to expect that the double
Vietoris functor VV is dual to J with respect to Stone duality. We prove
that this is indeed the case. More concretely, we give a natural isomorphism

Uf · J ·Clp→ VV . (5.1)

We first work towards an isomorphism Uf · J ·ClpX ∼= VVX, where X is a
Stone space. Lemma 5.22 then states that the collection of these isomorphisms
forms a natural isomorphism. This ultimately proves the duality between
(the categories of) J-algebras and VV -coalgebras (Theorem 5.23).

We commence by giving an alternative subbase for the double Vietoris
topology, which is tailored to our specific needs. Recall that the topology on
the Vietoris hyperspace of a Stone space is defined using sets of the form
a = {c ∈ VX | c ⊆ a} and a = {c ∈ VX | c ∩ a 6= ∅} (see Definition 3.12).

5.14. Proposition. Let X be a Stone space. The topology on VVX is
generated by the clopen subbase

(a1, . . . , an; b) =
{
W ∈ VVX | ∃w ∈W s.t. w witnesses (a1, . . . , an; b)

}
,

(a1, . . . , an; b) =
{
W ∈ VVX | ∀w ∈W, w co-witnesses (a1, . . . , an; b)

}
,

where the ai, b range over the clopen subsets of X.
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Proof. The given sets are clopen in VVX, because

(a1, . . . , an; b) = ( a1 ∩ · · · ∩ an ∩ b)

and
(a1, . . . , an; b) = ( a1 ∪ · · · ∪ an ∪ b).

In order to show that they are a subbase for the topology on VVX, we
must show that A and A are Boolean combinations of clopens of the form

(~a; b) and (~a; b), where A is an arbitrary clopen subset of VX. Note that
A can be written as the finite intersection of finite unions of clopen subsets
of VX of the form a, a. Moreover, we may assume that there is a single
diamond in each finite union because diamonds distribute over unions. So
we may write A =

⋂n
i=1

(
a1 ∪ · · · ∪ ami ∪ bi

)
. This implies

A =
n⋂
i=1

(
a1 ∪ · · · ∪ ami ∪ bi

)
=

n⋂
i=1

(a1, . . . , ami ; bi).

Similarly, writing A as a finite union of finite intersections, A can be
expressed as a finite union of clopens of the form (a1, . . . , an; b).

5.15. Remark. The Vietoris functor can be extended to an endofunctor
on Top which sends a topological space to its space of compact subsets,
topologised by sets of the form a and a where a ranges over the open
subsets. With this extended Vietoris functor, statement of Proposition 5.14
holds for any topological space X if we require the ai and b to be range over
the open subsets of X. The proof of this is slightly more involved because it
crucially uses compactness of the elements of VX.

Recall from Subsection 1.1 that ultrafilters correspond bijectively to
homomorphisms into 2, the two-element Boolean algebra. Therefore we may
view an ultrafilter p of B both as a subset of B, and as a homomorphism
p : B → 2. We use these two perspectives interchangeably.

We now define a map ζX : Uf · J · ClpX → VVX, where X is a Stone
space. These will form the components of the intended natural transformation
from (5.1). Intuitively, to an ultrafilter p we want to attach a closed subset Wp

of VX that satisfies Wp ∈ (a1, . . . , an; b) if and only if p( (a1, . . . , an; b)) =
>. In our definition, we guarantee the implication from left to right by
“killing the witnesses”: if p( (a1, . . . , an; b)) = ⊥, then we make sure that
none of the witnesses of (a1, . . . , an; b) is in Wp. In other words, we stipulate
that Wp be disjoint from a1 ∩ · · · ∩ an ∩ b.

5.16. Definition. For a Stone space X, define ζX : Uf · J ·ClpX→ VVX
by sending an ultrafilter p to

Wp = VX \
⋃
{ a1 ∩ · · · ∩ an ∩ b | p( (a1, . . . , an; b)) = ⊥}.
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Since Wp is the complement of a union of clopen subsets of VX, it is
closed in VX, hence an element of VVX. Therefore ζX is well defined.
For the converse direction we need the following definition. We abbreviate
(~a; b) = (a1, . . . , an; b).

5.17. Definition. For a Stone space X, define

ξX : VVX→ Uf · J ·ClpX : W 7→ pW ,

where pW : J(ClpX)→ 2 is given on generators by

pW : J(ClpX)→ 2 : (~a; b) 7→
{
> if W ∈ (~a; b)
⊥ otherwise

5.18. Lemma. The assignment ξX is well defined.

Proof. In order to show that ξX is well defined, we need to show that for each
W ∈ VVX, the map pW is a Boolean algebra homomorphism J(ClpX)→ 2.
Since J is defined by generators and relations it suffices to show that the
images of the generators under pW satisfy the relations (B1) to (B7). We
leave this straightforward verification to the reader.

The following lemma provides the key ingredient for proving that ζX and
ξX are continuous and inverses of each other.

5.19. Lemma. Let X be a Stone space and p ∈ Uf(J(ClpX)). We have

Wp ∈ (~a; b) iff p
(

(~a; b)
)

= >.

Proof. If p( (~a; b)) = ⊥, then by construction Wp /∈ (~a; b). So suppose
Wp /∈ (~a, b). Then for every witness w of (~a, b) there exists (~cw, dw) which
is witnessed by w and is such that p( (~cw, dw)) = ⊥.

The collection of witnesses is the set A = a1 ∩ · · · ∩ an ∩ b. This is
a closed set of VX, and it is covered by the collection

{ cw,1 ∩ · · · ∩ cw,mw ∩ dw | w ∈ A}.

Clearly this set is an open covering of A, so by compactness of VX there
must be a finite subcover of A. That is

A ⊆
⋃
w∈A′

( cw,1 ∩ · · · ∩ cw,mw ∩ dw),

where A′ is some finite subset of A serving as an index. Now it follows from
Lemma 5.20 below that p( (~a; b)) = ⊥.

The following technical result is motivated by the proof of Lemma 5.19.
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5.20. Lemma. Let X be a Stone space and ai, b, cj , d ∈ ClpX. Suppose
A = a1 ∩ · · · ∩ an ∩ b is covered by the finite set

{Ci = ci,1 ∩ · · · ∩ ci,ni ∩ di | 1 ≤ i ≤ m}.

Suppose p : J(ClpX)→ 2 is an ultrafilter and p( (ci,1, . . . , ci,ni ; di)) = ⊥ for
all Ci in the given cover. Then p( (a1, . . . , an; b)) = ⊥.

Proof. If A = ∅ the lemma is trivial, so henceforth we assume A 6= ∅.

Part 1. Since (clearly) b ∈ A there must be a Ci containing b. Call this
C = c1 ∩ · · · ∩ ck ∩ d. Now consider bj := b \ cj . This is not in C.
If it is not in A, then we must have cj ⊇ ai for some i, because clearly
bj ⊆ b. If it is in A, then it must be in another element of the cover, say,
Cj = cj1 ∩ · · · ∩ cjnj ∩ dj . Observe that bj = b \ cj ⊆ dj .

Next, consider bj,k := b \ (cj ∪ cjk), where 1 ≤ k ≤ nj . If this is not in A,
then we must have ai ⊆ cj ∪ cjk for some i. If it is in A, then it must be in
one of the elements of the cover, say, Cjk = cjk,1 ∩ · · · ∩ cjk,njk ∩ djk.
Note that bj,k is not in C and not in Cj by construction. Again, observe
that bj,k ⊆ djk. Continuing this way gives a tree, see the diagram below for
intuition.

Each bj1,j2,...,jk = b\ (cj1 ∪ cj1j2 ∪· · ·∪ cj1j2···jk) is in none of the preceding
cover elements. Since we started with a finite cover, this process must
terminate, i.e. the branches of our tree must be finite. That is, at some point
bj1,j2,...,jk is not in A, and since clearly bj1,j2,...,jk ⊆ b, it must be the case that
bj1,j2,...,jk /∈ ai for some ai, i.e. we must have ai ⊆ (cj1∪cj1j2∪· · ·∪cj1j2···jk).

b

C

b1 = b \ c1 b2 = b \ c2

C1 C2

b1,1 =
b \ (c1 ∪ c11)

b1,2 =
b \ (c1 ∪ c12)

b2,1 =
b \ (c2 ∪ c21)

b2,2 =
b \ (c2 ∪ c22)

C11 C12 C21 C22

Part 2. Now we have set ourselves up for the proof of the proposition. We
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will use rule (B5) finitely many times. The first step is:

(~a; b) ≤ (~a, c1; b) ∨ (~a; b \ c1). (5.2)

We continue using (B5) as follows: when given an element of the form
(~a,~c; bj1,j2,...,jk) we verify what is the lowest entry ` such that cj1j2···jk` is

not in ~c, and apply (B5) using this. It can be seen that (5.2) above is also
obtained in this way. Thus the first two iterations are:

(~a; b) ≤ (~a, c1; b) ∨ (~a; b \ c1)

≤ (~a, c1, c2; b) ∨ (~a, c1; b2) ∨ (~a, c11; b1) ∨ (~a; b1,11)

For an entry, we cannot proceed if either all cj1···jk,` from a Cj1···jk in the
tree already occur in ~c, or if the thing we subtract from b, i.e. cj1 ∪ cj1j2 ∪
· · · ∪ cj1j2···jk contains one of the ai (for then cj1j2···jk,` is not defined). In the
first case, we have

(~a,~c; b \ (cj1 ∪ cj1j2 ∪ · · · ∪ cj1j2···jk))

≤ (cj1···jk,1, . . . , cj1···jk,nj1···jk ; dj1···jk).
(5.3)

The inequality follows from using (B6) a lot, and applying (B3) to the fact
that bj1,j2,...,jk ⊆ dj1···jk . As the right hand side of (5.3) is one of the elements
in the cover, we get

p( (~a,~c; b \ (cj1 ∪ cj1j2 ∪ · · · ∪ cj1j2···jk)))

≤ p( (cj1···jk,1, . . . , cj1···jk,nj1···jk ; dj1···jk)) = ⊥.

In the second case, we get ⊥ because the intersection of one of the ai and
bj1j2···jk is empty, and we use (B4) and (B1).

Since this procedure is finite, this yields (~a; b) ≤ ⊥, as desired.

As a corollary of Lemma 5.19 we obtain the following lemma.

5.21. Lemma. The maps ξX and ζX are continuous and each others inverses.
Hence ζX is a homeomorphism.

Proof. We first prove continuity. The open subsets of Uf(J(ClpX)) are
generated by θ( (~a; b)) = {p | p( (~a; b)) = >}, where (~a; b) = (a1, . . . , an; b)
is an (n+ 1)-tuple of clopen subsets of X. We have

ξ−1
X θ( (~a; b)) = ξ−1

X
(
{p | p( (~a; b)) = >}

)
=
{
W ∈ VVX |W ∈ (~a; b)

}
= (~a; b),

which is clopen in VVX. Similarly ζ−1
X ( (~a; b)) = {p | Wp ∈ (~a; b)} =

θ( (~a; b)).
We now prove that ζX◦ξX and ξX◦ζX are identities. For the former, observe

that Lemma 5.19 implies p( (~a; b)) = > iff Wp ∈ (~a; b) iff pWp( (~a; b)) = >.
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So p and pWp coincide on the generators of J(ClpX), therefore p = pWp and
hence ξX ◦ ζX = iduf·J·clpX.

To see that ζX ◦ ξX = idVVX, note that it suffices to show that W and
WpW are in the same generating opens of the topology. Since the diamond is
dual to the box it suffices to show that W /∈ (~a; b) iff WpW /∈ (~a; b). This
is easy: W /∈ (~a; b) iff pW ( (~a, b)) = ⊥ iff WpW /∈ (~a; b). The first “iff”
holds by definition of ξX, the second by Lemma 5.19.

5.22. Lemma. The collection ζ = (ζX)X∈Stone : Uf · J · Clp → VV is a
natural isomorphism.

Proof. We have already seen that ζX is a homeomorphism for every Stone
space X (i.e. an isomorphism in Stone), so it is left to show naturality. That
is, where f : X→ X′ is a continuous function we need to show that

Uf(J(ClpX)) VVX

Uf(J(ClpX′)) VVX′

ζX

Uf·J·Clpf VVf

ζX

commutes. Since elements of a Stone space are uniquely determined by
the clopen sets in which they are contained, it suffices to show that for all
p ∈ Uf(J(ClpX)) and ai, b ∈ ClpX we have

VVf(ζX(p)) ∈ (~a; b) iff ζX′(Uf · J ·Clpf(p)) ∈ (~a; b).

This follows from a straightforward computation:

VVf(ζX(p)) ∈ (~a; b) iff ζX(p) ∈ (VVf)−1( (~a; b))

iff ζX(p) ∈ (f−1(~a); f−1(b))

iff p( (f−1(~a); f−1(b))) = >
iff p(J ·Clpf( (~a; b))) = >
iff Uf · J ·Clpf(p)( (~a; b)) = >
iff ζX′(Uf · J ·Clpf(p)) ∈ (~a; b)

We conclude that (ζX)X∈Stone is indeed a natural isomorphism.

As an immediate corollary we obtain the main theorem of this section.

5.23. Theorem. We have a dual equivalence

Alg(J) ≡op Coalg(VV ).

As V is dual to the functor K on Boolean algebras (see Definition 3.7 and
Lemma 3.13), we obtain the following corollary, which confirms the intuition
that INL is “modal logic taken twice.”

5.24. Corollary. The functor J is naturally isomorphic to the composition
K ·K.
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5.3 Descriptive instantial neighbourhood frames

While we abstractly know the duals of instantial neighbourhood algebras
to be VV -coalgebras, this is not very intuitive. In this section we provide
a more traditional view of VV -coalgebras by means of descriptive instan-
tial neighbourhood frames. We then prove that the category of descriptive
instantial neighbourhood frames and appropriate morphism is isomorphic to
Coalg(VV ).

5.25. Definition. A general instantial neighbourhood frame or general IN-
frame is a triple (X,N,A) such that (X,N) is an instantial neighbourhood
frame and A ⊆ PX is a collection of admissible sets that is closed under
Boolean operations and the operation m ,n : (PX)n+1 → PX for each
n ∈ ω (see Definition 5.5).

A general IN-morphism from (X,N,A) to (X ′, N ′A′) is an instantial
neighbourhood morphism f : (X,N) → (X ′, N ′) satisfying f−1(a′) ∈ A
for all a′ ∈ A′. Write G-INF for the category of general IN-frames and
-morphisms.

Since every algebra is a subalgebra of itself, every IN-frame can be seen
as a general IN-frame:

5.26. Example. If (X,N) is an instantial neighbourhood frame, then setting
A = PX yields a general IN-frame.

5.27. Definition. A general IN-frame (X,N,A) is called differentiated if
the underlying field of sets (X,A) is differentiated (see Definition 1.8(1)),
and compact if (X,A) is compact (Definition 1.8(2)). It is called crowded if
for all x ∈ X and d ⊆ X:

If d /∈ N(x) then we can find a1, . . . , an, b ∈ A such that
d witnesses (a1, . . . , an; b) while no d′ ∈ N(x) witnesses (a1, . . . , an; b).

A descriptive instantial neighbourhood frame is a general IN-frame that is
differentiated, compact and crowded. Denote by D-INF the full subcategory
of G-INF whose objects are descriptive frames.

The notion of crowdedness is the INL analogue of the tightness condition
for normal modal logic (see Definition 3.16 or [70, Definition 5.65]). Intuitively,
it states that N(x) is determined by the admissible subsets. In passing, we
make the following observation, the proof of which is straightforward.

5.28. Proposition. Let (X,N) be an instantial neighbourhood frame and
suppose X is finite. Then A = PX is the unique set of admissible sets
making (X,N,A) a descriptive IN-frame.
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We will now work our way towards proving that the descriptive IN-frames
from Definition 5.27 correspond precisely coalgebras for the double Vietoris
functor VV .

5.29. Theorem. We have

D-INL ∼= Coalg(VV ).

A helpful tool in the proof of Theorem 5.29 is the notion of the largest
representative of a set d ⊆ X in a general IN-frame (X,N,A). It is given by
the closure of d in the topology on X generated by the clopen base A.

5.30. Definition. Let (X,N,A) be a general IN-frame and d ⊆ X. Then
we define the largest representative of d to be

d =
⋂
{a ∈ A | d ⊆ a}.

The largest representative enjoys the following useful properties.

5.31. Lemma. Let (X,N,A) be a general IN-frame, d ⊆ X and a1, . . . , an, b ∈
A. Then d witnesses (a1, . . . , an; b) if and only if d does.

Proof. We show that d∩ai 6= ∅ iff d∩ai 6= ∅ and d ⊆ b iff d ⊆ b. It is easy to
see that this proves the lemma. Suppose d∩ai 6= ∅. Since d ⊆ d we also have
d∩ ai 6= ∅. Conversely, if d∩ ai = ∅ then d ⊆ X \ ai and since the latter is in
A we have d ⊆ X \ ai. This implies d ∩ ai = ∅. Next suppose d ⊆ b, then by
definition d ⊆ b, because b ∈ A. Conversely, if d ⊆ b we have d ⊆ d ⊆ b.

5.32. Lemma. Let (X,N,A) be a descriptive IN-frame, d ⊆ X and x ∈ X.
Then d ∈ N(x) if and only if d ∈ N(x).

Proof. This follows directly from the proof of Lemma 5.31.

The following two lemmas describe the object part of the isomorphism
from Theorem 5.29.

5.33. Lemma. Let (X, γ) be a VV -coalgebra. Write X for the set underlying
X and let Nγ(x) = {d ⊆ X | d ∈ γ(x)}. Then (X,Nγ ,ClpX) is a descriptive
instantial neighbourhood frame.

Proof. We know that ClpX is closed under Boolean operations and it fol-
lows from continuity of γ that ClpX is closed under m . Furthermore,
(X,Nγ ,ClpX) is differentiated because X is Hausdorff and compact because
X is compact.

Lastly, we show that it is crowded. Suppose c /∈ Nγ(x). Without loss of
generality we may assume c to be closed, hence an element of VX, because
we know from Lemma 5.31 that c and c witness precisely the same tuples. It
follows from the definition of Nγ that c /∈ γ(x). Since γ(x) is a closed subset
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of VX, there must be a basic clopen a1 ∩ · · · ∩ an ∩ b containing c and
disjoint from γ(x). Therefore c witnesses (a1, . . . , an; b) while none of the
elements in γ(x) witness (a1, . . . , an; b). It then follows from the definition
of Nγ and Lemma 5.31 that none of the d ∈ Nγ(x) witness (a1, . . . , an; b).
Therefore (X,Nγ ,ClpX) is crowded.

5.34. Lemma. Let (X,N,A) be a descriptive instantial neighbourhood frame,
write X for the set X topologised by the clopen subbase A and let γN : X→
VVX : x 7→ {c ∈ VX | c ∈ N(x)}. Then (X, γN ) is a VV -coalgebra.

Proof. The topological space X is a Stone space because (X,A) is a descriptive
field of sets, see Definition 1.8 and Lemma 1.13. In order to show that γN
is well defined, we need to show that γN (x) is a closed subset of VX for
every x ∈ X. Suppose c ∈ VX and c /∈ γN (x). Then c /∈ N(x), and because
(X,N,A) is crowded we can find (a1, . . . , an; b) which is witnessed by c but
by none of the elements in N(x). This implies c ∈ a1 ∩ · · · ∩ an ∩ b and
a1 ∩ · · · ∩ an ∩ b is disjoint from γN (x). Thus we have found an open

neighbourhood of c disjoint from γN (x) so γN (x) is closed in VX.

For continuity of γN , it suffices to show that γ−1
N ( (a1, . . . , an; b)) is

clopen in X for all a1, . . . , an, b ∈ A. This is a consequence of the fact that
A is closed under m , because

γ−1
N ( (a1, . . . , an; b)) = m (a1, . . . , an; b).

We conclude that (X, γN ) is a VV -coalgebra.

We proceed with the proof of Theorem 5.29.

Proof of Theorem 5.29. First we verify that the assignments from Lem-
mas 5.33 and 5.34 define a bijection between descriptive frames and VV -
coalgebras. Let (X, γ) be a VV -coalgebra. Lemma 5.33 assigns to this
the descriptive frame (X,Nγ ,ClpX). We know from Lemma 1.13 that the
topology on X generated by ClpX yields the topological space X, so applying
Lemma 5.34 to (X,Nγ ,ClpX) yields the VV -coalgebra (X, γNγ ). Further-
more, for a closed set c ∈ VX we have c ∈ γNγ (x) iff c ∈ Nγ(x) iff c ∈ γ(x),
hence γ = γNγ and (X, γ) = (X, γNγ ).

Conversely, suppose given a descriptive frame (X,N,A). Write τA for
the topology on X generated by the (clopen) basis A and let X = (X, τA).
Then Lemma 5.34 sends (X,N,A) to (X, γN ), which is in turn send to
(X,NγN ,ClpX) by Lemma 5.33. We know that the clopen sets of τA are
precisely the sets in A, so ClpX = A. Comparing the neighbourhood
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functions gives

d ∈ N(x) iff d ∈ N(x) (Lemma 5.32)

iff d ∈ γN (x) (Lemma 5.34)

iff d ∈ NγN (x) (Lemma 5.33)

iff d ∈ NγN (x) (Lemma 5.32)

and therefore (X,N,A) = (X,NγN ,ClpX). This proves the isomorphism on
objects.

Let (X, γ) and (X′, γ′) be two VV -coalgebras and f : X → X ′ a function.
We claim that f is a VV -coalgebra morphism if and only if it is a general
IN-morphism. If f is a general IN-morphism then clearly it is continuous.
Since it is an IN-morphism moreover the diagram

X X ′

PPX PPX ′

f

Nγ Nγ′

PPf

(5.4)

commutes. It follows immediately that

X X ′

VVX VVX ′

f

γ γ′

VVf

(5.5)

commutes, so f is an VV -coalgebra morphism.
Conversely, if f is continuous and (5.5) commutes, then (5.4) commutes

because d ∈ Nγ′(f(x)) iff d ∈ Nγ′(f(x)) iff d ∈ γ′(f(x)) iff d ∈ VVf(γ(x))
iff d ∈ PPf(Nγ(x)) iff d ∈ PPf(Nγ(x)). The last “iff” follows from
Lemma 5.32. It is a general IN-morphism because continuity implies that
f−1 sends admissible subsets to admissible subsets.

5.35. Theorem. We have a dual equivalence

INA ≡op D-INF.

Proof. Combining Theorems 5.11, 5.23 and 5.29 we obtain

INA ∼= Alg(J) ≡op Coalg(VV ) ∼= D-INF,

which proves the theorem.

We now know that there exists a duality between instantial neighbourhood
algebras and descriptive IN-frames. If we unravel the definitions, we see that
concretely this is given by sending a descriptive IN-frame (X,N,A) to the
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instantial neighbourhood algebra (A, (m ,n)n∈ω) and an general IN-morphsim
f to f−1. Conversely, if (B, ( n)n∈ω) is an instantial neighbourhood algebra,
then its dual descriptive IN-frame is the frame (ufB,N, θ(B)), where ufA
is the set of ultrafilters of A, N is given by

N(p) = {d ⊆ ufB | d witnesses (θ(a1), . . . , θ(an); θ(b))

if and only if n(a1, . . . , an; b) ∈ p}

and θ(B) = {θ(a) | a ∈ B} (where θ(a) = {p ∈ ufB | a ∈ p}). The dual of a
morphism h in INA is given by ufh = h−1.

5.4 Applications

We discuss some applications that make use of the duality derived in Theo-
rem 5.35.

5.4.1 Completeness

An extension of INL is any set of INL-formulae which contains INL and is
closed under the rules of modus ponens (MP) and (RE) from Definition 5.1.

It is well known that every modal logic is sound and complete with respect
to its algebraic semantics [100, 70, 270]. From the main completeness result
of [36] it follows that instantial neighbourhood algebras provide an algebraic
semantics for INL. Then the standard argument yields that every extension
E of INL is sound and complete with respect to the class of instantial
neighbourhood algebras validating E. Moreover, as a direct corollary of
Theorem 5.35, we obtain:

5.36. Theorem. Every extension E of INL is sound and complete with
respect to the class of descriptive IN-frames validating E.

5.4.2 Bisimulations and a Hennessy-Milner theorem

We briefly discuss bisimulations for INL and derive a Hennessy-Milner prop-
erty for descriptive IN-frames. An in-depth discussion of bisimulations for
INL, including stronger Hennessy-Milner results and a Van Benthem char-
acterisation theorem, is given in [197]. We start by recalling the definition
of an INL-bisimulation from [36, Definition 2.5], in a slightly reformulated
form.

5.37. Definition. Let M = (X,N, V ) and M′ = (X ′, N ′, V ′) be IN-models.
A relation B ⊆ X ×X ′ is an INL-bisimulation if for all (x, x′) ∈ B we have:
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• x ∈ V (p) if and only if x′ ∈ V ′(p), for all p ∈ Prop;

• If a ∈ N(x) then there exists a′ ∈ N ′(x′) s.t. a′ ⊆ B[a] and a ⊆ B−1[a′];

• If a′ ∈ N ′(x′) then there exists a ∈ N(x) s.t. a′ ⊆ B[a] and a ⊆ B−1[a′].

Two states x ∈ X and x′ ∈ X ′ are called INL-bisimilar if there exists an
INL-bisimulation linking them,

Here B[a] = {x′ ∈ X ′ | xBx′ for some x ∈ a} and B−1[a′] = {x ∈ X |
xBx′ for some x′ ∈ a′}.

Recall that two states are called behaviourally equivalent if they are identi-
fied by two IN-model morphisms. INL-bisimilarity is implied by behavioural
equivalence. (The converse is true as well, but we refrain from proving this
because we do not need it here.)

5.38. Lemma. Let M = (X,N, V ) and M′ = (X ′, N ′, V ′) be IN-models,
and let x ∈ X and x′ ∈ X ′. If x and x′ are behaviourally equivalent, then
they are INL-bisimilar.

Proof. If x and x′ are behaviourally equivalent then there are IN-model
morphisms identifying them. Since the graph of a morphism is an INL-
bisimulation [36, Proposition 2.9] and the composition of two INL-bisimulations
is again an INL-bisimulation, the states x and x′ are INL-bisimilar.

In order to employ duality to obtain Hennessy-Milner results, we use
models based on descriptive IN-frames.

5.39. Definition. Let (X,N,A) be a descriptive IN-frame. An admissible
valuation for (X,N,A) is a valuation V : Prop→ PX such that V (p) ∈ A
for all p ∈ Prop.

A descriptive IN-model is a tuple (X,N,A, V ) such that (X,N,A) is a
descriptive IN-frame and V is an admissible valuation. A descriptive IN-model
morphism between descriptive IN-models (X,N,A, V ) and (X ′, N ′, A′, V ′)
is a map f : X → X ′ that is simultaneously a descriptive IN-morphism
f : (X,N,A) → (X ′, N ′, A′) and an IN-model morphism f : (X,N, V ) →
(X ′, N ′, V ′). Write D-INM for the category of descriptive IN-models and
-morphisms.

Note that the admissible valuations of a descriptive IN-frame correspond
bijectively with assignments of the proposition letters to elements of the dual
instantial neighbourhood algebra. As a consequence, we obtain a duality
between D-INM and the category INA-Mod, whose objects are instantial
neighbourhood algebras (B, ( n)n∈ω) with an assignment Prop→ B of the
proposition letters, and whose morphisms are INA-morphisms that preserve
the assignment. Moreover, the Lindenbaum-Tarski algebra constructed in
Example 5.9, with the assignment V : Prop → INL/≡ : p 7→ [p], is initial
in INA-Mod. Therefore its dual is final in D-INM. Let us denote it by
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Z. A routine induction shows that the unique morphisms from descriptive
IN-models into Z identify logically equivalent states.

5.40. Lemma. Let M and M′ be two descriptive IN-models and x, x′ two
states in them. Then x and x′ are logically equivalent if and only if they are
behaviourally equivalent (that is, identified by two morphisms in D-INM).

Proof. The direction from left to right has been argued above. The reverse
direction follows from the fact that IN-model morphisms preserve truth of
formulae [36, Corollary 2.10].

Towards a Hennessy-Milner theorem for the class of descriptive IN-models,
we define INL-bisimulations between such models.

5.41. Definition. A descriptive INL-bisimulation between M and M′ is an
INL-bisimulation B between the underlying IN-frames.

In [146] the notion of Λ-bisimulation is introduced, where Λ is a so-
called (characteristic) modal signature for an endofunctor on Stone. It is
straightforward to see that the interpretation of INL in descriptive IN-frames
can be translated to the setting used in [146]. Moreover, an easy computation
shows that every descriptive INL-bisimulation in the sense of Definition 5.41
is a Λ-bisimulation. We expect that the converse holds as well but at present
do not have a proof of this. We leave it as an interesting open question.

We now prove a Hennessey-Milner property for descriptive IN-frames.
This is the INL analogue of [55, Corollary 3.9].

5.42. Theorem. Let M and M′ be descriptive IN-frames, and x and x′

states in M and M′, respectively. Then the following are equivalent:

1. x and x′ are logically equivalent;

2. x and x′ are behaviourally equivalent;

3. x and x′ are linked by a descriptive INL-bisimulation.

Proof. Logical equivalence implies behavioural equivalence by Lemma 5.40.
If x and x′ are behaviourally equivalent then there are morphisms in D-INF
such that f(x) = f ′(x′). Since in particular these are IN-model morphisms
between the underlying models, it follows from Lemma 5.38 that x and x′

are linked by a (descriptive) INL-bisimulation. Lastly, (descriptive) INL-
bisimilarity implies logical equivalence by design.

We can apply this theorem to all IN-models that carry a descriptive
structure compatible with the valuation.

5.43. Corollary. Let M = (X,N, V ) and M′ = (X ′, N ′, V ′) be IN-models.
Suppose that there exist collections A ⊆ PX and A′ ⊆ PX ′ such that
(X,N,A, V ) and (X ′, N ′, A′, V ′) are descriptive IN-models. Then x ∈ X and
x′ ∈ X ′ are logically equivalent if and only if they are INL-bisimilar.
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Restricting this corollary entails [36, Theorem 3.1], the Hennessy-Milner
property for finite frames, because all finite IN-frames can (uniquely) be
viewed as descriptive IN-frames (see Proposition 5.28).

5.44. Hennessy-Milner theorem. Let M and M′ be finite IN-models.
Then x ∈ M and x′ ∈ M′ are logically equivalent if and only if they are
INL-bisimilar.

5.4.3 Bisimilarity-somewhere-else

The duality for instantial neighbourhood logic gives rise to a notion of
ultrafilter extension of an instantial neighbourhood frame. We define these
and show how they can be used to prove bisimilarity-somewhere-else. That is,
we prove an instantial neighbourhood analogue of [70, Theorem 2.62]. Similar
theorems have appeared in [273, Theorem 27] and [211, Theorem 4.27].

Let X be an IN-frame. The ultrafilter extension of X is defined to be the
IN-frame underlying the descriptive IN-frame dual to the complex algebra of
X. The direct definition reads as follows.

5.45. Definition. The ultrafilter extension of an IN-frame X = (X,N) is
given by uℯX = (Xue, Nue), where Xue is the collection of ultrafilters of the
set X, and Nue is given by

Nue(u) = {d ⊆ Xue | d witnesses (θ(a1), . . . , θ(an); θ(b))

if and only if m (a1, . . . , an; b) ∈ u}

Here a1, . . . , an, b range over PX.
The ultrafilter extension of an IN-model M = (X,N, V ) is

uℯM = (Xue, Nue, V ue),

where V ue(p) = θ(V (p)) = {u ∈ Xue | V (p) ∈ u}.

5.46. Proposition. Let M = (X,N, V ) be an IN-model and u ∈ Xue. Then
we have

JϕKuℯM = θ(JϕKM). (5.6)

Proof. We prove the proposition using induction on the structure of ϕ. The
case ϕ = p holds by definition, as does the case ϕ = >. If ϕ = ¬ψ or
ϕ = ϕ1 ∧ ϕ2 then the induction step is starightforward.

So suppose u ∈ J (ϕ1, . . . , ϕn;ψ)KuℯM. Then u  (ϕ1, . . . , ϕn;ψ) and
hence there exists d ∈ Nue(u) witnessing (Jϕ1KuℯM, . . . , JϕnKuℯM; JψKuℯM).
By induction the latter is (θ(Jϕ1KM), . . . , θ(JϕnKM); θ(JψKM)) and by defini-
tion of Nue this implies

J (ϕ1, . . . , ϕn;ψ)KM = m
(
Jϕ1KM, . . . , JϕnKM; JψKM

)
∈ u

so that u is in the RHS of (5.6). The converse is similar.
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Denote by ηX the map X → Xue : x 7→ {a ∈ PX | x ∈ a}.

5.47. Corollary. Let M = (X,N, V ) be an IN-model, x ∈ X and ϕ ∈ INL.
Then we have

M, x  ϕ iff uℯM, ηX(x)  ϕ.

Proof. We have M, x  ϕ iff x ∈ JϕKM iff JϕKM ∈ ηX(x) iff ηX(x) ∈ θ(JϕKM)
iff ηX(x) ∈ JϕKuℯM iff uℯM, ηX(x)  ϕ.

Putting together the pieces, we obtain bisimilarity-somewhere-else.

5.48. Theorem (Bisimilarity-somewhere-else). Let M = (X,N, V ) and
M′ = (X ′, N ′, V ′) be two IN-models and x ∈ X and x′ ∈ X ′ two states. Then
the following are equivalent:

1. x and x′ are logically equivalent;

2. ηX(x) and ηX′(x
′) are INL-bisimilar, when viewed as states of uℯM

and uℯM′, respectively.

Proof. Combine Corollaries 5.47 and 5.43.

5.4.4 Goldblatt-Thomason theorem

Lastly, we sketch how to derive a Goldblatt-Thomason theorem for instantial
neighbourhood logic. This can be proven along the lines of [70, Theorem 5.54].
Alternatively, the result can be obtained as an instance of the general theorem
developed in Section 11. Throughout this section, we assume that Prop is
an infinite set of proposition letters.

We have already seen the definition of an ultrafilter extension in Subsec-
tion 5.4.3. We now define the other ingredients of the Goldblatt-Thomason
theorem: generated subframes, IN-morphic images, and disjoint unions.

5.49. Definition. Let (X,N) be an IN-frame. An IN-frame (X ′, N ′) is
called a generated subframe of (X,N) if X ′ ⊆ X and for all x ∈ X ′ we have
N ′(x′) = N(x′).

Let (X,N) and (X ′, N ′) be two IN-frames and suppose X ′ is a subset
of X with inclusion morphism i : X ′ → X. An easy verification shows that
(X ′, N ′) is a generated subframe of (X,N) if and only if i is an IN-morphism.

5.50. Definition. Let (X ′, N ′) and (X,N) be INL-frames. We call (X,N)
an IN-morphic image of of (X ′, N ′) if there exists a surjective IN-morphism
e : (X ′, N ′)→ (X,N).

5.51. Proposition. Let (X ′, N ′) and (X,N) be IN-frames and ϕ ∈ INL.

1. If (X ′, N ′) is a generated subframe of (X,N) then (X,N)  ϕ implies
(X ′, N ′)  ϕ.
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2. If (X,N) is an IN-morphic image of (X ′, N ′) then (X ′, N ′)  ϕ
implies (X,N)  ϕ.

Proof. For the first item, suppose (X ′, N ′) is a generated subframe of (X,N)
(witnessed by an injective morphism i : (X ′, N ′)→ (X,N)) and (X,N)  ϕ.
Let V ′ be any valuation for (X ′, N ′) and define the valuation V for (X,N) by
V (p) = {i(x′) | x′ ∈ V ′(p)}. Then i is an IN-model morphism (X ′, N ′, V ′)→
(X,N, V ). By assumption i(x′)  ϕ for all x′ ∈ X ′, so as a consequence of
[36, Corollary 2.10] we have x′  ϕ for all x′ ∈ X ′. That is, (X ′, N ′, V ′)  ϕ.
This goes for all valuations, hence (X ′, N ′)  ϕ.

For the second item, given a valuation V for (X,N) define the valuation V ′

for (X ′, N ′) by V ′(p) = e−1(V (p)) and use a similar argument as above.

The disjoint union of INL-frames is simply the coproduct in Coalg(PP).
Explicitly this can be described as follows.

5.52. Definition. Let (Xj , Nj) be an J-indexed collection of IN-frames.
Their disjoint union is given by (X,N) =

∐
(Xj , Nj), where X is the disjoint

union of the Xj and N is defined by N(xj) = Nj(xj) for xj ∈ Xj .

5.53. Proposition. Let (Xj , Nj) be a J-indexed collection of IN-frames and
suppose (Xj , Nj)  ϕ for all j ∈ J . Then

∐
(Xj , Nj)  ϕ.

Proof. Denote (X,N) :=
∐

(Xj , Nj) and write ij : (Xj , Nj) → (X,N)
for the inclusion morphisms. Let V be any valuation for (X,N). Define
Vj(p) = i−1

j (V (p)). Then the inclusion maps ij are IN-model morphisms
(Xj , Nj , Vj)→ (X,N, V ). Since every x ∈ X is in the scope of some ij , say,
x = ij(xj), and xj  ϕ by assumption, we have x  ϕ for all x ∈ X, hence
(X,N, V )  ϕ. Since V was arbitrary this yields (X,N)  ϕ.

Lastly we show that ultrafilter extensions of IN-frames reflect truth.

5.54. Proposition. Let X = (X,N) be an IN-frame. For all ϕ ∈ INL,

uℯX  ϕ implies X  ϕ.

Proof. Every valuation for (X,N) yields a valuation for (Xue, Nue). By
assumption uℯM, ηX(x)  ϕ for all x ∈ X, so by Corollary 5.47 we find
M, x  ϕ for all x ∈ X. Thus (X,N)  ϕ.

With these definitions, one can prove the following theorem in the same
way as in [70, Theorem 5.54].

5.55. Goldblatt-Thomason theorem. Suppose Prop is infinite and let C
be a class of IN-frames closed under taking ultrafilter extensions. Then C is
modally definable if and only if it reflects ultrafilter extensions and is closed
under generated subframes, IN-morphic images and disjoint unions.
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Conclusions of Chapter III

We have given a general coalgebraic approach to Thomason type dualities
for neighbourhood frames and Jónsson-Tarski type dualities for (instantial)
neighbourhood algebras. In case of instantial neighbourhood logic, we showed
how the duality gives rise a general completeness theorem, a Hennessy-Milner
theorem, and a notion of ultrafilter extension. The latter, in turn, was used
to prove bisimilarity-somewhere-else and a Goldblatt-Thomason theorem.

We believe that the techniques used in this chapter are applicable in a
wide variety of modal logics. This brings about interesting questions for
future research. Can we use rank 1 formulae to obtain dualities for extensions
of instantial neighbourhood logics? Can we derive Hennessy-Milner theorems
for logics interpreted in classes of neighbourhood frames in the same way as
in Section 5? We give an overview of potential avenues for further research.

Infinitary modal logic. The Thomason type dualities from Subsections 4.1
and 4.2 provide dualities for algebraic and geometric semantics for infinitary
modal logic. While some interesting investigations have been conducted
by Baltag [27, 28], obtaining a more general coalgebraic approach towards
infinitary modal logic (also using the results from Section 4) remains open.

Endofunctors as left adjoints. In [48] the functor H : CABA→ CABA
is obtained as the left adjoint of the forgetful functor from CABA to CSL,
the category of complete meet-semilattices. In a similar way we can obtain
the functor whose coalgebras are monotone neighbourhood frames as the
left adjoint of the forgetful functor CABA → Pos, and the functor whose
coalgebras are filter frames arises as the left adjoint of CABA→ SL, where
SL is the category of (not necessarily complete) meet-semilattices. An
interesting direction for future work is to investigate the connection between
presentations of classes of algebras via adjoints of forgetful functors and via
one-step axioms of infinitary logic.

Using the dualities for neighbourhood algebras. We expect that the
dualities derived in Section 4 give rise to completeness, Hennessy-Milner and
Goldblatt-Thomason theorems, and bisimilarity-somewhere-else results in
the same way as in Subsection 5.4. Working this out (either individually or
as a general result) would give a number of new theorems for logics that can
be interpreted in classes of neighbourhood frames.

Adding one-step axioms to INL. Many interesting extensions of INL
are discussed in [36, Section 7]. For example, its extensions can be used to
model normal modal logic and monotone modal logic. It would be interesting
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to generalise the results from Section 5 to allow for extensions with one-step
axioms, guided by the methods from Section 4.

Variations of instantial neighbourhood logic. Recall that the Vietoris
functor V is dual to the functor K on the category of Boolean algebras
(Lemma 3.13). Intuitively K freely adds one layer of normal modalities to
a Boolean algebra. We showed in Section 5 that instantial neighbourhood
algebras can be represented as algebras for K ·K (Corollary 5.24). Therefore,
instantial neighbourhood algebras can be seen as “modal algebras squared”
and INL itself is, in a way, “normal modal logic squared.” This provokes
several questions:

1. What do “modal algebras cubed” looks like? In other words, what
logic and algebras correspond to the functor K ·K ·K, or to the n-fold
composition of K.

2. What does “monotone modal logic squared” (or cubed) look like?
That is, let ℳ : BA→ BA be the functor which intuitively adds one
layer of monotone modalities to a Boolean algebra (see Definition 3.34,
or [209, 210]), do (ℳ ·ℳ)-algebras and the corresponding logic admit
an “INL-style axiomatisation?”

Positive instantial neighbourhood logic. Another related formalism
that would be interesting to investigate is that of positive INL. Inspired by
Dunn [144] and positive monotone modal logic (Section 7), we would take
both and its dual as primary modalities, where is defined classically
as

(ϕ1, . . . , ϕn;ψ) = ¬ (¬ϕ1, . . . ,¬ϕn;¬ψ).

We refer to the positive fragment of INL with modalities and as
positive instantial neighbourhood logic (PINL). We briefly sketch the expected
semantics and formulate a conjecture concerning its duality.

The algebras for PINL are distributive lattices with instantial operators
(DLIOs):

Definition. A distributive lattice with instantial operators is a tuple of the
form (D, (fn)n∈ω, (gn)n∈ω), consisting of a distributive lattice D and two
ω-indexed collections of maps fn, gn : Dn+1 → D such that:

1. The fn satisfy (B1) to (B7) from Definition 5.6, where, in absence of
negation, we reformulate (B5) as

fn(a1, . . . , an; b) ≤ fn+1(a1, . . . , an, c; b) ∨ fn(a1, . . . , an; b ∧ d),

whenever c ∨ d = >;

2. The gn satisfy relations dual to the ones for fn; and
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3. The fn and gn satisfy the following duality axioms, which intuitively
arise from taking Dunn’s duality axioms [144] twice:

gn+1(a1, . . ., an, b
′; b) ∧

m∧
i=1

gn(a1, . . . , an; a′i ∨ b)

≤ gn(a1, . . . , an; b) ∨ fm(a′1, . . . , a
′
m; b′)

and

fn(a1, . . ., an; b) ∧ gm(a′1, . . . , a
′
m; b′)

≤ fn+1(a1, . . . , an, b
′; b) ∨

m∨
i=1

fn(a1, . . . , an; a′i ∧ b).

These are of course algebras for an endofunctor J+ on the category DL
of distributive lattices and homomorphisms. In analogy with the results of
Section 5, one would expect that descriptive frames for PINL are isomorphic
to coalgebras for the double convex Vietoris functor Vc on the category of
Priestley spaces (see Definition 6.16), as this is the Priestley space analogue
of the Vietoris functor [334, 53, 420]. We expect the following duality result:

Conjecture. Alg(J+) ≡op Coalg(VcVc).

Geometric instantial neighbourhood logic. Finally, related to positive
INL, an interesting question is to consider the geometric logic analogue of
INL and to verify a slogan of [58], which in the case of INL will read as:

Geometric INL = Positive INL + Scott continuity.

If correct, this may also provide a novel algebraic presentation of the double
Vietoris powerlocale studied extensively by Vickers [424, 426, 423].
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IV

Dualities for positive modal
logics

The language of positive logic is constructed from a set of proposition letters,
constants > and ⊥, and binary operators ∧ and ∨. Since this is precisely
the finitary part of geometric logic [427, 422, 425], we can also view it as
a finitary logic of finite observations. In [144] Dunn investigated positive
logic enriched with two normal unary modalities and , known as positive
modal logic (PML). His objective was to axiomatise the positive fragment of
classical normal modal logic interpreted in Kripke models. Since classically

and are related via = ¬ ¬, this required finding a negation-free way
of expressing this connection, which resulted in the following duality axioms

(x ∨ y) ≤ x ∨ y, x ∧ y ≤ (x ∧ y).

Dunn’s work instigated a chain of research on positive logic with normal
modal operators which is still ongoing [96, 274, 97, 334, 173, 375, 99, 249]. In
particular, [96] gives a new semantics for PML, where the set that underlies a
Kripke model is replaced by a pre-order and valuations of proposition letters
are required to be up-closed in this pre-order. This prevents the need of
closing extensions of the logic under dual axioms, which is an undesirable
side-effect of interpreting PML in classical Kripke models. Furthermore, in
[97] Celani and Jansana define K+-spaces as poset-based Kripke frames with
extra structure, and prove a duality between K+-spaces and the algebraic
semantics of PML. This was a key ingredient in the proofs of the Sahlqvist
theorem and Goldblatt-Thomason theorem for PML [97].

A more general approach towards positive logic with modalities is given
in the realm of coalgebraic logic. In [21, 22, 247, 23, 24, 126] positive logic
with modalities are developed as coalgebraic logics for endofunctors on Pos,
the category of posets and order-preserving functions. A substantial part of

147
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this succession of papers consists of turning set-based coalgebraic logics into
poset-based ones, a process called positivication. In particular, PML and the
convex powerset functor are recovered in this manner [126, Subsection 3.1],
and the positivication of the neighbourhood functor is computed explicitly
[126, Subsection 4.2].

In this chapter we study dualities for modal extensions of positive logic.
The algebraic semantics for such logics are given by distributive lattices
with additional operators. In all cases we consider, these can be viewed as
algebras for an endofunctor on DL. Consequently, in this chapter we will
look for Priestley-dual functors to obtain dualities.

As a warmup, in Section 6 we recall the duality for positive modal logic.
While we recall the result, we give a new proof, namely via a duality of
functors. This not only serves as a warmup, but also introduces a number
of definitions such as the Egli-Milner order and the convex Vietoris functor
that will be used in later sections. In the conclusion of this chapter we
mention other dualities from the literature that can be proven via a duality
of functors.

In Section 7 we take the same starting point as Dunn [144], except that we
work with monotone modal logic (Section 3.3.2), rather than normal modal
logic. We take both and as primary modalities. In other words, we
investigate the negation- and implication-free fragment of monotone modal
logic.

In Section 8 we take monotone modal logic as starting point again, but we
study a different positive fragment. Instead of , we observe that monotone
modal logic is equivalent to the extension of classical propositional logic
with an implication-like modality , definable from a monotone box by
ϕ ψ := (ϕ → ψ). The positive fragment with modality (and no
dual modality) can be viewed as a subintuitionistic logic. We give a duality
based on Priestley duality using the (co)algebraic perspective, and we derive
a number of completeness results. Moreover, by studying this logic using
coalgebra we bridge the coalgebraic and subintuitionistic literature.

6 Positive modal logic

The language K+ of positive modal logic is the negation- and implication-
free fragment of the language of normal modal logic over a classical base.
That is, it is the language generated by the grammar

ϕ ::= > | ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ | ϕ
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where p ranges over some set Prop of proposition letters. We call this a
positive fragment because it is closed under all connectives from positive
logic. It is not the only positive fragment, we can for example omit closure
under , or closure under , so that we get positive logic with a single
modality.

Alternatively, we can view the binary modality J, defined by ϕ J ψ =
(ϕ→ ψ), as the primary modality of normal modal logic over a classical

base. We can then recover via ϕ = > J ϕ. This approach was taken
by Lewis in the context of strict implications at the start of the previous
century [280, 281, 282]. It gives rise to a positive fragment of normal modal
logic given by the extension of positive logic with the binary modality J.
This fragment can be viewed as a subintuitionistic logic and was investigated
in [98].

But in this section we focus on the language K+ . In Subsection 6.1
we recall Dunn’s positive modal logic, which is formulated as a system of
consequence pairs and which we denote by K+ . We show how it can be
interpreted in ordered analogues of Kripke frames, and in Subsection 6.2 we
show how those frames can be viewed as coalgebras for endofunctors on the
categories of preordered sets and posets. After taking this coalgebraic per-
spective we recall the notion of a positive predicate lifting for an endofunctor
on Pos. Lastly, in Subsection 6.3 we recall a Jónsson-Tarski style duality for
PML, and give an alternative proof using a duality of functors.

Origins of the material. Most of the theory presented in this section is
common knowledge, and precise references are given in the text. To the best
of our knowledge, the proof of the duality for positive modal logic using a
duality of functors in Theorem 6.20 has not appeared in the literature before.

6.1 The positive fragment of normal modal logic

Since positive logic does not enjoy the luxury of an implication, logics over
positive languages are often defined using consequence pairs. These are
ordered pairs (ϕ,ψ) of formulae of a language and intuitively mean that ϕ
implies ψ. A logic of consequence pairs is simply a collection of consequence
pairs closed under certain axioms and rules. In order to reduce the number
of brackets, we write ϕ ψ for the consequence pair (ϕ,ψ).

6.1. Definition. A consequence pair (over the language K+ ) is an expres-
sion of the form ϕ ψ, where ϕ,ψ ∈ K+ . The logic K+ is defined to be
the smallest set of consequence pairs closed under the axioms and rules from
Table 6.1. We write ϕ ` ψ if ϕ ψ ∈ K+ .
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Table 6.1: Axioms and Rules of K+

ϕ >, ⊥ ϕ (top and bottom)

ϕ ϕ,
ϕ ψ ψ χ

ϕ χ
(reflexivity and transitivity)

ϕ ∧ ψ ϕ, ϕ ∧ ψ ψ,
ϕ ψ ϕ χ

ϕ ψ ∧ χ
(conjunction rules)

ϕ ϕ ∨ ψ, ψ ϕ ∨ ψ,
ϕ χ ψ χ

ϕ ∨ ψ χ
(disjunction rules)

ϕ ∧ (ψ ∨ χ) (ϕ ∧ ψ) ∨ (ϕ ∧ χ) (distribution)

ϕ ψ

ϕ ψ
,

ϕ ψ

ϕ ψ
(Becker’s rules)

> >, ⊥ ⊥ (necessitation and possibilization)

ϕ ∧ ψ (ϕ ∧ ψ), (ϕ ∨ ψ) ϕ ∨ ψ (Linearity)

(ϕ ∨ ψ) ϕ ∨ ψ, ϕ ∧ ψ (ϕ ∧ ψ) (duality rules)

6.2. Remark. We draw attention to two small differences between our
approach Dunn’s approach to positive modal logic.

1. While Dunn starts his study of positive modal logic without the
symbols > and ⊥, we include them right away. So technically we work
with the logic discussed in Section 6 of [144].

2. In [144], the linearity rules also stipulate the converse direction of our
linearity rules, i.e. (ϕ ∧ ψ) ϕ ∧ ψ and ϕ ∨ ψ (ϕ ∨ ψ).
We have left these out because they follow from Becker’s rules and the
conjunction and disjunction rules.

The rôle of modal algebras for positive modal logic is taken by positive
modal algebras.

6.3. Definition. A positive modal algebra is a tuple (D, , ) where D is
a distributive lattice and , : D → D are functions satisfying

> = > ⊥ = ⊥
(a ∧ b) = a ∧ b (a ∨ b) = a ∨ b

(ϕ ∨ ψ) ≤ ϕ ∨ ψ ϕ ∧ ψ ≤ (ϕ ∧ ψ)

Together with - and -preserving distributive lattice homomorphisms these
constitute the category PMA.

It is straightforward to verify that ordinary Kripke frames form a sound
semantics for K+ . However, there is a downside to using them which
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becomes apparent when adding additional axioms, such as ϕ ϕ. Namely,
each additional axiom implies validity of a certain dual axiom, and it is
impossible to distinguish between them [144, Section 7]. For example, the
dual of ϕ ϕ is ϕ ϕ, and both correspond to the class of Kripke frames
with a reflexive relation.

To remedy this, Celani and Jansana proposed Kripke frames based on
preorders as an alternative semantics [96, Definition 4.1]. In such frames,
proposition letters are interpreted as upsets. We recall this notion of frame,
and a close relative which is based on posets rather than preorders.

6.4. Definition. A preordered Kripke frame is a tuple (X,≤, R) such that
(X,≤) is a preorder and R is a binary relation on X that satisfies

(≤ ◦R) ⊆ (R ◦ ≤), (≥ ◦R) ⊆ (R ◦ ≥).

A preordered bounded morphism from (X,≤, R) to (X ′,≤′, R′) is a function
f : X → X ′ that is order-preserving when regarded as a morphism f : (X,≤
) → (X ′,≤′), and a bounded morphism f : (X,R) → (X ′, R′). We write
PreKF for the category of preordered Kripke frames and preordered bounded
morphisms.

Here ≤◦R = {(x, y) ∈ X×X | ∃z ∈ X s.t. x ≤ z and zRy}, and similar
for the other compositions of relations. The two coherence conditions can be
depicted as follows:

R R

≤

R

≤ ≤

R

≤

The left condition ensures persistence of , while the right one guarantees
persistence of .

We emphasise that preordered Kripke frames are different from preordered
intuitionistic Kripke frames from Definition 1.33. The latter are used to
interpret intuitionistic logic, while preordered Kripke frames give semantics
for normal modal positive logic.

Alternatively, we can base our ordered Kripke frame on a poset. This is
done in [23, Example 2.6] and also implicitly in [97] because Priestley spaces
are based on posets.

6.5. Definition. An ordered Kripke frame is a preordered Kripke frame
(X,≤, R) such that

• (X,≤) is a poset;

• For each x ∈ X, the set R[x] := {y ∈ X | xRy} is convex in (X,≤).

An ordered bounded morphisms between two ordered Kripke frames (X,≤, R)
and (X ′,≤′, R′) is a function f : X → X ′ such that for all x, y ∈ X and
z′ ∈ X ′:
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1. If x ≤ y then f(x) ≤′ f(y);

2. If xRy then f(x)R′f(y);

3. If f(x)R′z′ then there exist z1, z2 ∈ X such that xRz1 and xRz2 and
f(z1) ≤ z′ ≤ f(z2).

We write OKF for the category of ordered Kripke frames and ordered bounded
morphisms.

As mentioned, models based on such frames are obtained by adding a
valuation that assigns to each proposition letter a subset that is closed under
the underlying preorder or partial order.

6.2 A coalgebraic perspective

We can view positive modal algebras as algebras for an endofunctor K+

on DL. The next definition and theorem can be viewed as the positive
counterpart of Definition 3.7 and Theorem 3.10. We use modalities with a
dot in them to indicate their rôle as formal generators.

6.6. Definition. For a distributive latticeD, let K+D be the free distributive
lattice generated by { a, a | a ∈ D} modulo the following (in)equalities,
where a, b range over D:

> = > ⊥ = ⊥
(a ∧ b) = a ∧ b (a ∨ b) = a ∨ b

(a ∨ b) ≤ a ∨ b a ∧ b ≤ (a ∧ b)

If h : D → D′ is a homomorphism in DL, we define K+h on generators by
K+h( a) = h(a) and K+h( a) = h(a). Then K+ : DL→ DL defines a
functor.

A routine verification proves the following theorem.

6.7. Theorem. We have PMA ∼= Alg(K+).

Next we investigate how to view the categories of frames defined in
Definitions 6.4 and 6.5 as categories of coalgebras. For this, we need analogues
of the powerset functor on the categories Preord and Pos of preorders and
posets respectively, and order-preserving functions. Both of these make use
of the Egli-Milner order on the powerset of a set with a preorder [5], which
is defined next.

6.8. Definition. Let (X,≤) be a preordered set. Then for subsets a, b ⊆ X
we let a v b if:
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• For all x ∈ a there exists y ∈ b such that x ≤ y; and

• For all y ∈ b there exists x ∈ a such that x ≤ y.

This defines a preorder v on the powerset of X, or subsets thereof, called
the Egli-Milner order.

6.9. Definition. For a preorder (X,≤), define Pv(X,≤) = (PX,v). That
is, we send (X,≤) to the powerset of X ordered by the Egli-Milner order
(induced by ≤). For an order-preserving function f : (X,≤) → (X ′,≤′)
define

Pvf : Pv(X,≤)→ Pv(X ′,≤′) : a 7→ f [a].

Then Pv defines an endofunctor on PreOrd.

6.10. Theorem. PreKF ∼= Coalg(Pv).

Proof. If (X,≤, R) is a preordered Kripke frame then defining

γR : (X,≤)→ (PX,v) : x 7→
{
y ∈ X | xRy

}
yields a coalgebra structure map. It is order-preserving precisely because of
the coherence conditions from Definition 6.4. Conversely, given γ : (X,≤)→
(PX,v), the relation Rγ defined by xRγy iff y ∈ γ(x) is such that (X,≤, Rγ)
is a preordered Kripke frame. It is easy to see that these two assignments
establish a bijection on objects. The verification on morphisms is the same
as for Kripke frames and P-coalgebras, see Theorem 3.20.

We can adapt the previous definition and theorem to get a coalgebraic
view of the category of ordered Kripke frames. This makes use of the convex
powerset functor on Pos, which has appeared in e.g. [23, Example 2.6].

6.11. Definition. For a poset (X,≤) let Pc(X,≤) be the collection of convex
subsets of (X,≤) ordered by the Egli-Milner order v.

For an order-preserving function f : (X,≤) → (X ′,≤′) define Pcf by
Pcf(a) = Cℴnv(f [a]), where f [a] is the direct image of a under f and Cℴnv
takes the smallest convex set containing f [x]. Then Pc defines an endofunctor
on Pos, called the convex powerset functor.

6.12. Theorem. OKF ∼= Coalg(Pc).

Proof. The proof is similar to that of Theorem 6.10.

In Subsection 3.4 we have seen how predicate liftings for endofunctors on
Set give rise to modal extensions of classical propositional logic. In a similar
manner predicate liftings can be used to extend positive logic. We define
these and then show how and from PML can be defined using predicate
liftings for Pc. Recall that Up : Pos→ Set denotes the contravariant functor
that takes a poset to its set of upsets, and a function to its inverse.
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6.13. Definition. Let T : Pos → Pos be a functor. An n-ary positive
predicate lifting for T is a natural transformation

µ : Upn → Up ◦ T ,

where Upn sends a poset (X,≤) to the n-fold product of Up(X,≤) in Set.
The predicate lifting µ is called monotone if for all posets (X,≤) and all sets
a1, . . . , an, b1, . . . , bn ∈ Up(X,≤) we have

µ(X,≤)(a1, . . . , an) ⊆ µ(X,≤)(a1 ∪ b1, . . . , an ∪ bn).

6.14. Remark. When working with endofunctors on Pos, it is possible to
define a notion of predicate lifting using the finite posets as arities. This is
done in e.g. [247, Section 4.2] and [23, Section 7]. Their predicate liftings
with discrete arities (i.e. with discrete posets as arity) correspond to the
predicate liftings from Definition 6.13 that are monotone.

We do not legislate monotonicity into the notion of predicate lifting
because there are interesting examples of non-monotone predicate liftings,
such as the one given in Section 8.

Now let us get back to PML. The modalities can be given by the following
predicate liftings:

µ(X,≤) : Up(X,≤)→ Up(Pc(X,≤)) : a 7→ {b ∈ Pc(X,≤) | b ⊆ a}

µ(X,≤) : Up(X,≤)→ Up(Pc(X,≤)) : a 7→ {b ∈ Pc(X,≤) | b ∩ a 6= ∅}

Obvious adaptations yield similar predicate liftings for Pv.

6.3 Duality for positive normal modal logic

Towards a duality for positive modal algebras, Celani and Jansana defined
K+-spaces [97, Definition 3.5]. Subsequently, Palmigiano showed that the
category of these is isomorphic to the category of coalgebras for the convex
Vietoris functor on Pries. We recall their definitions. Subsequently, we prove
that the convex Vietoris functor is dual to the functor K+ from Definition 6.6
(with respect to Priestley duality), and thus we obtain a new and purely
coalgebraic proof of the duality between K+-spaces and positive modal
algebras.

6.15. Definition. A K+-space is a tuple (X,≤, R,A) such that

• (X,≤, R) is an ordered Kripke frame,

• (X,≤, A) is a descriptive ordered ring of upsets (Definition 1.25) and
A is closed under

m : Up(X,≤)→ Up(X,≤) : a 7→ {x ∈ X | R[x] ⊆ a}
m : Up(X,≤)→ Up(X,≤) : a 7→ {x ∈ X | R[x] ∩ a 6= ∅}
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• For each x ∈ X, R[x] is closed in (X,≤, τA), where τA denotes the
topology on X generated by A and −A (= {X \ a | a ∈ A}).

A K+-space morphism from (X,≤, R,A) to (X ′,≤′, R′, A′) is an ordered
bounded morphism f : (X,≤, R)→ (X ′,≤′, R′) such that f−1(a′) ∈ A for all
a′ ∈ A′. We write K+Space for the category of K+-spaces and morphisms.

Next we define the convex Vietoris functor. This is an ordered analogue of
the Vietoris functor on Stone spaces, and was first defined in [334, Section 3].
Its definition was simplified to use closed convex subsets instead of equivalence
classes as elements in [53, Definition 2.12]. We write ClplX for the collection
of clopen upsets and clopen downsets of a Priestley space X.

6.16. Definition. Let X = (X,≤, τ) be a Priestley space. Define VcX to be
the set of closed convex subsets of X, ordered by the Egli-Milner order and
with a topology generated by the (clopen) subbase

a = {c ∈ VcX | c ⊆ a}, a = {c ∈ VcX | c ∩ a 6= ∅},

where a ranges over ClplX. If f : X→ X′ is a Priestley morphism, define
Vcf : VcX → VcX′ : c 7→ Cℴnv(f [c]). Then Vc defines an endofunctor on
Pries [334, Section 3] called the convex Vietoris functor.

Theorem 44 from [334] now states:

6.17. Theorem. K+Space ∼= Coalg(Vc).

It is known that K+Space and PMA are dual categories [97, Section 3].
But the same result can also be obtained via a duality of functors. Since our
algebras are based on distributive lattices and the coalgebras on Priestley
spaces, we need to prove that the functors K+ and Vc are Priestley-dual.
That is, the diagram

DL Pries

DL Pries

Pf

≡op

K+
Clpup

Vc
Pf

≡op

Clpup

commutes up to natural isomorphism. In the next lemma and theorem we
provide this alternative proof. We make use not only of clopen upsets, but
also of clopen downsets.

6.18. Definition. The collection of clopen downsets of a Priestley space X
is denoted by ClpdnX. Defining Clpdnf = f−1 for a Priestley morphism f
we obtain a contravariant functor Clpdn : Pries→ Set.

6.19. Lemma. The functors K+ and Vc are dual with respect to Priestley
duality.
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Proof. We give a natural isomorphism ξ : Vc → Pf ·K+ ·Clpup.

Let X be a Priestley space. For c ∈ VcX define a prime filter (viewed as a
homomorphism into 2) pc : K+(ClpupX)→ 2 on generators by pc( a) = >
iff c ⊆ a and pc( a) = > iff c ∩ a 6= ∅. Define ξ on components by

ξX : VcX→ Pf ·K+ ·ClpupX : c 7→ pc.

In order to show that this is well defined, it suffices to prove that the
images under ξ of the generators of K+(ClpupX) satisfy the relations from
Definition 6.6. We leave this routine verification to the reader.

Suppose c, c′ ∈ VcX and c v c′. Then for each y ∈ c′ there exist an x ∈ c
such that x ≤ y, hence if a ∈ ClpupX then c ⊆ a implies c′ ⊆ a. Therefore
pc( a) = > implies pc′( a) = >. Similarly one can show that pc( a) = >
implies pc′( a) = >. This entails that pc ⊆ pc′ , so ξX is order-preserving.

The topology on Pf · K+ · ClpupX is generated by sets of the form
F̂a = {p ∈ Pf ·K+ · ClpupX | p(Fa) = >}, where F ∈ { , }, and their
complements. Therefore, in order to prove continuity of ξX it suffices to
prove that ξ−1

X ( â) and ξ−1
X ( â) are clopen in VcX for all a ∈ ClpupX. To

see that this is indeed the case, compute

ξ−1
X ( â) =

{
c ∈ VcX | pc ∈ â

}
=
{
c ∈ VcX | pc( a) = >

}
=
{
c ∈ VcX | c ⊆ a} = a

and similarly ξ−1
X ( â) = a. The proof that ξ is natural is similar to the

proof of Lemma 3.13.

Finally, we have to prove that ξ is isomorphic on components. It suffices
to prove that it is bijective and order-isomorphic. Since it is then a bijective
continuous function between Stone spaces it is automatically a homeomor-
phism, hence a Priestley isomorphism. So let X be a Priestley space. We
define a (potential) inverse of ξX by ζX : Pf ·K+ ·ClpupX→ VcX : p 7→ cp,
where

cp =
⋂{

a ∈ ClpupX | p( a) = >
}
∩
⋂{

X \ b ∈ ClpdnX | p( b) = ⊥
}
.

We claim that p( a) = > iff cp ⊆ a. By definition p( a) = > implies cp ⊆
a. Conversely, if cp ⊆ a then by compactness there exists a finite number of
clopen upsets a1, . . . , an, b1, . . . , bm such that a1∩· · ·∩an∩−b1∩· · ·∩−bm ⊆ a
and p( a1) = · · · = p( an) = > and p( b1) = · · · = p( bm) = ⊥. This
implies a1∩· · ·∩an ⊆ a∪b1∪· · ·∪bm and using the relations from Definition 6.6
we find

a1 ∧ · · · ∧ an = (a1 ∩ · · · ∩ an)

≤ (a ∪ b1 ∪ · · · ∪ bm)

≤ a ∨ b1 ∨ · · · ∨ bm
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Since p( ai) = > for each of the ai and p( bj) = ⊥ for each of the bj
this forces p( a) = >, as desired. In a similar way it can be shown that
p( a) = > iff cp ∩ a 6= ∅ for all a ∈ ClpUpX.

So p and pcp coincide on generators, and hence p = pcp . Furthermore,
it implies that c = cpc , because both sets are contained in the same clopen
subsets generating the topology on VcX. So ξX and ζX form a bijection.
Finally, to see that ξX both preserves and reflects the order, suppose c 6v c′.
Then there must be a clopen upset a such that pc(Fa) = > and pc′(Fa) = ⊥,
for F = or F = , and therefore pc 6⊆ pc′ .

We conclude that ξX is a an isomorphism in Pries, and therefore ξ is a
natural isomorphism.

As announced, we obtain a different proof for the duality between positive
modal algebras and K+-spaces. It can be verified by unravelling the defini-
tions that this duality coincides with the one in [97], that is, it is established
by the same functors (up to natural isomorphism).

6.20. Theorem. We have PMA ≡op K+Space.

Proof. Lemma 6.19 entails Alg(K+) ≡op Coalg(Vc). Combining this with
Theorems 6.7 and 6.17 yields the result.

7 Positive monotone modal logic

Besides PML and positive non-monotone modal logic, there are few concrete
examples of positive logics with modal operators. In particular, there seems
to be no rigorous investigation of positive logic with monotone modalities
(PMML), viewed as a fragment of classical monotone modal logic. Moreover,
results from the coalgebraic investigations of modal positive logic mentioned in
the introduction of this chapter do not apply to PMML. The (technical) reason
for this is that the Set-functor whose coalgebras are monotone neighbourhood
frames is not finitary and does not preserve weak pullbacks, while these
properties are often required in the coalgebraic line of investigation. This
lack of theory is remarkable, because classical monotone modal logic has
been researched extensively [103, 209, 210, 380, 163] and encompasses modal
logics such as game logic [337], concurrent propositional dynamic logic [186],
coalition logic [344] and alternating-time temporal logic [13].

In this section we bridge this gap by investigating the minimal positive
monotone modal logic, obtained as the positive fragment of classical monotone
modal logic. We give an axiomatisation of this fragment and introduce positive
monotone (neighbourhood) frames and models as a sound and complete
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semantics. Like ordered Kripke frames (see Definition 6.5), positive monotone
frames are based on posets, and monotone frames for classical monotone
modal logic can be recovered as those positive monotone neighbourhood
frames ordered by equality.

The main technical result is a categorical duality between distributive
lattices with monotone operators, which provide the algebraic semantics of
positive monotone modal logic, and so-called M+-spaces. The latter play
the same role for PMML that K+-spaces play for PML, and are comprised
of a positive monotone frame together with a collection of admissible subsets
which satisfies certain conditions. They can also be viewed as the positive
version of descriptive monotone frames [209, Definition 7.30].

Structure of the section. We begin by giving an axiomatisation and
algebraic semantics of positive monotone modal logic in Subsection 7.1.
Subsequently we define monotone models based on posets, and prove that
these provide a sound semantics in Subsection 7.2. We then define general
frames and M+-spaces, and at the end of Subsection 7.3 we foreshadow the
duality between the algebraic semantics of PMML and M+-spaces. This
gives rise to completeness with respect to several classes of models.

In the second half of the section, we take a coalgebraic perspective. In
Subsection 7.4 we show that the algebraic semantics of PMML are algebras
for the endofunctor ℳ+ on the category of distributive lattices, and we prove
that positive monotone frames are coalgebras for an endofunctor on the
category of posets.

We then model M+-spaces as coalgebras for an endofunctor D on the
category Pries of Priestley spaces and order-preserving continuous functions
in Subsection 7.5. This requires the generalisation of the monotone neigh-
bourhood functor on Stone spaces [210, Section 3.2] to Priestley spaces.
The proof that M+-spaces are D-coalgebras can be seen as the monotone
counterpart of a similar result for K+-spaces [334] (see also Subsection 6.3).
Finally, in Subsection 7.6 we prove that the functors ℳ+ and D are dual
with respect to Priestley duality. As a consequence the categories Alg(ℳ+)
and Coalg(D) are dual and this ultimately proves the desired duality result.

Origin of the material. This section is based on a paper bearing the
same name as the section, written by the author of this thesis [196].

7.1 The positive fragment of monotone modal logic

The language M+ of positive monotone modal logic is the positive fragment
of monotone modal logic. That is, it is defined recursively by

ϕ ::= > | ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ | ϕ,
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Table 7.1: Axioms and Rules of M+

ϕ >, ⊥ ϕ (top and bottom)

ϕ ϕ,
ϕ ψ ψ χ

ϕ χ
(reflexivity and transitivity)

ϕ ∧ ψ ϕ, ϕ ∧ ψ ψ,
ϕ ψ ϕ χ

ϕ ψ ∧ χ
(conjunction rules)

ϕ ϕ ∨ ψ, ψ ϕ ∨ ψ,
ϕ χ ψ χ

ϕ ∨ ψ χ
(disjunction rules)

ϕ ∧ (ψ ∨ χ) (ϕ ∧ ψ) ∨ (ϕ ∧ χ) (distribution)

ϕ ψ

ϕ ψ
,

ϕ ψ

ϕ ψ
(Becker’s rules)

> ϕ ∨ ψ
> ϕ ∨ ψ

,
ϕ ∧ ψ ⊥
ϕ ∧ ψ ⊥

(duality rules)

where p ranges over some arbitrary but fixed set Prop of proposition letters.
Similar to Dunn [144] we formulate a binary consequence system whose
formal objects are expressions of the form ϕ ψ, called consequence pairs,
where ϕ,ψ ∈M+ . Intuitively these mean “If ϕ holds then ψ holds as well.”
We stipulate that it contains certain pairs (the axioms) and is closed under
certain rules.

7.1. Definition. Let M+ be the smallest collection of consequence pairs
containing the axiom schemata and closed under the rules from Table 7.1.

Most of these axioms and rules are the same as for positive modal logic
(see Definition 6.1 or [144, Section 2]). The main difference is the changed
form of the duality rules, that appeared earlier in [61] in the context of
geometric monotone modal logic. The necessity of this follows from the
following example, where we show that validity of Dunn’s duality axioms
fails.

7.2. Example. Let X = {x, y, z} be a three-element set and define N : X →
PPX by N(y) = {{x, y}, {y, z}, X} and N(x) = N(z) = ∅. Equip this with
a valuation of two proposition letters V : {p, q} → PX given by V (p) = {y}
and V (q) = {x}. Then (X,N, V ) is a monotone model, depicted below.

x

q

y

p

z

Here, the circles indicate the neighbourhoods of y.
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In this model we have y  (p∨ q) because Jp∨ qK = {x, y} ∈ N(y). But
y 6 p because JpK = {y} /∈ N(y), and y 6 q because X \ JqK = {y, z} ∈
N(y). So it is not in general the case that (ϕ ∨ ψ) implies ϕ ∨ ψ.

A straightforward verification shows that the duality axioms given in
Table 7.1 still give a negation-free way of expressing the duality between
and . That is, in presence of negation they reduce to ϕ = ¬ ¬ϕ.

We write ϕ ` ψ if the consequence pair ϕ ψ is in M+ , and ϕ a` ψ if
both ϕ ψ and ψ ϕ are in M+ . It follows from reflexivity, transitivity
and the conjunction rules that:

7.3. Lemma. We have ϕ ` ψ if and only if ϕ ∧ ψ a` ϕ.

Proof. If ϕ ` ψ then reflexivity and the right conjunction rule imply that
ϕ ` ϕ ∧ ψ. We always have ϕ ∧ ψ ` ϕ, and hence ϕ ∧ ψ a` ϕ. On the other
hand, if we have ϕ∧ψ a` ϕ then ϕ ` ϕ∧ψ. By definition we have ϕ∧ψ ` ψ
so by transitivity ϕ ` ψ.

The algebraic semantics of positive monotone modal logic is given by
distributive lattices with monotone operators (DLMs). These are the positive
counterpart of the monotone Boolean algebras expansions used in modal
logic over a classical base [209, Section 7], and (unsurprisingly) provide a
sound and complete algebraic semantics for M+ .

7.4. Definition. A distributive lattice with monotone operators (DLM) is
a tuple (D, , ) consisting of a distributive lattice D and two functions
, : D → D satisfying for all a, b ∈ D:

(a ∧ b) ≤ a, a ∨ b = > whenever a ∨ b = >,
a ≤ (a ∨ b), a ∧ b = ⊥ whenever a ∧ b = ⊥.

A morphism between DLMs (D, , ) and (D′, ′, ′) is a homomorphism
f : D → D′ in DL which satisfies ′ ◦ f = f ◦ and ′ ◦ f = f ◦ . We
write DLM for the category of DLMs and their morphisms.

Indeed, because of the form of the duality rules the collection of DLMs
and DLM homomorphisms form a quasi-variety, but not a variety. Formulae
from M+ can be interpreted in DLMs via an assignment of the proposition
letters.

7.5. Definition. An assignment for a DLM (D, , ) is a map V : Prop→
D and we call a tuple D = (D, , , V ) of a DLM and an assignment a
DLM-model. The interpretation of a formula ϕ in D is defined recursively by

LpMD = V (p),

L>MD = >D, Lϕ ∧ ψ MD = LϕMD ∧D Lψ MD, L ϕMD = LϕMD,
L⊥MD = ⊥D, Lϕ ∨ ψ MD = LϕMD ∨D Lψ MD, L ϕMD = LϕMD,
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where ⊥D,>D,∧D,∨D are the distributive lattice connectives of D. We
write ϕ D ψ if LϕMD ≤D Lψ MD, and ϕ ψ if ϕ D ψ for every DML-model
D. A morphism between DLM-models is a DLM-morphism which preserves
the assignment. DLM-models and morphisms form the category DLMM.

The prime example of a DLM-model is, of course, given by the Linden-
baum-Tarski algebra of M+ .

7.6. Example. Let L be the collection of M+ -formulae modulo a`. Write
[ϕ] for the equivalence class of ϕ in L and define DLM-connectives by

⊥L = [⊥], [ϕ] ∧L [ψ] = [ϕ ∧ ψ], L[ϕ] = [ ϕ],

>L = [>], [ϕ] ∨L [ψ] = [ϕ ∨ ψ], L[ϕ] = [ ϕ].

Then L forms a DLM because of the axioms and rules from Table 7.1. If
we equip L with the canonical assignment VL : Prop → L : p 7→ [p] we
obtain a DLM-model L = (L, L, L, VL) and an easy induction shows that
LϕML = [ϕ] for all ϕ ∈M+ .

7.7. Lemma. The Lindenbaum-Tarski algebra L is initial in DLMM.

Proof. Let D = (D, D, D, VD) be any DLM-model. Then the assignment
[p] 7→ VD(p) extends uniquely to a morphism L→ D.

DLM-models are a sound and complete semantics for M+ .

7.8. Theorem. We have ϕ ` ψ if and only if ϕ ψ.

Proof. If ϕ ψ then by definition [ϕ] ≤L [ψ] in L. This implies [ϕ ∧ ψ] =
[ϕ] ∧L [ψ] = [ϕ] and therefore ϕ ∧ ψ a` ϕ. Lemma 7.3 then implies ϕ ` ψ.
Conversely, if ϕ ` ψ then reversing the reasoning above shows that LϕML ≤L
Lψ ML. Let D be any DLM-model, then we have a unique (truth-preserving)
morphism iD : L→ D. Monotonicity of iD implies LϕMD ≤D Lψ MD so that
ϕ D ψ. Hence ϕ ψ.

7.2 Frames and models

In this subsection we define semantics for positive monotone modal logic
by means of monotone frames based on posets. Such frames consists of
a poset (X,≤) and a neighbourhood function N which assigns to each
x ∈ X a collection of convex subsets of (X,≤) and satisfies certain coherence
conditions with respect to ≤. We equip these models with truth-preserving
morphisms and prove soundness.

Recall that, if (X,≤) is a poset and a ⊆ X, we let ↑≤a = {x ∈ X | y ≤
x for some y ∈ a}. We call a up-closed if a = ↑≤a and write Up(X,≤) for
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the collection of up-closed subsets of (X,≤). We similarly define ↓≤a, down-
closed sets and Dn(X,≤), and we let Pl(X,≤) = Up(X,≤) ∪Dn(X,≤).
The set a is called convex if a = ↑≤a∩ ↓≤a. If b is any subset of X, then the
convexification of b is defined as Cℴnv(b) = ↑≤b ∩ ↓≤b, and is the smallest
convex subset containing b.

Guided by the definition of a monotone frame from Definition 3.36, we
now define positive monotone frames and models.

7.9. Definition. A positive monotone frame is a tuple (X,≤, N) consisting
of a poset (X,≤) and an order-preserving function N : (X,≤)→ PcPc(X,≤)
such that whenever a ∈ N(x) and a ⊆ b, also b ∈ N(x). A positive monotone
model is a positive monotone frame (X,≤, N) together with an up-closed
valuation of the proposition letters V : Prop→ Up(X,≤).

The interpretation of a formula ϕ ∈M+ in a positive monotone model
M = (X,≤, N, V ) at a state x ∈ X is defined recursively by

M, x  > iff always

M, x  ⊥ iff never

M, x  p iff x ∈ V (p)

M, x  ϕ ∧ ψ iff M, x  ϕ and M, x  ψ

M, x  ϕ ∨ ψ iff M, x  ϕ or M, x  ψ

M, x  ϕ iff JϕKM ∈ N(x)

M, x  ϕ iff (X \ JϕKM) /∈ N(x)

Here JϕKM := {x ∈ X |M, x  ϕ} is the truth set of a formula ϕ. (In the
future, if no confusion is likely we drop the superscript M.)

If M, x  ϕ we say that x satisfies ϕ. Two states are called logically
equivalent if they satisfy precisely the same formulae. We say that ψ is a
semantic consequence of ϕ in a model M if JϕKM ⊆ JψKM, notation: ϕ M ψ.
We call ψ a global semantic consequence of ϕ (ϕ MM+ ψ) if ϕ M ψ for
every positive monotone model M.

The collection of neighbourhoods of a world is determined uniquely by
its up-closed and down-closed neighbourhoods:

7.10. Lemma. Let (X,≤, N) be a positive monotone frame and a ∈ Pc(X,≤
). Then a ∈ N(x) if and only if ↑≤a ∈ N(x) and ↓≤a ∈ N(x).

Proof. The direction from left to right holds because N(x) is up-closed under
inclusion and a ⊆ ↑≤a and a ⊆ ↓≤a. The converse holds because N(x) is a
convex subset of Pc(X,≤) and ↓≤a v a v ↑≤a.

As a consequence of monotonicity of the neighbourhood function N an
inequality x ≤ y in (X,≤) implies N(x) N(y), where denotes the double
Egli-Milner order on PcPc(X,≤). Between monotone neighbourhoods this
order can conveniently be described as follows:
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7.11. Lemma. Suppose W,V ∈ PcPc(X,≤) are up-closed under inclusion.
Then we have W V if and only if for all a ∈ Pc(X,≤), a ∈ W implies
↑≤a ∈ V and a ∈ V implies ↓≤a ∈W .

Proof. The direction from right to left follows from the fact that for every
a ∈ Pc(X,≤) we have ↓≤a v a v ↑≤a. Conversely, if a ∈ W then there
must be b ∈ V such that a v b hence b ⊆ ↑≤a. Since V is up-closed under
inclusion this implies ↑≤a ∈ V . Similarly, a ∈ V implies ↓≤a ∈W .

We verify that truth sets of formulae are still upsets.

7.12. Proposition. Let (X,≤, N, V ) be a positive monotone model. For
every formula ϕ the set JϕK is up-closed in (X,≤).

Proof. The proof proceeds by induction on the structure of a formula. The
only non-trivial cases are for and . We prove the -step, being similar.
Let ϕ = ψ and suppose x  ψ and x ≤ y. Then JψK ∈ N(x) and by
assumption JψK is up-closed. Since x ≤ y we must have N(x) N(y) and
Lemma 7.11 now implies that JψK = ↑≤JψK ∈ N(y). Therefore y  ψ.

7.13. Remark. A more direct approach to finding a definition of positive
monotone frames is as follows. Let X be a poset and suppose we aim to
interpret and as in Definition 7.9. Then we need to attach to each
state x ∈ X a collection of up-closed and down-closed subsets of X, used to
determine truth of and , respectively. To guarantee monotonicity of
and we need to stipulate that N(x) is up-closed under inclusion for each
x ∈ X. In other words, N(x) ∈ Up(Pl(X,≤),⊆). It follows from an easy
verification using Lemma 7.10 that the set Up(Pl(X,≤),⊆) corresponds
bijectively to the collection of elements of PcPc(X,≤) that are up-closed
under inclusion.

Besides monotonicity, we wish to ensure persistence. To this end, we
require that for all x ≤ y in X we have:

• If a ∈ Up(X,≤) and a ∈ N(x) then a ∈ N(y);

• If b ∈ Dn(X,≤) and b /∈ N(x) then b /∈ N(y).

This can be established by demanding N be monotone as a function from
(X,≤) to Up(Pl(X,≤),⊆), where we order the latter by W ′ V if

• a ∈ Up(X,≤) and a ∈W implies a ∈ V ; and

• b ∈ Dn(X,≤) and b ∈ V implies b ∈W .

It now follows from Lemma 7.11 that this direct approach corresponds
precisely to our approach in Definition 7.9. We have opted for the latter
since it resembles more closely the classical case.
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Let us investigate the notion of a morphism between positive monotone
models. A positive monotone model morphism from M = (X,≤, N, V ) to
M′ = (X ′,≤′, N ′, V ′) should be an order-preserving function f : (X,≤)→
(X ′,≤′) between the underlying posets that preserves truth of formulae. More
precisely, we require that for all ϕ ∈M+ we have JϕKM = f−1(JϕKM′).

If we were to try to prove this by induction on the structure of ϕ, we
need V (p) = f−1(V ′(p)) for all p to ensure the base case is satisfied. The
fact that f is order-preserving then implies that the induction goes well for
the connectives ∧ and ∨. For formulae of the form ϕ we have M, x  ϕ iff
JϕKM ∈ N(x), so in order to preserve ϕ we must stipulate that for upsets
a′ ∈ Up(X ′,≤′) we have

a′ ∈ N ′(f(x)) iff f−1(a′) ∈ N(x).

Similarly, preservation of formulae of the form ϕ requires that for all
a′ ∈ Dn(X ′,≤′) we have a′ ∈ N ′(f(x)) if and only if f−1(a′) ∈ N(x). This
motivates the following definition:

7.14. Definition. A positive monotone frame morphism f : (X,≤, N) →
(X ′,≤′, N ′) is a monotone function f : (X,≤)→ (X ′,≤′) which satisfies for
all x ∈ X and a′ ∈ Pl(X ′,≤′):

a′ ∈ N ′(f(x)) iff f−1(a′) ∈ N(x).

A positive monotone model morphism f : (X,≤, N, V )→ (X ′,≤′, N ′, V ′) is
a positive monotone frame morphism that additionally satisfies V = f−1 ◦V ′.
We write MF+ (MM+) for the category of positive monotone frames (models)
and positive monotone frame (model) morphisms.

We get a full embedding (·)+ : MM→ MM+ by sending M = (X,N, V ) to
M+ : (X,=, N, V ) and setting f+ = f for monotone model morphisms. Note
that adding equality leaves the interpretation of M+ -formulae unchanged.

Preceding Definition 7.14 we sketched a proof of the following fact:

7.15. Proposition. Let f : M → M′ be a positive monotone model mor-
phism. Then for all formulae ϕ ∈M+ we have JϕKM = f−1(JϕKM′).

We complete this section by proving soundness of M+ with respect to
positive monotone models.

7.16. Theorem (Soundness). If ϕ ` ψ then ϕ MM+ ψ.

Proof. The proof is by induction on the derivation rules. We prove one of
Becker’s rules and one of the duality rules, leaving the rest to the reader.

Suppose ϕ  ψ and let M = (X,≤, N, V ) be a positive monotone model.
Then JϕK ⊆ JψK and since N(x) is upwards closed under inclusion, JϕK ∈ N(x)
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implies JψK ∈ N(x) for all x ∈ X. As a consequence J ϕK ⊆ J ψK. Since this
holds for any positive monotone model M ∈ MM+ this proves ϕ MM+ ψ.

Similarly, for the left duality axiom, suppose > M ϕ ∨ ψ. If x /∈ J ϕK,
then JϕK /∈ N(x). Since > M ϕ∨ψ we have JϕK∪JψK = X, so X \JψK ⊆ JϕK.
Because the latter is not in N(x) and N(x) is up-closed under inclusion we
must have X\JψK /∈ N(x). This implies x  ϕ, i.e. x ∈ J ψK. Consequently
J ϕK ∪ J ψK = X. Therefore > M ϕ ∨ ψ.

In particular this shows that M+ is sound with respect to MM, the
class of (classical) monotone models.

7.3 Completeness

In this section we define descriptive frames and models. In analogy with
K+-spaces for PML (see [97, Section 3] or Subsection 6.3) we shall refer to
descriptive positive monotone frames as M+-spaces. These give rise to a
duality with the categories of DLMs and DLM-models. As a corollary we
obtain completeness of M+ with respect to MM, MM+, and models based
on M+-spaces.

For the purpose of readability, we postpone the proof of the duality to
later subsections. In fact, adhering to the strategy proposed at the start of
the section and taking a coalgebraic perspective, working towards this proof
will consume the better part of the subsequent subsections.

7.17. Definition. A tuple (X,≤, N,A) is called a general (positive mono-
tone) frame if (X,≤, N) is a positive monotone frame and A ⊆ Up(X,≤) is
a collection of up-closed (admissible) subsets of (X,≤) which contains ∅, X,
is closed under ∩, ∪, and under m ,m : Up(X,≤) → Up(X,≤) defined
by

m (a) =
{
x ∈ X | a ∈ N(x)

}
, m (a) =

{
x ∈ X | X \ a /∈ N(x)

}
.

A general frame morphism f : (X,≤, N,A)→ (X ′,≤′, N ′, A′) is a positive
monotone frame morphism that satisfies f−1(a′) ∈ A for all a′ ∈ A′. General
frames and morphisms comprise the category G-MF+.

A general (positive monotone) model is a general frame together with
an admissible valuation, that is, a map V : Prop → A. A morphism
between general models is a positive monotone model morphism between the
underlying positive monotone models which is also a general frame morphism.
General models and their morphisms form the category G-MM+.

Every general frame M = (X,≤, N,A) gives rise to the DLM M∗ defined
by M∗ = (A,X, ∅,∩,∪,m ,m ). Furthermore, admissible valuations for M
correspond bijectively to valuations for A. This gives rise to functors

(·)∗ : G-MF+ → DLM and (·)∗ : G-MM+ → DLMM, (7.1)
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where the action on morphisms is given by taking inverses.
Conversely, for every DLM A = (A, , ) we can define a general frame.

Let pfA be the collection of prime filters of A and Â = {â | a ∈ A}, where
â = {p ∈ pfA | a ∈ p}. We call c ∈ Up(pfA,⊆) closed if it is the intersection
of sets in Â, i.e. if

c =
⋂{

â ⊆ pfA | a ∈ A and c ⊆ â
}
.

Similarly, c ∈ Dn(pfA) is called closed if it is the intersection of sets in
−Â = {−â | a ∈ A} = {pfA \ â | a ∈ A}. Define N : pfA→ PcPc(pfA) as
follows:

• For all d ∈ Up(pfA,⊆) let d ∈ N(p) if there is a closed c ∈ Up(pfA,⊆)
such that c ⊆ d and for all a ∈ A, c ⊆ â implies a ∈ p;

• For all d ∈ Dn(pfA,⊆) let d ∈ N(p) if there is a closed c ∈ Dn(pfA,⊆)
such that c ⊆ d and for all a ∈ A, c ⊆ −â implies a /∈ p;

• For any d ∈ Pc(pfA,⊆), let d ∈ N(p) if and only if ↑⊆d ∈ N(p) and
↓⊆d ∈ N(p).

Then we define A∗ = (pfA,⊆, N, Â). It follows from the theory in Section 7.6
that A∗ is a general frame and that the assignment gives rise to functors
(·)∗ : DLM→ G-MF+ and (·)∗ : DLMM→ G-MM+.

In a general frame (X,≤, N,A) we call an upset c ∈ Up(X,≤) (resp. c ∈
Dn(X,≤)) closed if it is the intersection of elements in A (resp. −A =
{X \ a | a ∈ A}). We define M+-spaces as follows:

7.18. Definition. A general frame (X,≤, N,A) is a called differentiated if
for every x 6≤ y in X there exists a ∈ A such that x ∈ a and y /∈ a, compact
if every cover of X consisting of elements in A ∪ −A has a finite subcover,
and tight if for all x ∈ X we have:

• For all d ∈ Up(X,≤), d ∈ N(x) if there is a closed c ∈ Up(X,≤)
contained in d such that for all a ∈ A, c ⊆ a ∈ A implies a ∈ N(x);

• For all d ∈ Dn(X,≤), d ∈ N(x) if there is a closed c ∈ Dn(X,≤)
contained in d such that for all a ∈ A, c ⊆ X \ a implies X \ a ∈ N(x).

An M+-space or descriptive (positive monotone) frame is a general frame
that is differentiated, compact and tight. We write D-MF+ for the full
subcategory of G-MF+ whose objects are descriptive, and we similarly define
D-MM+.

Note that differentiatedness and compactness are defined as on the
underlying ring of upsets, cf. Definition 1.25.

7.19. Theorem. The functors (·)∗ : D-MF+ → DLM and (·)∗ : DLM →
D-MF+ yield a dual equivalence.
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We postpone the proof of Theorem 7.19 to Section 7.6, where we prove
it via the coalgebraic perspective developed in Sections 7.4 and 7.5.

As a corollary of Theorem 7.19 we obtain a similar theorem for models.
This relies on the fact that the admissible valuations of a descriptive frame
M correspond bijectively with assignments for M∗.

7.20. Corollary. We have a dual equivalence D-MM+ ≡op DLMM.

We complete this section with using Corollary 7.20 to derive completeness
of the logic M+ with respect to several classes of models.

7.21. Theorem. If ϕ D-MM+ ψ then ϕ ` ψ.

Proof. By Theorem 7.8 it suffices to prove that ϕ D-MM+ ψ implies ϕ ψ.
Let D be any DLM-model, then by assumption ϕ D+ ψ, so JϕKD+ ⊆ JψKD+

and therefore LϕMD ≤ Lψ MD. So ϕ D ψ. Since this holds for all D ∈ DLMM
we have ϕ ψ.

Since ϕ MM+ ψ implies ϕ D-MM+ ψ we have:

7.22. Corollary. If ϕ MM+ ψ then ϕ ` ψ.

Finally, we also get completeness with respect to monotone models.

7.23. Corollary. If ϕ MM ψ then ϕ ` ψ.

Proof. We show that ϕ MM ψ implies ϕ MM+ ψ. The statement then
follows from Corollary 7.22. Let M = (X,≤, N, V ) be any positive monotone
model. Define S = (X,=, N=, V ), where

N=(x) = {a ∈ PX | ∃b ∈ N(x) s.t. b ⊆ a}.

By construction S is a model in the image of the embedding MM→ MM+.
Furthermore, for any b ∈ Pc(X,≤) we have b ∈ N=(x) if and only if b ∈ N(x).
Therefore the identity on X is a MM+-morphism idX : S→M.

The assumption that ϕ MM ψ entails JϕKS ⊆ JψKS. This implies
JϕKM ⊆ JψKM because id−1

X (JϕKM) = JϕKS and similar for ψ. Since M ∈ MM+

was chosen arbitrarily we deduce that ϕ MM+ ψ.

7.4 A coalgebraic perspective

We will now put on our coalgebraic glasses and take a (co)algebraic perspec-
tive on positive monotone frames, M+-spaces and DLMs. Ultimately, in
Section 7.6, we use this point of view to prove the duality result stated in
Theorem 7.19. Throughout our coalgebraic venture, we shall be concerned
only with frames, not models, as the duality theorem for models easily follows
from that for frames.
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In this section we show how to view the category DLM as a category of
algebras and construct an endofunctor on Pos whose category of coalgebras
is isomorphic to MF+.

7.24. Definition. Let ℳ+ be the endofunctor on DL which sends a distribu-
tive lattice A to the free distributive lattice generated by a, a, where
a ∈ A, modulo the relations

(a ∧ b) ≤ a, a ≤ (a ∨ b),
a ∨ b = > if a ∨ b = >, a ∧ b = ⊥ if a ∧ b = ⊥.

For a homomorphism f : A → A′ in DL define ℳ+f on generators by
ℳ+f( a) = f(a) and ℳ+f( a) = f(a).

The letter “ℳ+” refers to the monotonicity of the modal operators. A
straightforward verification shows that:

7.25. Proposition. We have DLM ∼= Alg(ℳ+).

Monotone frames for classical monotone modal logic (Definition 3.36) can
be viewed as coalgebras for an endofunctor on Set, see [210, Subsection 3.1]
or Definition 3.37 and Theorem 3.38. We show that positive monotone frames
can be modelled as coalgebras for an endofunctor ℋ on Pos. In fact, we
prove an isomorphism of categories between MF+ and Coalg(ℋ).

7.26. Definition. For a poset (X,≤), let

ℋ(X,≤) =
{
W ∈ PcPc(X,≤) | if a ∈W and a ⊆ b ∈ Pc(X,≤) then b ∈W

}
ordered as a sub-poset of PcPc(X,≤), i.e. ordered by the double Egli-Milner
order . For f : (X,≤)→ (X ′,≤′) in Pos define ℋf by

ℋf(W ) =
{
a′ ∈ Pc(X ′,≤′) | f−1(↓≤′a′) ∈W and f−1(↑≤′a′) ∈W

}
.

We shall prove shortly that ℋ indeed defines an endofunctor on Pos.
Before doing so, however, we recognise that one might wonder why we cannot
simply define ℋf by

ℋf(W ) =
{
a′ ∈ Pc(X ′,≤′) | f−1(a′) ∈W

}
, (7.2)

like the monotone neighbourhood functor on sets. The reason is that it need
not be well defined, as is witnessed be the following example.

7.27. Example. Let (3,=) denote the three-element set 3 = {0, 1, 2} or-
dered by equality and (3,≤) the three-chain (i.e, ≤ is the reflexive and
transitive closure of 0 ≤ 1 ≤ 2). Trivially the identity id3 on 3 is an
order-preserving morphism (3,=) → (3,≤). Now consider the element
W = {{0, 1}, {1, 2}, 3} ∈ ℋ(3,=). The map id3 is depicted below, where the
circles represent the sets in W ∈ ℋ(3,=).
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Then the definition of ℋf proposed in (7.2) returns W , viewed as a sub-
set of (3,≤). But then W is no longer convex, because {0, 1} v {0, 2} v
{1, 2} in Pc(3,≤) while {0, 2} /∈ W . Therefore W /∈ ℋ(3,≤), so we can-
not take (7.2) as a definition for ℋf . Definition 7.26 gives ℋf(W ) =
{{2}, {0, 1}, {0, 2}, {1, 2}, 3}, which is convex.

The following lemma provides a useful fact about the map ℋf .

7.28. Lemma. If f : (X,≤)→ (X ′,≤′) is a Pos-morphism, W ∈ ℋ(X,≤)
and a′ ∈ Pl(X ′,≤′), then a′ ∈ ℋf(W ) iff f−1(a′) ∈W .

Proof. Let a′ be an upset (a′ ∈ Dn(X ′,≤′) is analogous). If a′ ∈ ℋf(W )
then f−1(a′) = f−1(↑≤′a′) ∈W . Conversely, if f−1(a′) ∈W then f−1(↑≤′a′),
f−1(↓≤′a′) ∈W , as both contain f−1(a′), so by definition a′ ∈ ℋf(W ).

We now prove that ℋ is indeed a functor.

7.29. Proposition. The assignment ℋ defines an endofunctor on Pos.

Proof. Clearly ℋ is well defined on objects. We need to show that it is well
defined on morphisms, that is, if f : (X,≤)→ (X ′,≤′) is a morphism in Pos
then ℋf is order-preserving and ℋf(W ) ∈ ℋ(X ′,≤′) for all W ∈ ℋ(X,≤).

ℋf(W ) is convex. Suppose a′, b′ ∈ ℋf(W ) and a′ v c′ v b′. Then
↓≤′a′, ↑≤′c′ ∈ ℋf(W ) by definition of ℋ, hence f−1(↓≤′a′), f−1(↑≤′c′) ∈W .
By definition of the Egli-Milner order ↓≤′a′ ⊆ ↓≤′c′ and ↑≤′b′ ⊆ ↑≤′c′, so
f−1(↓≤′a′) ⊆ f−1(↓≤′c′) and f−1(↑≤′b′) ⊆ f−1(↑≤′c′). Then f−1(↓≤′c′) ∈W
and f−1(↑≤′c′) ∈W since W is up-closed under inclusion, hence c′ ∈ ℋf(W ).

ℋf(W ) is up-closed under inclusion. If a′ ∈ ℋf(W ) and a′ ⊆ b′ then
f−1(↓≤′a′), f−1(↑≤′a′) ∈ W and since W is up-closed under inclusion,
f−1(↓≤′a′) ⊆ f−1(↓≤′b′) ∈ W and f−1(↑≤′a′) ⊆ f−1(↑≤′b′) ∈ W , so b′ ∈
ℋf(W ).

ℋf is order-preserving. Suppose W V in ℋf(X,≤). We need to show
that ℋf(W ) ℋf(V ). By Lemma 7.11 it suffices to show that a′ ∈ ℋf(W )
implies ↑≤′a′ ∈ ℋf(V ) and a′ ∈ ℋf(V ) implies ↓≤′a′ ∈ ℋf(W ). We
prove the former, the latter being similar. Suppose a′ ∈ ℋf(W ), then
f−1(↑≤′a′) ∈W so ↑≤(f−1(↑≤′a′)) ∈ V because W V . Since the pre-image
of an upset under a monotone function is up-closed, we have f−1(↑≤′a′) =
↑≤(f−1(↑≤′a′)) ∈ V so by Lemma 7.28 ↑≤′a′ ∈ ℋf(V ).

7.30. Theorem. We have MF+ ∼= Coalg(ℋ).



170 Dualities for positive modal logics

Proof. The isomorphism on objects is obvious. The isomorphism for mor-
phisms follows from an easy argument using Lemma 7.28.

7.31. Remark. A natural question to ask at this point is whether we can
obtain the functor ℋ as the subfunctor of some functor QQ : Pos → Pos,
where Q : Pos → Pos is a contravariant functor. While this is the case
for the monotone neighbourhood functor on Set, there seems to be no
straightforward method to obtain ℋ in such a way. A first attempt at Q,
letting Q(X,≤) = Pc(X,≤) and Qf = f−1 fails because Qf need not be
order-preserving. If we let ourselves be inspired by Remark 7.13 and define
Q(X,≤) = Pl(X,≤), ordered by a 4 b if either a, b ∈ Up(X,≤) and a ⊇ b
or a, b ∈ Dn(X,≤) and a ⊆ b, then we are stopped dead in our tracks
because this would imply ∅ 4 X and X 4 ∅.

However, there seems to be a different pattern relating the various flavours
of monotone neighbourhood functors. Let C denote either Set, Pos, Stone or
Pries and write Prℯd for the functor that takes C to its algebra of predicates.
(That is, Prℯd takes subsets, up-closed subsets, clopen subsets and clopen
upsets, respectively.) Then the functor ℱ : C → C whose coalgebras are
monotone neighbourhood frames is such that on the level of the underlying
sets there is a bijective correspondence

ℱX 1-1←→ {W ⊆ PrℯdX ∪ −PrℯdX |W is up-closed

under inclusion },
(7.3)

where −PrℯdX = {X \ a | a ∈ PrℯdX}. That is, the potential collections
of neighbourhoods of states are determined by collections of predicates and
complements of predicates that are up-closed under inclusion. In each case,
the action of ℱ on objects is given by taking a suitable analogue of powerset
functor twice, and then restricting to the subspace of elements that are
up-closed under inclusion. Where relevant, it inherits the order and topology.

Moreover, the action of ℱ on a morphism f : X → Y is given by

ℱf(W ) = {b ∈ PrℯdY ∪ −PrℯdY | f−1(b) ∈W},

where W is an element in the right hand side of (7.3).

Indeed, in case C = Set this is trivial and for C = Pos the statement follows
from Remark 7.13. When C = Pries the observation on objects follows from
Lemma 7.35, and the observation for morphisms follows from Definition 7.38.
If C = Stone then ℱ is given in [210] and the observations above follow
from straightforward verifications. We highlight further investigation of this
pattern as an interesting direction for further research.
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7.5 The monotone neighbourhood functor on Pries

This section is devoted to the construction of the monotone neighbourhood
functor on Pries, the category of Priestley spaces and order-preserving con-
tinuous functions (see Subsection 1.3), and proving that the category of its
coalgebras is isomorphic to the category of M+-spaces (= descriptive positive
monotone frames). We denote this functor by D, because the category of
D-coalgebras is isomorphic to the category of descriptive frames.

Recall that Priestley spaces are written in a blackboard font, X,X′,Y,
suppressing the underlying order, and that ClpupX and ClpdnX denote
the collections of up- and down-closed clopen subsets of X. Let ClplX =
ClpupX∪ClpdnX. Furthermore, recall from Definition 6.16 that the convex
Vietoris functor Vc on Pries, sends a Priestley space X to the collection of
closed convex subsets of X ordered by the Egli-Milner order and topologised
by the (clopen) subbase

a =
{
c ∈ VcX | c ⊆ a

}
, a =

{
c ∈ VcX | c ∩ a 6= ∅

}
,

where a ranges over ClplX. For a Priestley morphism f : X → Y, Vcf is
defined by Vcf(c) = Cℴnv(f [c]).

We first describe the action of the monotone neighbourhood functor on
objects in Pries. This resembles (in fact, generalises) the construction of the
monotone neighbourhood functor on Stone spaces [210, Section 3.2].

7.32. Definition. For a Priestley space X, let

DX =
{
W ∈ VcVcX | if c ∈W and c ⊆ c′ ∈ VcX then c′ ∈W

}
,

topologised and ordered as a subspace of VcVcX.

Before defining the action of D on Priestley morphisms, we verify that
DX is indeed a Priestley space. To do this, we gather some useful properties
of DX in the next four lemmas. Recall that the upward and downward
closures ↑c, ↓c of a closed subset c of a Priestley space X are again closed.

7.33. Lemma. Let X be a Priestley space and W,V ∈ DX. Then W V if
and only if for all c ∈ VcX, c ∈W implies ↑c ∈ V and c ∈ V implies ↓c ∈W .

Proof. Similar to Lemma 7.11.

7.34. Lemma. Let X be a Priestley space, c ∈ VcX and W ∈ DX.

1. c ∈W iff ↑c ∈W and ↓c ∈W .

2. If c is up-closed then c ∈W iff c ⊆ a ∈ ClpupX implies a ∈W .

3. If c is down-closed then c ∈W iff c ⊆ a ∈ ClpdnX implies a ∈W .
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Proof. The proof of the first item is similar to that of Lemma 7.10. In the
second item, the direction from left to right is trivial. For the converse,
assume c /∈ W . We show that there is an up-closed clopen superset a of c
which is not in W . If W = ∅ then this is trivial (take a = X), so suppose
W 6= ∅. Since W is assumed to be closed in VcX there exists a basic clopen
subset A = a1∩· · ·∩ an∩ b1∩· · ·∩ bm of VcX containing c and disjoint
from W . Since A is nonempty we must have bi 6= ∅ and since A is disjoint
from W we must have n ≥ 1, because X ∈ bi for all i and X ∈ W . Let
a† = a1 ∩ · · · ∩ an. Then a† is clopen, contains c, and since a† ∈ A we have
a† /∈W . Thus we have found a clopen superset of c that is not in W . Since⋂
{a′ ∈ ClpupX | c ⊆ a′} = c ⊆ a†, a straightforward compactness argument

shows that there is a finite number a′1, . . . , a
′
k ∈ ClpupX whose intersection

is contained in a†. Therefore, setting a = a′1 ∩ · · · ∩ a′k results in an up-closed
clopen superset of c which is not in W . The third item is proven likewise.

7.35. Lemma. There is a bijective correspondence between elements of DX
and subsets of ClplX that are up-closed under inclusion.

Proof. Define t : DX→ ClplX : W 7→W ∩Clpl. If W 6= W ′ then without
loss of generality there exists a c ∈ W such that c /∈ W ′. Then ↑c, ↓c ∈ W
and either ↑c or ↓c is not in W ′, and it follows from Lemma 7.34 that there
exists some a ∈ ClplX contained in W but not in W ′.

Conversely, given A ⊆ ClplX which is up-closed under inclusion. Let
WA be the collection of c ∈ VcX such that c ⊆ a ∈ ClplX implies a ∈ A.
Then we trivially have a ∈ WA iff a ∈ A for all a ∈ ClplX, so t(WA) = A.
It also easily follows from Lemma 7.34 that Wt(W ) = W , so we do indeed
get a bijection. Thus if we can show that WA ∈ DX then we are done.

By definition WA is up-closed under inclusion and c ∈WA iff ↑c, ↓c ∈ A.
Using this WA is easily seen to be convex. Finally, to see that WA is closed,
suppose c ∈ VcX is such that c /∈ WA. Then there is a ∈ ClplX such that
c ⊆ a and a /∈ A. Therefore WA∩ a = ∅. So we have found an open superset
of c disjoint from WA, hence WA is closed in VcX. Therefore WA ∈ DX.

7.36. Lemma. The subspace topology on DX is generated by

a =
{
W ∈ VcVcX | a ∈W

}
, a =

{
W ∈ VcVcX | X \ a /∈W

}
, (7.4)

where a ranges over ClplX.

Proof. The sets a, a are clopen in DX because a = a ∩ DX and
a = a ∩DX. For the converse, let A =

⋂
( a1 ∪ · · · ∪ an ∪ b) be an

arbitrary clopen subset of VcX. In order to show that A ∩DX is in the
topology generated by (7.4) it suffices to show that ( a1 ∪ · · · ∪ an ∪ b)
is in it, because distributes over intersections. We consider two cases:
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(Case 1 ) All ai satisfy ai∪b 6= X. Then for each i we can find xi /∈ ai∪b.
Let W ∈ DX and W ∈ ( a1∪· · ·∪ an∪ b) and suppose that there
exists c ∈W such that c /∈ b. Then c ∈ ai for some i. Since W is
up-closed under inclusion, we must have c∪ {x1, . . . , xn} ∈W , but by
construction this set is in none of the ai, nor in b, a contradiction.
So c ∈W implies c ∈ b, i.e. W ⊆ b, and therefore

( a1 ∪ · · · ∪ an ∪ b) ∩DX = b ∩DX = b.

(Case 2 ) If Case 1 does not hold, then ai∪ b = X for one of the ai. But
then ai ∪ b = VcX so ( a1 ∪ · · · ∪ an ∪ b) ∩DX = DX.

In a similar way one can show that B is clopen, where B is an arbitrary
clopen subset of VcX written as

⋃
( a ∩ b1 ∩ · · · ∩ bm).

We have developed enough theory to prove that DX is a Priestley space.

7.37. Proposition. If X is a Priestley space, then so is DX.

Proof. We show that DX is compact, hence a closed subspace of VcVcX. The
proposition then follows from the fact that a closed subspace of a Priestley
space is again a Priestley space.

By the Alexander subbase theorem and Lemma 7.36 it suffices to show
that every cover of DX consisting of subbasic clopens of the form a, b
(a, b ∈ ClplX) has a finite subcover. So suppose

DX ⊆
⋃
i∈I

ai ∪
⋃
j∈J

bj . (7.5)

If J = ∅ then ∅ ∈ DX is not in the cover, so we must have |J | ≥ 1. Similarly,
if I = ∅ then VcX ∈ DX is not in the cover, so |I| ≥ 1.

We claim that there must exists a k ∈ I and ` ∈ J such that X \ b` ⊆ ak.
Suppose towards a contradiction that this is not the case. Consider the set

C =
{
d ∈ ClplX | X \ bj ⊆ d for some j ∈ J

}
⊆ ClplX.

By assumption none of the ai are in C and by Lemma 7.35 we can find
WC ∈ DX that contains C but does not contain any of the ai. But then WC

is not in the cover (7.5), a contradiction.

So there must be k ∈ I and ` ∈ J such that X \ b` ⊆ ak. Now if W ∈ DX
and W /∈ b`, then X \ b` ∈ W and hence ak ∈ W . Therefore W ∈ ak,
and consequently ak ∪ b` is a finite subcover of (7.5).

We now define the action of D on morphisms in a similar fashion as for
ℋ. We then show that it is well defined, which ultimately proves that D is
an endofunctor on Pries.
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7.38. Definition. For a Priestley morphism f : X→ X′ define Df by

Df(W ) =
{
c′ ∈ VcX | f−1(↓≤′c′) ∈W and f−1(↑≤′c′) ∈W

}
.

7.39. Lemma. Let f : X → X′ be a morphism in Pries. Then Df is well
defined and a Priestley morphism.

Proof. To show that Df is well defined we need to prove that Df(W ) ∈ DX′
for all W ∈ X. It follows immediately from the definition that Df(W ) is
up-closed under inclusion, and convexity can be proven in a similar way as
for ℋ in Proposition 7.29. To see that it is closed, suppose c′ ∈ VcX′ is not in
Df(W ). Then either ↑c′ or ↓c′ is not in Df(W ). Without loss of generality
we assume the former. We claim that there must be a′ ∈ ClpupX such that
↑c′ ⊆ a′ and a′ /∈ Df(W ). This then entails a′ is a clopen neighbourhood
of ↑c, hence of c, disjoint from Df(W ), so that the latter is closed.

Suppose towards a contradiction that every up-closed clopen superset of
↑c′ is in Df(W ) and let a ∈ ClpupX be any superset of f−1(↑c′). Then⋂{

f−1(a′) | a′ ∈ ClpupX′ and ↑c′ ⊆ a′
}

= f−1
(⋂{

a′ | a′ ∈ ClpupX′ and ↑c′ ⊆ a′
})

= f−1(↑c′)
⊆ a.

Since all f−1(a′) are clopen, a straightforward compactness argument shows
that there is a finite number a′1, . . . , a

′
n of up-closed clopen supersets of c′

such that f−1(a′1 ∩ · · · ∩ a′n) ⊆ a. Then a′ := a′1 ∩ · · · ∩ a′n is an up-closed
clopen superset of ↑c′, hence a′ ∈ Df(W ) and f−1(a′) ∈ Df(W ). But this
implies f−1(a′) ∈ W and since W is up-closed we must have a ∈ W . We
conclude that every up-closed clopen superset of f−1(↑c′) is in W , so by
Lemma 7.34 f−1(↑c′) ∈W so ↑c′ ∈ Df(W ), a contradiction. Therefore there
must exist an up-closed clopen superset a′ of ↑c′ such that a′ /∈W .

Finally we need to show that Df is a Priestley morphism, i.e. it is
order-preserving and continuous. The former can be shown in the same
way as in the proof of Proposition 7.29. The latter follows from the fact
that (Df)−1( a′) = f−1(a′) and (Df)−1( a′) = f−1(a′) for all a′ ∈
ClplX′.

7.40. Theorem. We have D-MF+ ∼= Coalg(D).

To prove this we make use of the following two lemmas, which give the
object-part of the isomorphism.

7.41. Lemma. Let (X, γ) ∈ Coalg(D). Write (X,≤) for the poset underlying
X and define Nγ : (X,≤) → PcPc(X,≤) by Nγ(x) = {d ∈ Pc(X,≤) | c ⊆
d for some c ∈ γ(x)}. Then (X,≤, Nγ ,ClpupX) is an M+-space.
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Proof. Clearly Nγ(x) is up-closed under inclusion for every x ∈ X. It
follows from the definition of Nγ(x) and Lemmas 7.11 and 7.33 that x ≤ y
implies Nγ(x) Nγ(y). So (X,≤, Nγ) is a positive monotone frame. The
set ClpupX automatically contains ∅ and X, and is closed under ∩ and ∪.
Continuity of γ implies that it is also closed under m and m , because

m (a) =
{
x ∈ X | a ∈ Nγ(x)

}
=
{
x ∈ X | γ(x) ∈ a

}
= γ−1( a)

and similarly m (a) = γ−1( a). Thus (X,≤, Nγ ,ClpupX) is a general
positive monotone frame. It is compact and differentiated because X is
compact and Hausdorff, and tight by construction of Nγ and Lemma 7.34.

7.42. Lemma. For an M+-space (X,≤, N,A) let τA be the topology on X
generated by the Boolean closure of A in PX and define X = (X,≤, τA) and
γN : X→ DX : x 7→ {c ∈ VcX | c ∈ N(x)}. Then (X, γ) is a D-coalgebra.

Proof. The tuple X is a Priestley space because (X,≤, N,A) is compact and
differentiated. For any x ∈ X the set γN (x) is convex and up-closed under
inclusion in VcX, because N(x) is convex and up-closed under inclusion in
Pc(X,≤). A similar argument as in the proof of Lemma 7.39 shows that
γ(x) is closed in VcX. Finally, continuity of γ follows from the facts that the
topology on DX is generated by a, a and A is closed under m and m ,
because this implies γ−1( a) = m (a) ∈ A and γ−1( a) = m (a) ∈ A.

Proof of Theorem 7.40. It is straightforward to see that Lemmas 7.41 and 7.42
give an isomorphism on objects. So we are left to prove this isomorphism on
morphisms. To this end, let M = (X,≤, N,A) and M′ = (X ′,≤′, N ′, A′) be
two M+-spaces and let (X, γ) and (X′, γ′) be the corresponding D-coalgebras.
We claim that a function f : X → X ′ is a general frame morphism M→M′

if and only if it is a D-coalgebra morphism (X, γ)→ (X′, γ′).
Suppose f is a general frame morphism. Then in order to show that it is

a D-coalgebra morphism we need to show that

X X′

DX DX′

f

γ γ′

Df

(7.6)

commutes. Since W ′ ∈ DX′ is determined by the elements in ClplX′ it
contains, it suffices to prove that γ′ ◦ f and Df ◦ γ coincide on all up-closed
and down-closed clopens. So let x ∈ X and a′ ∈ ClplX′. Then we have

a′ ∈ γ′(f(x)) iff a′ ∈ N ′(f(x))

iff f−1(a′) ∈ N(x)

iff f−1(a′) ∈ γ(x)

iff a′ ∈ (Df)(γ(x))
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where the second “iff” follows from the definition of a general frame morphism.
If f is a D-coalgebra morphism then similar reasoning shows that it is also a
general frame morphism.

7.6 Duality

The goal of this section is to prove that the categories D-MF+ and DLM
are dually equivalent. That is, we prove Theorem 7.19 and herewith its
corollaries. Since D-MF+ ∼= Coalg(D) and DLM ∼= Alg(ℳ+) we can view this
as an algebra/coalgebra duality and it suffices to prove that the functors D
and ℳ+ are dual with respect to Priestley duality, as this implies Alg(ℳ+) ≡op

Coalg(D).
More precisely, we shall give a natural isomorphism

ξ : D ·Pf→ Pf ·ℳ+.

We make use of the fact that prime filters of a distributive lattice A correspond
bijectively to homomorphisms A→ 2, where 2 is the two-element distributive
lattice. (A homomorphism p : A→ 2 corresponds to the prime filter p−1(>)
and every prime filter is of such a form.) Since ℳ+ is defined by generators
and relations, a prime filter of ℳ+A is then determined uniquely by its action
on the generators a and a and we can describe a prime filter p : ℳ+A→ 2
by defining the action of p on the generators of ℳ+A and showing that the
images of these generators under p satisfy the relations from Definition 7.24.

7.43. Definition. For A ∈ DL define ξA : D(PfA)→ Pf(ℳ+A) by setting

ξA(W ) : ℳ+A→ 2 :

{
a 7→ > iff â ∈W
a 7→ > iff PfA \ â /∈W

In order to show that this is well defined, it suffices to prove that the
images of the generators a, a of A under ξA(W ) satisfy the relations from
Definition 7.24. This follows from a straightforward verification. Moreover,
ξA is a Priestley morphism: for continuity, observe that the topology on
Pf(ℳ+A) is generated by â = {p : ℳ+A→ 2 | p( a) = >} and â = {p :
ℳ+A → 2 | p( a) = >}. By definition we then have ξ−1

A ( â) = â and
ξ−1
A ( â) = â, both of which are clopen in Pf(ℳ+A). For monotonicity,

suppose W W ′. We need to show that

ξA(W )( a) ≤ ξA(W ′)( a) and ξA(W )( a) ≤ ξA(W ′)( a) (7.7)

for all a ∈ A. Adapting the argument from Lemma 7.11 shows that â ∈W
implies â ∈W ′ and PfA \ â ∈W ′ implies PfA \ â ∈W . This implies (7.7),
so ξA is indeed a Priestley morphism.

In fact, the ξA form a natural transformation.
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7.44. Lemma. The transformation ξ = (ξA)A∈DL : D ·Pf → Pf ·ℳ+ is
natural.

Proof. Let h : A→ B be a morphism in DL, then we need to show that

D(PfA) Pf(ℳ+A)

D(PfB) Pf(ℳ+B)

ξA

ξB

D(Pfh) Pf(ℳ+h)

commutes. Let W ∈ D ·PfB, then it suffices to show that ξA(D ·Pfh(W ))
and (Pf ·ℳ+h)(ξB(W )) (viewed as morphisms ℳ+A → 2) agree on the
generators of ℳ+A. Let a be such a generator, then we have

ξA(D ·Pfh(W ))( a) = > iff â ∈ D ·Pfh(W )

iff (Pfh)−1(â) ∈W.
(7.8)

In the latter step we use that â is up-closed. A straightforward computation

shows that (Pfh)−1(â) = ĥ(a), so (7.8) holds if and only if

ĥ(a) ∈W iff ξB(W )( h(a)) = >
iff (Pf ·ℳ+h)(ξB(W ))( a) = >.

A similar verification works for generators of the form a.

In order to prove that ξ is a natural isomorphism, we need to show that
its components are isomorphisms. We do so by constructing an inverse νA of
ξA, using Lemma 7.35. For p ∈ Pf ·ℳ+A, let

nA(p) =
{
â | a ∈ p

}
∪
{
PfA \ â | a /∈ p

}
⊆ Clpl(PfA).

If nA(p) is up-closed under inclusion in Clpl(PfA) then we can use Lemma 7.35
to find νA(p) ∈ D(PfA) such that νA(p) ∩Clpl(PfA) = nA(p).

7.45. Lemma. The set nA(p) is up-closed under inclusion in Clpl(pfA).

Proof. Suppose c ∈ nA(p) and c ⊆ c′ ∈ Clpl(PfA). We need to show that
c′ ∈ nA(p). There are four cases, corresponding to c and c′ being up- and
down-closed. If both are up-closed, i.e. c = â and c′ = b̂, then a ≤ b (because

(̂·) is an isomorphism). Hence by monotonicity of we have a ≤ b. Since
p is a prime filter containing a we must have b ∈ p, so b̂ ∈ nA(p). If only
c is up-closed, then c = â and c′ = PfA \ b̂ for some a, b ∈ A. Now â ∩ b̂ = ∅
and hence a ∧ b = ⊥A. From the duality axiom we get a ∧ b = ⊥ℳ+A /∈ p
and since p is a prime filter and a ∈ p we must have b /∈ p, hence
PfA \ b̂ ∈ nA(p). The two cases for c = PfA \ â are similar.

7.46. Lemma. The map νA is a Priestley morphism.
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Proof. We need to show that νA is monotone and continuous. The topology
on D(PfA) is generated by â and â and their complements, where a ∈ A.
By construction of νA(p) we have ν−1

A ( â) = â and ν−1
A ( â) = â, and

both are clopen in Pf(ℳ+A) so νA is continuous.

Now suppose p ⊆ q in Pf(ℳ+A). By Lemma 7.33 if suffices to prove
that c ∈ νA(p) implies ↑c ∈ νA(q) and c ∈ νA(q) implies ↓c ∈ νA(p). We
prove the contrapositive of both. If ↑c /∈ νA(q), then by Lemma 7.34 there
exists an up-closed clopen superset â of ↑c such that â /∈ νA(q). Then a /∈ q
and since p ⊆ q also a /∈ p. Hence â /∈ νA(p) and by construction of νA(p),
c /∈ νA(p). Similarly ↓c /∈ νA(p) implies c /∈ νA(q).

7.47. Lemma. The natural transformation ξ is a natural isomorphism.

Proof. We already know that ξ is a natural transformation, so we only have
to show that its components are isomorphisms. An element p ∈ Pf(ℳ+A)
is determined uniquely by the elements of the form a, a it contains. We
have a ∈ ξA(νA(p)) iff â ∈ νA(p) iff a ∈ p and similar for diamonds.
Therefore ξA ◦ νA = idPf·ℳ+A. Conversely, an element of the space D(PfA)
is determined uniquely by the clopen sets of the form â, â in which it
is contained (where a ∈ A). A similar argument to the one above then
shows that νA ◦ ξA = idD·PfA. Therefore νA = ξ−1

A , so ξ is isomorphic on
components.

Since ℳ+ and D are dual functors we have Alg(ℳ+) ≡op Coalg(D).
Together with the isomorphisms DLM ∼= Alg(ℳ+) and D-MF+ ∼= Coalg(D)
from Proposition 7.25 and Theorem 7.40, this proves the main theorem of
this section.

7.48. Theorem. D-MF+ ≡op DLM.

It follows from unravelling the definitions that this duality is given by
the functors (·)∗ and (·)∗ defined in Section 7.3.

8 Monotone subintuitionistic logic

Subintuitionistic logics are propositional logics that weaken the laws of
(intuitionistic) implication. In the past, they have been investigated from a
variety of angles. Corsi [118] studied subintuitionistic logics interpreted in
(not necessarily intuitionistic) Kripke frames, where the implication coincides
with Lewis’ strict implication J [281, 282]. Restall [368] modified this
interpretation by requiring that the frames have an omniscient element, that
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is, a world that can access all other worlds. This validates some (but not all)
postulates of intuitionistic logic, such as prefixing.

Visser [429, 430] used transitive Kripke frames as the semantics of Basic
Logic, the consequence relation of which is analysed in [381]. A Hilbert-style
system for Corsi’s subintuitionistic logic was extended to an axiomatisation
of Basic Logic in [405]. The logic K(σ), that relates to basic logic in the same
way in which K relates to S4, was presented by Došen in [142]. It is further
investigated by Wansing [435] and Celani and Jansana [87], culminating in a
Priestley-style duality for K(σ) [98]. De Jongh and Maleki [237] give a good
overview of subintuitionistic logics.

In this section we take a similar approach to Corsi [118], in the sense
that we generalise the class of interpreting structures while leaving the
interpretation of the (sub)intuitionistic arrow unchanged. The main point of
difference is that rather than starting with intuitionistic Kripke frames, we
interpret intuitionistic logic in a class of monotone neighbourhood frames that
correspond to intuitionistic Kripke frames [313, Definition 3.1]. Analogous
to [118], this is then extended to the class of all monotone neighbourhood
frames.

As a result, we obtain a weak system of subintuitionistic logic that
we call monotone subintuitionistic logic. This is similar to the system
WF of weak subintuitionistic logic, recently introduced by De Jongh and
Maleki [299, 237, 238], but the two systems turn out to be incomparable.
Semantically the approaches differ because the frames in [299, 237, 238]
assign to each state a collection of pairs of neighbourhoods, and each frame
is required to have an omniscient element with special properties. Our
semantics is given by standard monotone neighbourhood frames, and we
do not postulate the existence of omniscient elements. From a logical
point of view, the difference is witnessed for example by the fact that our
subintuitionistic implication is monotone in its second argument and does
not satisfy the identity axiom (ϕ→ ϕ) unless we add it explicitly as a frame
condition, while WF is not monotone in its second argument but does satisfy
the identity axiom.

Besides this basic system of monotone subintuitionistic logic, we study
several extensions. For both the basic system and extensions with suitable
sets of axioms we obtain the following results:

• soundness with respect to monotone neighbourhood frames and a
poset-based cousin of monotone neighbourhood frames;

• completeness with respect to both types of semantics;

• conservativity with respect to a suitable modal extension of classical
propositional logic;

• and the finite model property.

The main technical tools are the use of duality and d-persistence to derive
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completeness, which in turn is grounded in the duality between algebraic and
coalgebraic semantics. The finite model property is established by translating
monotone subintuitionistic logic to modal extensions of classical propositional
logic.

Structure of the section. We give an axiomatisation of the minimal
logic under consideration using consequence pairs in Subsection 8.1. This is
closely aligned to Dunn’s treatment of positive modal logic [144], and gives
rise to an algebraic semantics given by distributive lattices with a binary
operator.

In Subsection 8.2 we give two types of frame semantics for the logic.
First, we consider its interpretation in monotone (neighbourhood) models.
The subintuitionistic implication is interpreted in the same way Lewis’ strict
implication is interpreted in Kripke models, that is, as a boxed material
implication. The interpretation in monotone models plays a key rôle later on
when we prove the finite model property. Subsequently, we define a poset-
based analogue of monotone models. We compare validity of consequence
pairs in ordered and unordered semantics. This gives rise to the notion of
order-persistence that guarantees that validity in both interpretations agrees.

The ordered counterparts of monotone frames serve as a stepping stone
towards the Priestley style duality presented in Subsection 8.3. In this section
we start by defining descriptive frames as ordered frames together with a set
of admissible subsets satisfying certain conditions. The main tool for proving
the duality is the use of algebras and coalgebras. We identify the category
of descriptive frames with a category of coalgebras for an endofunctor D on
the category of Priestley spaces, and the algebraic semantics with a category
of algebras for an endofunctor J on the category of distributive lattices. As
a consequence of the dual nature of algebras and coalgebras, the duality is
in place once we establish that the functors D and J are dual.

As an immediate consequence of the duality we obtain (weak) complete-
ness for the minimal logic under consideration in Subsection 8.4. We employ
the notions of order-persistence and d-persistence to obtain the same for
extensions of the basic logic with suitable frame conditions.

Our proof of the finite model property and decidability relies on the
connection between our subintuitionistic logic and classical monotone modal
logic. This is where the interpretation in monotone frames plays a crucial
rôle. Before we exploit this, we establish the finite model property for the
relevant classical modal logics in Subsection 8.5. We put these results to
work immediately after in Subsection 8.6, where we derive the finite model
property and decidability for our minimal logic and extensions with suitable
sets of axioms.
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Related work. Moniri and Maleki [313] present neighbourhood seman-
tics for intuitionistic logic, where the frames under consideration need to
satisfy reflexivity, closure under arbitrary intersections, monotonicity, and
a version of transitivity [313, Definition 3.1]. It can be shown that such
frames correspond bijectively to intuitionistic Kripke frames, by identifying
the successor-set of a state with its minimal neighbourhood. As observed
in Section 6 of [313], discarding reflexivity yields neighbourhood frames
corresponding to reflexive Kripke frames, that is, semantics for Basic Logic.
Omitting transitivity, one gets a correspondence with all Kripke frames,
and hence semantics for Corsi’s subintuitionistic logic [118]. We addition-
ally dismiss that the collection of neighbourhoods be closed under arbitrary
intersections, leading to neighbourhood frames that only satisfy monotonicity.

The logic under consideration in this section can then be seen as a
positive fragment of monotone modal logic, a different fragment of which was
investigated in Section 7. The difference is most prominently visible in the
shape of the neighbourhoods in poset-based semantics. Furthermore, the logic
can be viewed as a specific instance of a coalgebraic positive logic [247, 23],
and the duality result as the monotone counterpart of [98, Theorem 4.15].

Origin of the material. This section is based on joint work with Dirk
Pattinson, which resulted in a paper that is accepted for publication [203].

8.1 Monotone subintuitionistic implication

We introduce the logic that lies at the heart of this section and its algebraic
semantics. The logic is defined over the same language as intuitionistic
(or classical) propositional logic. We emphasise the difference by using the
symbol (rather than →) to denote implication. That is, we let P be the
language defined by the grammar

ϕ ::= > | ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ϕ,

where p ranges over some set Prop of proposition letters. We refer to as
monotone subintuitionistic implication.

For lack of a strong enough implication, we define the minimal logic P
based on the language P as a collection of consequence pairs. A similar
approach was taken by Dunn [144] when defining positive modal logic, see
also Subsection 6.1. Formally, a consequence pair is simply an expression of
the form ϕ ψ, where ϕ,ψ ∈ P . Intuitively, these mean “If ϕ holds then
ψ holds as well.”

8.1. Definition. Let P be the smallest set of consequence pairs closed
under the axioms and rules from Table 8.1. Write ϕ ` ψ if ϕ ψ is in P ,
and ϕ a` ψ if both ϕ ` ψ and ψ ` ϕ.
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Table 8.1: Axioms and Rules of P

ϕ >, ⊥ ϕ (top and bottom)

ϕ ϕ,
ϕ ψ ψ χ

ϕ χ
(identity and transitivity)

ϕ ∧ ψ ϕ, ϕ ∧ ψ ψ,
ϕ ψ ϕ χ

ϕ ψ ∧ χ
(conjunction rules)

ϕ ϕ ∨ ψ, ψ ϕ ∨ ψ,
ϕ χ ψ χ

ϕ ∨ ψ χ
(disjunction rules)

ϕ ∧ (ψ ∨ χ) (ϕ ∧ ψ) ∨ (ϕ ∧ χ) (distribution)

ϕ ψ (ϕ ∨ ψ) ψ
ϕ ψ ϕ (ϕ ∧ ψ)

(absorption axioms)

ψ χ

ϕ ψ ϕ χ
,

ψ ϕ

ϕ χ ψ χ
(mono- and antitonicity)

All of these axioms and rules are valid in intuitionistic logic, as well as
in all subintuitionistic logics discussed in the introduction apart from weak
subintuitionistic logic (see Remark 8.2).

The monotonicity and antitonicity rules entail the customary congru-
ence rule for modal operators. Combining them with the disjunction
and conjunction rules yields the monotonicity and antitonicity axioms
ϕ ψ ` ϕ (ψ ∨ χ) and ϕ ψ ` (ϕ ∧ χ) ψ.

8.2. Remark. We briefly explain the connection between P and the system
WF of weak subintuitionistic logic introduced in [299, Definition 2.8]. Since
the latter is described using axioms, rather than consequence pairs, the
implication plays a double rôle: it is used both for logical entailment and
as a subintuitionistic implication. In other words, it is used both as and
as . As a consequence, desirable axioms and rules for the underlying
logic, such as identity and modus ponens, also hold for the subintuitionistic
implication. We view these axioms as defining extensions of our basic logic,
see Definition 8.5.

However, the logic in [299] is not an extension of ours either. The
absorption axioms and monotonicity and antitonicity rules (with replaced by
an implication) do not hold in general in WF. The closely related absorption
rules, ϕ→ ψ/(ϕ∨ψ)→ ψ and ϕ→ ψ/ϕ→ (ϕ∧ψ), are provable in WF, but
the monotonicity and antitonicity rules do not have such analogues in WF.

In [299, Section 6] an extension of WF called WFILIR, which can be
interpreted in monotone neighbourhood frames, is investigated. The resulting
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logic can then be viewed as an extension of ours, in the sense that ϕ ψ ∈ P
implies `WFILIR ϕ→ ψ.

8.3. Definition. If Γ is a set of consequence pairs, then we write P (Γ) for
the smallest set of consequence pairs closed under the axioms and rules from
Table 8.1 and Γ. We write ϕ `Γ ψ if the consequence pair ϕ ψ is in P (Γ)
and ϕ a`Γ ψ if both ϕ `Γ ψ and ψ `Γ ϕ.

8.4. Lemma. We have ϕ `Γ ψ if and only if ϕ ∧ ψ a`Γ ϕ.

Proof. Same as Lemma 7.3, replacing every occurrence of ` and a` with `Γ

and a`Γ, respectively.

8.5. Definition. We list several consequence pairs that play the rôle of
additional axiom that we will consider later.

(Id) > ϕ ϕ ( -identity)

(P) > ⊥ ⊥
(MP) ϕ ∧ (ϕ ψ) ψ (modus ponens)

(AP) ϕ ψ ϕ (a posteriori)

(EM) > ϕ ∨ (ϕ ψ) (excluded middle)

(Ka) (ϕ ψ) ∧ (ϕ χ) ϕ (ψ ∧ χ)

(Di) (ϕ χ) ∧ (ψ χ) (ϕ ∨ ψ) χ

The identity axiom (Id) is part of all known subintuitionistic logics, in-
cluding weak subintuitionistic logic, and (Ka) and (Di) hold in all non-weak
subintuitionistic logics. The axiom (P) is interesting from a semantic point
of view, because it corresponds to saying that the empty set cannot be a
neighbourhood of any state. (MP) is a version of modus ponens for the
monotone subintuitionistic implication. Finally, observe that antitonicity
and monotonicity imply that (AP) is equivalent to ϕ > ϕ and (EM) is
equivalent to > ϕ∨ (ϕ ⊥), so (AP) and (EM) are monotone subintuition-
istic implication counterparts of a posteriori and excluded middle (where
negation is defined as ϕ ⊥).

The algebraic semantics of P is given by distributive lattices with a
binary operator.

8.6. Definition. A distributive lattice with monotone implication (DLMI)
is a pair (D, ) where D is a distributive lattice and : D × D → D a
binary operation satisfying:

(I1) a b ≤ (a ∧ c) b (antitone in first argument)

(I2) a b ≤ (a ∨ b) b (absorption in first argument)

(I3) a b ≤ a (b ∨ c) (monotone in second argument)
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(I4) a b ≤ a (a ∧ b) (absorption in second argument)

A DLMI-morphism h : (D, )→ (D′, ′) is a DL-homomorphism h : D →
D′ satisfying h(a b) = h(a) h(b) for all a, b ∈ D. We denote the
resulting category by DLMI.

DLMI can be viewed as a category of algebras for the endofunctor J on
DL. We use this fact in Subsection 8.3 below to establish a duality for DLMI.

8.7. Definition. The functor J : DL→ DL sends a distributive lattice D to
the free distributive lattice generated by {a b | a, b ∈ D} modulo the rela-
tions (I1), (I2), (I3) and (I4) (with replaced by ). For a homomorphism
h : D → D′ in DL, define Jf on generators by Jf(a b) = f(a) f(b).

In the same way we regularly use to denote formal generators related
to a modality , we now use rather than to emphasise that a b is a
formal generator, rather than a formula of the logic. One easily proves:

8.8. Proposition. We have DLMI ∼= Alg(J).

For future reference, we derive some inequalities that hold in JA for every
distributive lattice A.

8.9. Lemma. Let A be a distributive lattice. Then in JA the following
inequalities hold for all a, b, c ∈ A:

(I5) a b ≤ (a ∧ c) (b ∧ c)
(I6) a b ≤ (a ∨ c) (b ∨ c)
(I7) a b ≤ c c

Proof. For item (I5), compute

a b
(I1)

≤ (a ∧ c) b
(I4)

≤ (a ∧ c) (a ∧ c ∧ b)
(I3)

≤ (a ∧ c) (b ∧ c).

The proof of (I6) is similar, and (I7) follows from combining the first two
and using the absorption laws for distributive lattices.

Next, we investigate the connection between the logic P (Γ) and DLMIs.

8.10. Definition. Formulae from P can be interpreted in a DLMI (A, A)
using an assignment σA : Prop→ A that assigns to each proposition letter
an element in A, via

L>MA = >A Lϕ ∧ ψ MA = LϕMA ∧A Lψ MA LpMA = σA(p)

L⊥MA = ⊥A Lϕ ∨ ψ MA = LϕMA ∨A Lψ MA Lϕ ψ MA = LϕMA A Lψ MA

We call A = (A, A, σA) a DLMI-model (based on (A, A)), and write
DLMIM for the category of DLMI-models and assignment-preserving DLMI-
morphisms.
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A DLMI-model A = (A, A, σA) satisfies ϕ ψ if LϕMA ≤A Lψ MA, and
a DLMI (A, A) validates ϕ ψ if LϕMA ≤ Lψ MA for every DLMI-model
A = (A, A, σA) based on (A, A). If Γ is a collection of consequence pairs,
then DLMI(Γ) denotes the full subcategory of DLMI whose objects validate
all consequence pairs in Γ. We write DLMIM(Γ) for the full subcategory of
DLMIM whose objects are based on DLMIs in DLMI(Γ)

8.11. Definition. Write ϕ A ψ if LϕMA ≤A Lψ MA, and ϕ Γ ψ if ϕ A ψ
for every A ∈ DLMIM(Γ). If Γ = ∅ then we write rather than ∅ .

Observe that a`Γ is an equivalence relation on P and write L(Γ) for
the set of its equivalence classes. Let [ϕ] denote the equivalence class of ϕ
in L(Γ). We can turn L(Γ) into a DLMI by defining >L = [>], ⊥L = [⊥],
and [ϕ] FL [ψ] = [ϕ F ψ] for F ∈ {∧,∨, }. It follows from the rules in
Definition 8.1 that (L(Γ), L) ∈ DLMI(Γ). Setting σL : Prop → L : p 7→
[p] yields a DLMI-model LΓ = (L(Γ), L, σL) ∈ DLMIM(Γ), called the
Lindenbaum-Tarski algebra. An easy induction on the structure of ϕ shows
that LϕMLΓ

= [ϕ] for all ϕ ∈ P .

8.12. Lemma. The Lindenbaum-Tarski algebra LΓ is initial in DLMIM(Γ).

Proof. If A = (A, A, σA) ∈ DLMIM(Γ), then [p] 7→ σA(p) extends uniquely
to a morphism LΓ →A, which is well defined because A satisfies Γ.

8.13. Theorem. We have ϕ `Γ ψ if and only if ϕ Γ ψ.

Proof. If ϕ Γ ψ then [ϕ] ≤L [ψ] in LΓ by definition. This implies that
[ϕ ∧ ψ] = [ϕ] ∧L [ψ] = [ϕ] and therefore ϕ ∧ ψ a`Γ ϕ, so by Lemma 8.4
ϕ `Γ ψ. Conversely, if ϕ `Γ ψ then reasoning in the opposite direction yields
LϕMLΓ

≤L Lψ MLΓ
, so that initiality of LΓ in DLMIM(Γ) implies that ϕ A ψ

for every A ∈ DLMIM(Γ). Hence ϕ Γ ψ.

8.2 A tale of two semantics

Next we investigate frame semantics of P . We think of ϕ ψ as being
interpreted in monotone frames via (ϕ → ψ), where is the monotone
modality from Subsection 3.3.2 and → denotes material implication. In
Subsection 8.2.1 we confirm that this indeed yields a sound semantics.

While subintuitionistic logics are often interpreted in frames based on
sets, frames and models for modal positive logics are usually based on
posets [96, 247]. This is motivated by the observation that the collection of
up-closed subsets of a poset forms a distributive lattice, but not necessarily
a Boolean algebra. Moreover, posets underlie the topological spaces dual to
distributive lattices via Priestley duality (see Subsection 1.3).
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Therefore, in Subsection 8.2.2, we define a different flavour of monotone
frames, based on posets. Apart from exposing the connection to coalgebraic
positive logic literature, the ordered semantics serve as a stepping stone
towards descriptive frames and a Priestley style duality in Subsection 8.3.

In Subsection 8.2.3 we investigate the relation between the ordered and
unordered semantics. There are two canonical ways to extend an ordered
frame to an unordered one, and these transitions do not in general preserve
validity of consequence pairs. We define corresponding notions of order-
persistence and give examples and counterexamples of order-persistent sets
of consequence pairs.

8.2.1 Interpretation in monotone frames

The interpretation of in monotone frames coincides with the (classical)
interpretation of (ϕ→ ψ), where denotes the monotone box discussed in
Subsection 3.3.2. We define this formally.

8.14. Definition. The language P can be interpreted in a monotone model
W = (X,N, V ) via

W, x  > iff always

W, x  ⊥ iff never

W, x  p iff x ∈ V (p)

W, x  ϕ ∧ ψ iff W, x  ϕ and W, x  ψ

W, x  ϕ ∨ ψ iff W, x  ϕ or W, x  ψ

W, x  ϕ ψ iff (X \ JϕKW) ∪ JψKW ∈ N(x)

Here JϕKW := {x ∈ X |W, x  ϕ} denotes the truth set of ϕ ∈ P .

In other words, we have W, x  ϕ ψ if there exists a neighbourhood a
such that for all y ∈ a, W, y  ϕ implies W, y  ψ. To see this, note that a
is a subset of (X \ JϕKW)∪ JψKW, so that monotonicity of the neighbourhood
function implies that (X \ JϕKW) ∪ JψKW ∈ N(x), and hence x ∈ Jϕ ψKW.
Conversely, if x ∈ Jϕ ψKW then (X \ JϕKW) ∪ JψKW ∈ N(x) can take on
the rôle of a.

8.15. Definition. We say that W validates ϕ ψ, and write ϕ W ψ, if
JϕKW ⊆ JψKW. A monotone frame U = (X,N) is said to validate ϕ ψ if
ϕ W ψ for all models W based on U, notation: ϕ U ψ. If Γ is a collection
of consequence pairs then we denote by MF(Γ) the full subcategory of MF
whose objects validate all consequence pairs in Γ. If K is a class of monotone
frames or models then we write ϕ K ψ if ϕ K ψ for all K ∈ K.

8.16. Lemma. Suppose ϕ `Γ ψ, and let W = (X,N, V ) be a monotone
model that satisfies all consequence pairs in Γ. Then ϕ W ψ.
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Proof. This follows from induction on the length of the derivation of ϕ `Γ ψ.
Validity of the axioms from Definition 8.1 in W can easily be verified, and
the axioms in Γ are all valid by assumption.

If ϕ `Γ ψ is derived from the conjunction rule, then ψ = ψ′ ∧ ψ′′ and
ϕ `Γ ψ

′ and ϕ `Γ ψ
′′ appear earlier in the derivation. By assumption then

ϕ W ψ′ and ϕ `W ψ′′, and hence JϕKW ⊆ Jψ′KW and JϕKW ⊆ Jψ′′KW. This
implies JϕKW ⊆ Jψ′KW ∩ Jψ′′KW = JψKW, and therefore ϕ W ψ. The case for
the disjunction rule is similar.

Finally we show the inductive step for the monotonicity rule, antitonicity
being similar. So assume ϕ `Γ ψ follows from the monotonicity rule. Then
ϕ = χ′ ϕ′ and ψ = χ′ ψ′ for some ϕ′, ψ′, χ′, and ϕ′ `Γ ψ′ appears
earlier on in the derivation. By the inductive hypothesis ϕ′ W ψ′, that is,
Jϕ′KW ⊆ Jψ′KW. This implies (X \ Jχ′KW) ∪ Jϕ′KW ⊆ (X \ Jχ′KW) ∪ Jψ′KW.
Monotonicity of N now entails that for all x ∈ X, (X \Jχ′KW)∪Jϕ′KW ∈ N(x)
implies (X \ Jχ′KW) ∪ Jψ′KW ∈ N(x). Therefore Jχ′ ϕ′KW ⊆ Jχ′ ψ′KW,
hence by definition ϕ W ψ.

8.17. Theorem (Soundness). If ϕ `Γ ψ then ϕ MF(Γ) ψ.

Proof. This follows immediately from Lemma 8.16 the fact that each model
based on a monotone frame in MF(Γ) validates all consequence pairs in Γ by
definition.

8.2.2 Monotone frames based on posets

Before explaining the intuition behind ordered -frames, we discuss some
basic definitions about subsets of posets.

Recall from Subsection 1.3 that we write Pos for the category of posets
and order-preserving functions. If (X,≤) ∈ Pos and a ⊆ X then we let
↑a := {y ∈ X | x ≤ y for some x ∈ a} denote its upward closure. If a = ↑a
then a is called up-closed or an upset. The collection of upsets of (X,≤) is
denoted by Up(X,≤). The downward closure, downsets, and Dn(X,≤) are
defined analogously.

8.18. Definition. A subset a ⊆ X is called convex if a = ↑a ∩ ↓a and we
write P•(X,≤) for the collection of convex subsets of (X,≤). If b ⊆ X
then Cℴnv(b) := ↑b ∩ ↓b is the smallest convex set containing b, called the
convexification of b. The set a ⊆ X is called co-convex if its complement
X \ a is convex. The collection of co-convex subsets of (X,≤) is denoted by
P◦(X,≤).

Clearly, the union of a downset and an upset is always a co-convex set.
Conversely:

8.19. Lemma. Every co-convex subset a of a poset (X,≤) is the union of a
downset and an upset.
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Proof. If a is co-convex then X\a is convex, so that X\a = ↑(X\a)∩↓(X\a).
Since complements take upsets to downsets and vice versa, we can express a as
the union of a downset and an upset via a = (X\↑(X\a))∪(X\↓(X\a)).

The interpretants of (positive) formulae in a poset (X,≤) are upsets, and
in line with unordered monotone frames, we wish that a state x satisfies ϕ ψ
if the set {y ∈ X | y 6 ϕ or y  ψ} = (X \JϕK)∪JψK is a neighbourhood of x.
Consequently, we are primarily interested in co-convex neighbourhoods of x.
(By contrast, the positive fragment of monotone modal logic with modalities

and gives rise to a setting where the neighbourhoods of interest are
convex, see Section 7 or [196].) This motivates the following definition.

8.20. Definition. An ordered -frame is a tuple (X,≤, N) consisting of
a poset (X,≤) and a neighbourhood function N : X → PP◦(X,≤) that
assigns to each x ∈ X a collection of co-convex subsets of (X,≤) such that:

• If a ∈ N(x) and a ⊆ b ∈ P◦(X,≤) then b ∈ N(x);

• If x ≤ y then N(x) ⊆ N(y).

An ordered -model is an ordered -frame (X,≤, N) together with a valua-
tion V : Prop→ Up(X,≤) of the proposition letters. We say that (X,≤, N)
is the underlying frame of the model, or that the model is based on (X,≤, N).
The interpretation of a P -formula ϕ in an ordered -model M is denoted
by JϕKM and defined via the clauses of Definition 8.14. We say that M
validates ϕ ψ, and write ϕ M ψ, if JϕKM ⊆ JψKM. An ordered -frame X
is said to validate ϕ ψ if ϕ M ψ for all models M based on X, notation:
ϕ X ψ. If K is a class of ordered -frames or models then we write ϕ K ψ
if ϕ K ψ for all K ∈ K.

The definition of ordered -models ensures persistence; that is, the truth
set of any P -formula in an ordered -model is up-closed in the underlying
poset order.

8.21. Lemma. Let M = (X,≤, N, V ) be an ordered -model. For all
x, y ∈ X and ϕ ∈ P , if x ≤ y and M, x  ϕ then M, y  ϕ.

Proof. This follows from induction on the structure of ϕ. The only non-trivial
step is for ϕ = ϕ1 ϕ2. If M, x  ϕ1 ϕ2 then (X\Jϕ1KM)∪Jϕ2KM ∈ N(x).
Since x ≤ y we have N(x) ⊆ N(y), so that (X \ Jϕ1KM)∪ Jϕ2KM ∈ N(y) and
hence M, y  ϕ1 ϕ2.

We define a notion of truth-preserving morphisms between ordered -
models.

8.22. Definition. An ordered -morphism from (X,≤, N) to (X ′,≤′, N ′)
is an order-preserving function f : (X,≤)→ (X ′,≤′) such that for all x ∈ X,
a′ ∈ P◦(X ′,≤′):

f−1(a′) ∈ N(x) iff a′ ∈ N ′(f(x)). (8.1)
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An ordered -morphism between ordered -models (X,≤, N, V ) and (X ′,≤′
, N ′, V ′) is an ordered -morphism f between the underlying frames satisfy-
ing V = f−1 ◦ V ′.

We write OMF and OMM for the categories of ordered -frames and
-models, respectively. Furthermore, if Γ is a set of consequence pairs then
we write OMF(Γ) for the full subcategory of OMF whose objects validate
all consequence pairs in Γ, and OMM(Γ) for the full subcategory of OMM
whose objects are based on ordered -frames in OMF(Γ).

Morphisms between models preserve and reflect truth of all P -formulae.

8.23. Proposition. Let f : M→M′ be an ordered -morphism, x a state
in M and ϕ ∈ P . Then

M, x  ϕ iff M′, f(x)  ϕ.

Proof. This follows from a routine induction on the structure of ϕ.

Just like monotone frames can be viewed as coalgebras, so can ordered
-frames. Since it is not needed for the semantic development in this section,

we only summarise this perspective in the following remark.

8.24. Remark. Define the functor C : Pos → Pos on posets (X,≤) and
order-preserving functions f : (X,≤)→ (X ′,≤′) by

C(X,≤) = {W ⊆ P◦(X,≤) | if a ∈W and a ⊆ b ∈ P◦(X,≤) then b ∈W}
Cf : C(X,≤)→ C(X ′,≤′) : W 7→ {d′ ∈ P◦(X ′,≤′) | f−1(d′) ∈W}

and order C(X,≤) by inclusion. Then we have OMF ∼= Coalg(C). The modal
operator can be introduced via the predicate lifting (see Definition 6.13)
λ for C, defined on components by

λ(X,≤) : Up(X,≤)×Up(X,≤)→ Up(C(X,≤))

: (a, b) 7→ {W ∈ C(X,≤) | (X \ a) ∪ b ∈W}.

8.2.3 Ordered versus unordered semantics

Ordered and unordered frames are closely related, with unordered frames
appearing as a full subcategory of ordered frames.

Every monotone frame U = (X,N) yields the ordered -frame U= :=
(X,=, N). Similarly, if W = (X,N, V ) is a monotone model then W= :=
(X,=, N, V ) is an ordered -model. Since the underlying order of ordered

-models is not used to interpret any connectives, it follows that W, x  ϕ
iff W=, x  ϕ for all x ∈ X and ϕ ∈ P . Consequently,

ϕ W ψ iff ϕ W= ψ (8.2)
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for all ϕ,ψ ∈ P , and hence ϕ OMM ψ implies ϕ MM ψ.

In order to derive a converse, we should find for each ordered -model a
monotone model that satisfies the same consequence pairs. Since an ordered

-frame only has co-convex neighbourhoods, simply forgetting about the
order does not give a monotone frame. Indeed, there can be non-co-convex
sets violating the monotonicity clause, so we need to “fill in the gaps.” We
give two methods of doing this.

8.25. Definition. For an ordered -frame X = (X,≤, N), define Nυ, N δ :
X → PPX via

Nυ(x) = {b ∈ PX | ∃a ∈ N(x) s.t. a ⊆ b}
N δ(x) = {b ∈ PX | ∀a ∈ P◦(X,≤), b ⊆ a implies a ∈ N(x)}

Define υX := (X,Nυ) and δX := (X,N δ). If M = (X,≤, N, V ) is an ordered
-model we define υM := (X,Nυ, V ) and δM := (X,N δ, V ).

8.26. Lemma. For each ordered -frame X = (X,≤, N), the identity on
X defines ordered -morphisms idX : (υX)= → X and idX : (δX)= → X.
Similarly, if M = (X,≤, N, V ) is an ordered -model then idX is an ordered

-morphism (υM)= →M and (δM)= →M.

Proof. This follows immediately from the definitions.

As a consequence of Proposition 8.23, Lemma 8.26 and (8.2) we have

ϕ M ψ iff ϕ υM ψ iff ϕ δM ψ (8.3)

for all ordered -models M and ϕ,ψ ∈ P . Combining this with Lemma 8.16
we obtain the following soundness theorem.

8.27. Theorem (Soundness). If ϕ `Γ ψ then ϕ OMF(Γ) ψ.

Proof. Let M be an ordered -model based on X ∈ OMF(Γ). Then M
satisfies all consequence pairs in Γ, hence δM satisfies all consequence pairs
in Γ. As a consequence of Lemma 8.16 we then get ϕ δM ψ, so by (8.3) we
find ϕ M ψ. Since M and X are arbitrary this implies ϕ OMF(Γ) ψ.

While things align perfectly for models, this is no longer the case when
we look at validity of consequence pairs on frames. Whereas validity of a
consequence pair on υX or δX always implies its validity on X, the converse is
not necessarily true. This is caused by the fact that valuations of proposition
letters are no longer required to be upsets. Intuitively, this resembles the
move from descriptive frames to non-descriptive frames, seen for example in
normal modal logic [70, Section 5.6]. We give an example:
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8.28. Example. Let X = {x, y} be ordered by x ≤ x ≤ y ≤ y, and define
the function N : X → PP◦(X,≤) by N(x) = {X} and N(y) = {{y}, X}.
Then X = (X,≤, N) is an ordered -frame. If V is any valuation and
x  ϕ, then JϕK = X by persistence, and hence x  ψ ϕ. If y  ϕ then
{y} ⊆ JϕK ⊆ Jψ ϕK so y  ψ ϕ. Therefore X validates the consequence
pair ϕ ψ ϕ, called (AP).

We have Nυ = N δ = N so υX = δX = (X,N). Define the valuation V
of p, q ∈ Prop for (X,N) by V (p) = {x} and V (q) = X. Then x  p while
x 6 q p, as X \ V (q) ∪ V (p) = {x} /∈ N(x). Hence υX and δX do not
validate (AP).

So preservation of validity of consequence pairs from X to υX or δX is
not automatic.

8.29. Definition. A collection Γ of consequence pairs of P -formulae is
called υ-persistent if for all ordered -frames X the following holds:

if ϕ X ψ for all ϕ ψ in Γ, then ϕ (υX)= ψ for all ϕ ψ in Γ.

δ-persistence is defined similarly. We call Γ order-persistent if it is either
υ- or δ-persistent. A (single) consequence pair ϕ ψ is called order-, δ- or
υ-persistent if the singleton {ϕ ψ} is.

We now give examples of υ- and δ-persistent consequence pairs and note
that a set of consequence pairs can be order-persistent even if none of its
elements are.

8.30. Proposition. The consequence pairs (Id) > ϕ ϕ and (P) >
⊥ ⊥ are both υ- and δ-persistent.

Proof. Let X = (X,≤, N) be an ordered -frame. If X validates > ϕ ϕ
then X ∈ N(x) for all x ∈ X. By definition of υ and δ this implies X ∈ Nυ(x)
and X ∈ N δ(x) for all x ∈ X, which implies that both (υX)= and (δX)=

validate > ϕ ϕ.
Similarly, order-persistence of > ⊥ ⊥ can be proven using the fact

that it corresponds to the empty set not being a neighbourhood of any
x ∈ X.

8.31. Proposition. The consequence pair (MP) ϕ ∧ (ϕ ψ) ψ is υ-
persistent.

Proof. We claim that any ordered -frame X = (X,≤, N) validates (MP) if
and only if it satisfies:

if x ∈ X and a ∈ N(x) then x ∈ a. (8.4)

To see this, suppose X satisfies (8.4) and M = (X,≤, N, V ) is a model based
on X. If M, x  ϕ∧ (ϕ ψ) then x ∈ JϕKM and (X \ JϕKM)∪ JψKM ∈ N(x).
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By assumption x ∈ (X \ JϕKM) ∪ JψKM, and since x /∈ X \ JϕKM we must
have x ∈ JψKM, that is, M, x  ψ.

Conversely, suppose that X does not satisfy (8.4). Then there exists
x ∈ X and a ∈ N(x) such that x /∈ a. Let a1, a2 ∈ P↑(X,≤) be such that
a = (X \ a1) ∪ a2 (which we can find by Lemma 8.19). Take a valuation V
of proposition letters p and q such that V (p) = a1 and V (q) = a2. Since
x /∈ a we have x ∈ a1 and hence x  p. By construction (X \ JpK) ∪ JqK =
(X \ a1) ∪ a2 ∈ N(x), so x  p q. But x /∈ a2 and therefore x 6 q.

The proof of the lemma now follows from the fact that if an ordered
-frame X satisfies (8.4), then so does υX.

It can be shown in a similar manner as in Example 8.28, with the
adaptation that N(x) = {{x}, X} and N(y) = {X}, that > ϕ ∨ (ϕ ψ)
is neither υ-persistent nor δ-persistent. Interestingly, while individually both
ϕ ψ ϕ and > ϕ ∨ (ϕ ψ) are neither υ-persistent nor δ-persistent,
together they form a δ-persistent set.

8.32. Proposition. The set {(AP), (EM)} = {ϕ ψ ϕ,> ϕ∨ (ϕ ψ)}
is δ-persistent.

Proof. Let X = (X,≤, N) be an ordered -frame. Then validity of ϕ ψ
ϕ implies that ↑x ∈ N(x) for all x ∈ X, and validity of > ϕ ∨ (ϕ ψ)
entails that ↓x ∈ N(x) for all x ∈ X. Since every co-convex superset of {x}
contains either ↑x or ↓x, this implies that {x} ∈ N δ(x). This corresponds to
validity of the consequence pairs on (δX)=.

8.3 Priestley-style duality

We work towards a duality for the algebraic semantics of P . Specifically, we
define a notion of descriptive ordered -frame and prove that the category
of these is dually equivalent to the category DLMI. We make use of the fact
that DLMI can be viewed as a category of algebras for J : DL→ DL and the
fact that Priestley duality establishes a dual equivalence between DL and the
category Pries of Priestley spaces (see Subsection 1.3). This means that we
can piggy-back on Priestley duality. That is, we first show that the category
of descriptive frames is isomorphic to the category of D-coalgebras, where D
is an endofunctor on Pries, and then we show that J and D are dual with
respect to Priestley duality.

8.3.1 Descriptive frames

We define a general ordered -frame in the obvious way, that is, as an
ordered -frame together with a subalgebra of its complex algebra.
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8.33. Definition. A general (ordered -)frame is a tuple (X,≤, N,A)
consisting of an ordered -frame (X,≤, N) and a collection A ⊆ Up(X,≤)
of upsets of (X,≤) such that A contains ∅ and X, and is closed under finite
unions, finite intersections, and the map

: Up(X,≤)×Up(X,≤)→ Up(X,≤)

: (a1, a2) 7→ {x ∈ X | (X \ a1) ∪ a2 ∈ N(x)}

A general frame morphism from (X,≤, N,A) to (X ′,≤′, N ′, A′) is a OMF-
morphism f between the underlying frames that satisfies f−1(a′) ∈ A for all
a′ ∈ A′.

In order to obtain a duality, the collection of neighbourhoods at a state
should be completely determined by the admissible neighbourhoods it con-
tains. As usual, this requires that the general frame is differentiated, compact
and tight. While the first two are defined in the standard way, the tightness
condition depends on the logic under consideration.

We use a construction dual to the π-extension on distributive lattices [171,
172] to determine what non-admissible neighbourhoods should be in N(x)
for any state x. Interestingly, in [209, 210, 196] the authors employ the
σ-extension to obtain a notion of descriptiveness. It turns out that the
π-extension better accommodates for our setting. Intuitively, this is due
to the fact that this dual construction of the π-extension uses open sets to
approach other subsets of the space, and every co-convex open set is the
union of an open upset and an open downset.

8.34. Definition. Let (X,≤, N,A) be a general frame. We call an upset
b ∈ Up(X,≤) open if it is the union of sets in A, and b ∈ Dn(X,≤) is called
open if it is the union of sets in −A = {X \ a | a ∈ A}. A co-convex set is
called open if it is the union of an open upset and an open downset.

The general frame is called descriptive if it is:

• differentiated : for all x, y ∈ X with x 6≤ y there exists a ∈ A such that
x ∈ a and y /∈ a;

• compact : for all C ⊆ A ∪ −A with the finite intersection property,⋂
C 6= ∅;

• tight : for all x ∈ X, all co-convex open sets b and any d ∈ P◦(X,≤),

I b ∈ N(x) iff there exist a1 ∈ −A, a2 ∈ A such that a1 ∪ a2 ⊆ b
and a1 ∪ a2 ∈ N(x);

I d ∈ N(x) if and only if every co-convex open superset of d is in
N(x).

We write D-OMF for the category of descriptive frames and general frame
morphisms.
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Note that the first two items of Definition 8.34 simply stipulate that
(X,≤, A) is a descriptive ring of upsets, defined Definition 1.25.

A descriptive (ordered -)model is a tuple M = (X,≤, N,A, V ) such
that (X,≤, N,A) is a descriptive frame and V : Prop → A an admissible
valuation. Write κM = (X,≤, N, V ) for the underlying ordered -model.
P -formulae are interpreted as in κM := (X,≤, N, V ). A descriptive frame
D validates a consequence pair ϕ ψ if ϕ κM ψ for every descriptive model
M based on D. We write ϕ D-OMF if ϕ D ψ for all D ∈ D-OMF.

8.3.2 The monotone implication functor on Pries

Our next goal is to define an endofunctor D on Pries such that D-OMF ∼=
Coalg(D).

If X is a Priestley space, then we will write (X,≤) for its underlying
poset. Moreover, denote by ClpupX,ClpdnX,Clp•X and Clp◦X the col-
lections of up-closed, down-closed, convex and co-convex clopen subsets of
X, respectively. When setting Clpupf = f−1 the assignment Clpup defines
a contravariant functor Pries → DL that is one half of Priestley duality
(see Subsection 1.3). Abusing notation, we use ClpupX to denote both the
collection of clopen upsets of X, and its dual distributive lattice. Similarly,
ΩupX,ΩdnX and Ω◦X denote the collections of up-closed, down-closed and
co-convex open subsets of X, respectively.

The collection of admissibles of a descriptive frame generates a Priestley
topology on its state space. So we only have to encode the neighbourhood
function into the coalgebra structure of our D-coalgebras. Thus we let DX
consist of possible collections of neighbourhoods that a state can have. This
also explains the similarity between the next definition and Definition 8.34.

8.35. Definition. For X ∈ Pries, let DX be the collection of W ⊆ P◦(X,≤)
that satisfy:

1. For all b ∈ Ω◦X, b ∈W if and only if a ⊆ b for some a ∈ Clp◦X such
that a ∈W ;

2. For all d ∈ P◦(X,≤), d ∈ W if and only if every co-convex open
superset of d is in W .

Order DX by inclusion, and equip it with the topology generated by the sets

a = {W ∈ DX | a ∈W}, b = {W ∈ DX | X \ b /∈W}

where a ∈ Clp◦X and b ∈ Clp•X. For a Priestley morphism f : X → X′,
define

Df : DX→ DX′ : W 7→ {d′ ∈ P◦X′ | f−1(d′) ∈W}.
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We call D the monotone implication functor. Before proving that D does
indeed define an endofunctor, we collect some useful facts about co-convex
sets in Priestley spaces.

8.36. Lemma. Let X be a Priestley space.

1. Every open co-convex subset of X is the union of an open upset and
an open downset.

2. Every open co-convex subset of X is the union of all co-convex clopens
below it.

3. Every clopen co-convex subset of X is the union of a clopen upset and
a clopen downset.

Proof. Item (1) follows from the construction in Lemma 8.19 and the fact that
the upward and downward closure of a closed set in a Priestley space is closed
again. (2) follows from (1) and the fact that an open upset (resp. downset) in
a Priestley space is the union of all clopen upsets (downsets) that it contains.
(3) follows from (2) and compactness.

8.37. Proposition. The assignment D defines an endofunctor on Pries.

Proof. The next two claims show that D is well defined on objects and
morphisms.

8.37.1. Claim. If X is a Priestley space then so is DX.

Proof of claim. We need to show that DX is compact and satisfies the
Priestley separation axiom. For the latter, suppose W1,W2 ∈ DX and
W1 6⊆W2. Then there exists an a ∈ Clp◦X such that a ∈W1 and a /∈W2, so
that W1 ∈ a and W2 /∈ a. The set a is up-closed because the elements
of DX are ordered by inclusion. Besides, it is open by definition a and
clopen because its complement is (X \ a), which is open as well.

For compactness, it suffices to show that any cover of subbasic opens has
a finite subcover. So suppose

DX ⊆
⋃
i∈I

ai ∪
⋃
j∈J

bj (8.5)

where ai ∈ Clp◦X and bj ∈ Clp•X. We claim that there must be some
i′ ∈ I and j′ ∈ J such that X \ bj′ ⊆ ai′ . If this is not the case, then we can
construct W ∈ DX via:

• For e ∈ Ω◦X, let e ∈W iff X \ bj ⊆ e for some j ∈ J ;

• For any co-convex subset d of X, let d ∈ W iff all open co-convex
subsets of d are in W .
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By construction W is in none of the sets in the cover from (8.5), a contradic-
tion. So we must have X \ bj′ ⊆ ai′ for some i′ ∈ I and j′ ∈ J .

If W /∈ ai′ then ai′ /∈ W . This implies X \ bj′ /∈ W so that W ∈ bj′ .
Therefore ai′ ∪ bj′ is a finite subcover of the one in (8.5).

8.37.2. Claim. If f : X → X′ is a Priestley morphism and W ∈ DX then
Df(W ) ∈ DX′.

Proof of claim. It follows immediately from the definition that Df(W ) is
up-closed under inclusion. Let e′ ∈ Ω◦X′. If there exists a co-convex clopen
subset a′ of e′ such that a′ ∈ Df(W ) then e′ ∈ Df(W ) because the latter
is up-closed under inclusion. Conversely, if e′ ∈ Df(W ) then f−1(e′) ∈ W
so there exists a ∈ Clp◦X such that a ⊆ f−1(e′) and a ∈ W . Then f [a] is
closed in X′ and f [a] ⊆ e′. Since e′ is co-convex, it follows from Lemma 8.36
that

f [a] ⊆
⋃
{a′ ∈ Clp◦X′ | a′ ⊆ e′} = e′.

Compactness of f [a] now yields f [a] ⊆ a′1∪· · ·∪a′n ⊆ e′ for some a′1, . . . , a
′
n ∈

Clp◦X′. Then a ⊆ f−1(a′1 ∪ · · · ∪ a′n) ∈ W so that a′1 ∪ · · · ∪ a′n ∈ Df(W ).
Furthermore, a′1 ∪ · · · ∪ a′n is co-convex and clopen because it is the finite
union of co-convex clopen sets. So we have found a co-convex clopen subset
of e′ that is in Df(W ), as required.

Next, let d′ be any co-convex subset of X′. If d′ ∈ Df(W ) then all
co-convex open supersets of d′ are in Df(W ) because it is up-closed under
inclusion. For the converse, suppose all co-convex open supersets of d′ are
in Df(W ). To prove that d′ ∈ Df(W ) it suffices to show that f−1(d′) ∈W .
For this, in turn, it suffices to prove that every co-convex open superset of
f−1(d′) is in W . So let f−1(d′) ⊆ e ∈ Ω◦X. Define

e′ := X′ \Cℴnv(f [X \ e]) = X′ \
(
↑(f [X \ e]) ∩ ↓(f [X \ e])

)
.

Since X\e is closed in X the set f [X\e] is closed in X′. Since X′ is a Priestley
space the sets ↑(f [X \ e]) and ↓(f [X \ e]) are both closed, so that ultimately
e′ is open. Moreover, e′ is co-convex by construction, and since X′ \ e′ is
the convexification of a set disjoint from d′, we have d′ ⊆ e′. Therefore
e′ ∈ Df(W ) and f−1(e′) ∈ W . Finally, if x /∈ e then f(x) /∈ e′ so that
x /∈ f−1(e′), and therefore f−1(e′) ⊆ e. Since W is up-closed under inclusion
this proves e ∈W , as desired.

To complete the proof, we need to show that Df is a Priestley morphism
whenever f : X→ X′ is. It follows immediately from the definitions that it
is order-preserving. For continuity, it suffices to prove that (Df)−1( a′) is
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clopen in DX for every a′ ∈ Clp◦X′, which is can be seen as follows:

(Df)−1( a′) = {W ∈ DX | Df(W ) ∈ a′}
= {W ∈ DX | a′ ∈ Df(W )}
= {W ∈ DX | f−1(a′) ∈W}
= f−1(a′)

Functoriality of D is straightforward.

8.38. Theorem. D-OMF ∼= Coalg(D).

Proof sketch. We sketch the bijection on objects, leaving the verification
on morphisms to the reader. For a descriptive frame X = (X,≤, N,A) let
τ be the topology on X generated by A ∪ −A. Then X = (X,≤, τ) is a
Priestley space because X is differentiated and compact. Observe that N is
a well-defined function from X to DX because X is tight. Moreover, N is
continuous because A is closed under . So (X, N) is a D-coalgebra.

Conversely, let (X, γ) be a D-coalgebra and (X,≤) the poset underlying X.
We claim that (X,≤, γ,ClpupX) is a descriptive ordered -frame: ClpupX
is closed under by continuity of γ, the tuple is differentiated and compact
because X is a Priestley space and tightness follows from the definition
of D.

8.3.3 A duality of functors

We prove that J and D are Priestley duals. Concretely, we construct a
natural isomorphism ξ : D → Pf · J · Clpup, where Pf : DL → Pries and
Clpup : Pries → DL are the functors that establish Priestley duality (see
Subsection 1.3).

Recall that prime filters of a distributive lattice D correspond bijectively
with homomorphisms into 2, the 2-element distributive lattice. This is
established by observing that the kernel of a homomorphism into 2 is a
prime filter, and that every prime filter is of this shape. We use these two
perspectives interchangeably.

8.39. Definition. Let X be a Priestley space. Define

ξX : DX→ Pf(J(ClpupX)) : W 7→ pW ,

where pW : J(ClpupX)→ 2 is the prime filter defined by pW (a b) = > iff
(X \ a) ∪ b ∈W .

8.40. Proposition. The transformation ξ = (ξX)X∈Pries : D→ Pf ·J ·Clpup
is well defined and natural.
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Proof. First we prove that pW is a prime filter of J(ClpupX) whenever
W ∈ DX. Since pW is defined on generators, it suffices to show that the
images of the generators under pW satisfy (I1), (I2), (I3) and (I4). All follow
from the fact that W is up-closed under inclusion.

Next let us prove that ξX is a Priestley morphism. If W1,W2 ∈ DX are
such that W1 ⊆ W2, then pW1(a1 a2) = > implies pW2(a1 a2) = >
for all a1, a2 ∈ ClpupX. As a consequence, pW1 ≤ pW2 , so ξX is order-
preserving. The topology on Pf(J(ClpupX)) is generated by the sets of the
form θ(A) = {p ∈ Pf(J(ClpupX)) | A ∈ p}, where A ranges over elements
of J(ClpupX), and their complements. Since J(ClpupX) is generated by
sets of the form a1 a2 it suffices to prove that ξ−1

X (θ(a1 a2)) is clopen
in DX for all a1, a2 ∈ ClpupX. An easy verification shows that ξ−1

X (θ(a1

a2)) = ((X \ a1) ∪ a2), which is clopen in DX.

Finally, we prove naturality of ξ. Let f : X→ X′ be a Priestley morphism.
We need to prove that

DX Pf(J(ClpupX))

DX′ Pf(J(ClpupX′))

ξX

Df Pf(J(Clpupf))

ξX′

commutes. Since prime filters are determined uniquely by their action on
the generators of J(ClpupX′) it suffices to prove that for all W ∈ DX and
a′1, a

′
2 ∈ ClpupX′ we have

Pf(J(Clpupf))(ξX(W ))(a′1 a′2) = > iff ξX′(Df(W ))(a1 a′2) = >.

This follows from chasing definitions:

Pf(J(Clpupf))(ξX(W ))(a′1 a′2) = >
iff ξX(W )(f−1(a′1) f−1(a′2)) = >
iff (X \ f−1(a′1)) ∪ f−1(a′2) ∈W
iff f−1((X′ \ a′1) ∪ a′2) ∈W
iff (X′ \ a′1) ∪ a′2 ∈ Df(W )

iff ξX′(Df(W ))(a′1 a′2) = >

This completes the proof of the proposition.

In order to show that ξ is isomorphic on components we construct an
inverse of ξX.

8.41. Definition. Let X ∈ Pries. For a prime filter p : J(ClpupX) → 2
define Wp ∈ DX by:
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1. For a ∈ Clp◦X, a ∈Wp if p(a1 a2) = > for some a1, a2 ∈ ClpupX
with a = (X \ a1) ∪ a2;

2. For all b ∈ Ω◦X, let b ∈ Wp if there exists an a ∈ Clp◦X such that
a ⊆ b and a ∈Wp;

3. For any d ∈ P◦(X,≤), let d ∈ Wp if for all b ∈ Ω◦X, d ⊆ b implies
b ∈Wp.

Define ζX : Pf(J(ClpupX))→ DX by p 7→Wp.

Before proving that ζX is a Priestley morphism, we prove a useful lemma.

8.42. Lemma. Let X be a Priestley space and p ∈ Pf(J(ClpupX)). Let
a1, a2 ∈ ClpupX such that p(a a2) = > and suppose c1, c2 ∈ ClpupX are
such that

(X \ a1) ∪ a2 ⊆ (X \ c1) ∪ c2. (8.6)

Then p(c1 c2) = >.

Proof. The inclusion in (8.6) implies a2 ⊆ (X \ a1) ∪ c2, which in turn gives
a2 ∩ c1 ⊆ c2. Therefore we can use (I5) from Lemma 8.9 and (I3) to find

a1 a2 ≤ (a1 ∩ c1) (a2 ∩ c1) ≤ (a1 ∩ c1) c2.

Then (I6) yields

(a1 ∩ c1) c2 ≤ ((a1 ∩ c1) ∪ c2) c2 = ((a1 ∪ c2) ∩ (c1 ∪ c2)) c2.

Next observe that taking complements in (8.6) yields c1∩(X \c2) ⊆ a1∩(X \
a2) ⊆ a1, so that c1 ⊆ a1∪c2. Therefore ((a1∪c2)∩(c1∪c2)) c2 ≤ c1 c2

by (I1), hence a1 a2 ≤ c1 c2. Since p is a filter and p(a1 a2) = >
this implies p(c1 c2) = >.

8.43. Proposition. For every Priestley space X, the map

ζX : Pf(J(ClpupX))→ DX

is a well-defined Priestley morphism

Proof. It is easy to see that Wp is well defined and order-preserving. Also,
Lemma 8.42 entails ζ−1( ((X \ a1) ∪ a2)) = θ(a1 a2), which proves
continuity.

8.44. Theorem. We have a dual equivalence DLMI ≡op D-OMF.

Proof. It suffices to show that ξ is a natural isomorphism, as this gives
rise to a dual equivalence Alg(J) ≡op Coalg(D), so that Proposition 8.8
and Theorem 8.38 imply DLMI ≡op D-OMF. By Proposition 8.40 ξ is a
natural transformation, so we only have to prove that it is an isomorphism
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on components. To this end we show that pWp = p and WpW = W , as this
implies ξ−1

X = ζX.
The former follows from the fact that p ∈ Pf(J(ClpupX)) is determined

by its action on generators, and p(a1 a2) = > iff (X \ a1) ∪ a2 ∈ Wp

iff pWp(a1 a2) = >. For the latter, note that W ∈ DX is determined
by the co-convex clopen sets it contains. We know from Lemma 8.36(3)
that we can write an arbitrary co-convex clopen as (X \ a1) ∪ a2, where
a1, a2 ∈ ClpupX. We then have (X \ a1) ∪ a2 ∈W iff pW (a1 a2) = > iff
(X \ a1) ∪ a2 ∈WpW .

8.4 Completeness

A well-known use of dualities is to obtain completeness results. Our duality
from Theorem 8.44 gives rise to the following completeness theorem. If D =
(X,≤, N,A) is a descriptive ordered -frame then we write κD := (X,≤, N)
for the underlying ordered -frame.

Let (PfL,⊆, NL, L̂) be the descriptive ordered -frame dual to the
DLMI (L, L) underlying the Lindenbaum-Tarski algebra L = (L, L, σL).

Setting VL : Prop→ L̂ : p 7→ σ̂L(p) yields the canonical model C = (PfL,⊆
, NL, L̂, VL) for the logic P . A straightforward induction on the structure

of ϕ shows that JϕKC = L̂ϕML for all ϕ ∈ P .

8.45. Theorem. The logic P is sound and complete with respect to the
classes of

1. descriptive -frames;

2. -frames;

3. monotone neighbourhood frames.

Proof. Soundness follows from Theorems 8.17 and 8.27. For complete-
ness, suppose ϕ 6` ψ. By Theorem 8.13 we have LϕML 6≤ Lψ ML and hence
JϕKC 6⊆ JψKC, which implies JϕKκC 6⊆ JψKκC and JϕKυκC 6⊆ JψKυκC. Therefore
ϕ 6D-OMM ψ, ϕ 6OMM ψ and ϕ 6MM ψ, thus proving the theorem.

Likewise, it can be shown that every extension P (Γ) of P is (sound and)
complete with respect to the class of descriptive ordered -frames validating
Γ. To get completeness with respect to classes of (not necessarily descriptive)
ordered -frames, we need to use the notion of d-persistence. This can then
be extended to (unordered) monotone frames using order-persistence.

8.46. Definition. A collection Γ of consequence pairs of P -formulae is
called d-persistent if for all D ∈ D-OMF the following holds:

if ϕ D ψ for all ϕ ψ in Γ, then ϕ κD ψ for all ϕ ψ in Γ.
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A (single) consequence pair ϕ ψ is d-persistent if the set {ϕ ψ} is
d-persistent.

8.47. Theorem.

1. If Γ is a d-persistent set of consequence pairs then P (Γ) is complete
with respect to the class of ordered -frames that validate Γ.

2. If Γ is a d- and order-persistent set of consequence pairs then then
P (Γ) is complete with respect to the class of (unordered) frames that
validate Γ.

Just like for order-persistence, we define d-persistence for sets rather
than individual consequence pairs. In contrast to order-persistence, we have
not found an example of a d-persistent set that can be decomposed into
two non-d-persistent subsets. On the other hand, while it is not necessarily
true that a subset of d-persistent axioms is d-persistent itself, it is true that
d-persistent sets are closed under union.

8.48. Lemma. Let Γ1 and Γ2 be two d-persistent sets of consequence pairs.
Then Γ1 ∪ Γ2 is d-persistent as well.

We claim that every subset of consequence pairs listed in Definition 8.5 is
d-persistent. Due to Lemma 8.48, it suffices to prove that each of the listed
consequence pairs individually is d-persistent. We do so in the next three
propositions.

8.49. Proposition. The consequence pairs (Id), (P), (MP), (AP) and (EM)
are d-persistent.

Proof. Let X = (X,≤, N,A) be any descriptive frame and (X, N) the corre-
sponding D-coalgebra. We use these two perspectives interchangeably.

For (Id) and (P), d-persistence follows from the fact that validity of these
consequence pairs corresponds to the entire/empty set being a neighbourhood
of every state in the frame.

Next we consider (MP), that is, the consequence pair ϕ ∧ (ϕ ψ) ψ.
Let C = {c∪ a | c ∈ −A, a ∈ A}. Then using an argument similar to the one
in the proof of Lemma 8.31 it can be proven that D validates ϕ∧(ϕ ψ) ψ
if and only if x ∈

⋂
(N(x) ∩C) for all x ∈ X.

If b is a co-convex open subset in D and b ∈ N(x), then there exists
c ∈ C such that c ⊆ b, so x ∈ b. Suppose d is any co-convex set such that
d ∈ N(x). If x /∈ d then X \ {x} is an open co-convex superset of d, hence
X \ {x} ∈ N(x), a contradiction. So x ∈ d. Therefore x ∈

⋂
N(x). Using

the correspondence result from the proof of Lemma 8.31 this implies that
κD = (X,≤, N) validates (MP).

(AP) holds in X if for all a ∈ ClpupX we have x ∈ a implies a ∈ N(x).
It suffices to prove that ↑x ∈ N(x) for all x, as this entails validity of the
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formula in the underlying frame. To this end, we prove that all co-convex
open supersets of ↑x are in N(x). Let ↑x ⊆ e ∈ Clp◦X. Then we have

↑x =
⋂
{a ∈ ClpupX | x ∈ a} ⊆ e

and by compactness we can find a finite number a1, . . . , an ∈ ClpupX such
that ↑x ⊆ a1 ∩ · · · ∩ an ⊆ e. Then a1 ∩ · · · ∩ an is clopen and therefore
by assumption it is in N(x). By definition of descriptiveness this implies
e ∈ N(x), as desired.

Finally, (EM) holds in the descriptive frame if x ∈ a ∈ ClpdnX implies
a ∈ N(x) and in the underlying frame if we can prove that ↓x ∈ N(x) for all
x ∈ X. The proof of this is similar to the proof (AP).

8.50. Proposition. The consequence pair (Ka) (ϕ ψ) ∧ (ϕ χ) ϕ
(ψ ∧ χ) is d-persistent.

Proof. Let (X,≤, N,A) be a descriptive frame satisfying (Ka). Then for all
a, b, c ∈ A we have: if (X \ a) ∪ b ∈ N(x) and (X \ a) ∪ c ∈ N(x), then
(X \ a)∪ (b∩ c) ∈ N(x). (Suppose not, let V (p) = a, V (q) = b and V (r) = c.
Then x satisfies p q and p r but not p q ∧ r.) We show that the
frame satisfies this condition for all upsets a, b, c. This then proves that the
underlying frame satisfies (Ka).

So let d1 ∈ P↓(X,≤) and d2, d3 ∈ P↑(X,≤) and suppose d1 ∪ d2 ∈ N(x)
and d1 ∪ d3 ∈ N(x). Then all co-convex open supersets of both these sets
are in N(x) as well. In order to show that d1 ∪ (d2 ∩ d3) ∈ N(x) we show
that all co-convex open supersets are in N(x). Let e be such a co-convex
open superset. Then we can write e as a union of an open downset ed and
an open upset eu. Furthermore, if we set ed = X \ ↑(X \ e) then it is the
maximal downset contained in e, and therefore d1 ⊆ ed. For the same reason
we have d2 ∩ d3 ⊆ eu = X \ ↓(X \ e).

Since X is a Priestley space we have

di =
⋂
{ei ∈ ΩupX | di ⊆ ei},

for i = 2, 3, and hence

d2 ∩ d3 =
⋂
{e2 ∈ ΩupX | d2 ⊆ e2} ∩

⋂
{e3 ∈ ΩupX | d3 ⊆ e3}.

For all e2 such that d2 ⊆ e2 we have d1 ∪d2 ⊆ ed ∪ e2, so that ed ∪ e2 ∈ N(x).
Similarly, for all e3 with d3 ⊆ e3 we have ed ∪ e3 ∈ N(x).

By definition of a descriptive frame, for each ed ∪ ei where i = 2 or 3
and as above, there exists some co-convex clopen a such that a ⊆ ed ∪ ei
and a ∈ N(x). Since ed ∪ ei =

⋃
{ad ∈ −A | ad ⊆ ed} ∪

⋃
{ai ∈ A | ai ⊆ ei},

a compactness argument shows that we can find a clopen downset bd and
clopen upset bu such that a ⊆ bd ∪ bu and bd ⊆ ed and bu ⊆ ei. So we may
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assume that a decomposes as a clopen upset and clopen downset such that
the downset is contained in ed.

Now let A be the set of such witnesses. Then
⋂
A ⊆ e, and by a

compactness argument we can find a finite subset A0 such that
⋂
A0 ⊆ e.

Each of the a ∈ A0 is of the form a = bd ∪ bu where bd ⊆ ed. Let
us enumerate A0 as b1d ∪ b1u, . . . , bnd ∪ bnu. Set bD = b1d ∪ · · · ∪ bnd . Then
bD ∪ biu ∈ N(x) for each i because N(x) is up-closed under inclusion. Also,
by construction we still have (bD ∪ b1u)∩ · · · ∩ (bD ∪ bnu) ⊆ e. Now we can use
our assumption to obtain

(bD ∪ b1u) ∩ · · · ∩ (bD ∪ bnu) = bD ∪ (b1u ∩ · · · ∩ bnu) ∈ N(x),

which proves that e ∈ N(x), as desired.

Therefore the axiom (Ka) holds on the underlying frame, and hence it is
d-persistent.

8.51. Proposition. The consequence pair (Di) (ϕ χ) ∧ (ϕ χ)
(ψ ∨ ψ) χ is d-persistent.

Proof. Similar to the proof of Proposition 8.50.

8.5 Intermezzo: monotone modal logic via Lewis

Before we prove the finite model property and conservativity with respect
to a classical version of our logic, we briefly discuss an alternative approach
to monotone modal logic. This is a modal logic over a classical base, for
which we can use existing techniques to obtain the finite model property. We
then transfer this result to monotone subintuitionistic logic in Subsection 8.6,
where moreover we show that this classical counterpart is a conservative
extension of monotone subintuitionistic logic.

8.5.1 Box versus implication

Motivated by the desire to have an implication stricter than material impli-
cation, Lewis explored the notion of a strict implication at the start of the
previous century [280]. He then defined modal logic by extending classical
propositional logic with a binary modal operator J [281, 282]. This gives
rise to a normal box via ϕ = > J ϕ, and conversely can be defined from

as ϕ J ψ = (ϕ→ ψ) where → is classical material implication. Subse-
quent development in modal logic saw adopted as the primary connective.
(See [292, Appendix D] for historical details.)

A similar approach to Lewis’ can be taken in the realm of monotone
modal logic. Rather than extending propositional logic with a monotone
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modal operator , we enrich it with a binary modality , that behaves
as (ϕ → ψ). This yields the language M , which can be interpreted in
monotone models via the usual clauses for classical propositional connectives,
together with

W, x  ϕ ψ iff Jϕ→ ψKW ∈ N(x). (8.7)

This coincides with the interpretation of the monotone subintuitionistic
implication given in Subsection 8.2.

As usual, if W = (X,N, V ) is a monotone model we will write W  ϕ if
ϕ is valid on W, that is, JϕKW = X. For a monotone frame U we let U  ϕ
if ϕ is valid on all models based on U, and for a class K of monotone frames
we write K  ϕ if K  ϕ for all K ∈ K. If Φ ⊆M then we define MF(Φ)
for the full subcategory of MF whose objects validate all formulae in Φ, and
MM(Φ) for the full subcategory of MM whose objects are based on frames in
MF(Φ).

We give a Hilbert-style axiomatisation for the extension of classical
propositional logic with the binary modal operator . We obtain this
by extending any axiomatisation of classical propositional logic with the
absorption axioms and monotonicity and antitonicity rules from Definition 8.1,
where we replace “ ” with “→.”

8.52. Definition. Let M be the least set of M -formulae that contains
all propositional tautologies and the absorption axioms from Table 8.1 (with

replaced by →), and is closed under modus ponens, uniform substitution,
and the monotonicity and antitonicity rules from Table 8.1 (with replaced
by →).

If Φ ⊆ M is a set of formulae, then we write M (Φ) for the set of
formulae derivable using the axioms and rules for M , together with all
substitution instances of the formulae in Φ.

Next, we give algebraic semantics for M and prove that the category
of these algebras is isomorphic to the category of monotone Boolean algebra
expansions. We use the fact that both categories can be viewed as categories
of algebras for an endofunctor on BA.

8.53. Definition. A monotone Lewis algebra, or MLA for short, is a Boolean
algebra B together with a binary operator that satisfies

(C1) a b ≤ (a ∧ c) b (antitone in first argument)

(C2) a b ≤ (a ∨ b) b (absorption in first argument)

(C3) a b ≤ a (b ∨ c) (monotone in second argument)

(C4) a b ≤ a (a ∧ b) (absorption in second argument)

A morphism between MLAs (B, ) and (B′, ′) is a Boolean homomorphism
h : B → B′ such that h(a b) = h(a) ′ h(b) for all a, b ∈ B. We write
MLA for the category of monotone Lewis algebras and their morphisms.
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Just like monotone Boolean algebra expansions can be viewed as algebras
for the functor ℳ : BA→ BA (see Subsection 3.3.2), monotone Lewis algebras
can be viewed as algebras for an endofunctor ℒ on BA.

8.54. Definition. For a Boolean algebra B, let ℒB be the free Boolean
algebra generated by the set {a b | a, b ∈ B} modulo (C1), (C2), (C3) and
(C4) (with replaced by ). If h : B → B′ is a Boolean homomorphism we
define ℒh : ℒB → ℒB′ on generators by ℒh(a b) = h(a) h(b). Then
the assignment ℒ defines an endofunctor on BA.

8.55. Proposition. MLA ∼= Alg(ℒ).

Proof sketch. If (B, ) ∈ MLA then gives rise to an ℒ-algebra structure
β : ℒB → B, defining β on generators by β(a b) = a b. Conversely,
if (B, β) is an ℒ-algebra then defining : B × B → B : (a, b) 7→ β(a b)
yields a monotone Lewis algebra (B, ).

Before we show the isomorphism between MLA and BAM, we prove the
following auxiliary lemma.

8.56. Lemma. Let B be a Boolean algebra. Then in ℒB we have a b =
> (a→ b).

Proof. We compute

a b ≤ a (¬a ∨ b) (by (C3))

≤ (a ∨ (¬a ∨ b)) (¬a ∨ b) (by (C2))

= > (¬a ∨ b) (using Boolean algebra rules)

≤ a (¬a ∨ b) (by (C1))

≤ a (a ∧ (¬a ∨ b)) (by (C4))

= a (a ∧ b) (using Boolean algebra rules)

≤ a b (by (C3))

Using the fact that a→ b = ¬a ∨ b, the result follows.

In order to prove that the categories BAM and MLA are equivalent, it
suffices to establish:

8.57. Lemma. The functors ℳ and ℒ are naturally isomorphic.

Proof. For a Boolean algebra B, define υB : ℳB → ℒB on generators
by sending b to > b. This is well defined because b ≤ b′ implies
> b ≤ > b′ by (I3). In the converse direction define τB : ℒB → ℳB
on generators by τB(a b) = (a → b). It is straightforward to see that
this is well defined.
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Then for each b ∈ B we have τB(υB( b)) = τB(> b) = (> → b) = b,
so τB ◦ υB = idB. Also, for each generator a b of ℒB we have

υB(τB(a b)) = υB( (a→ b)) = > (a→ b),

which is equivalent to a b by Lemma 8.56, so that υB ◦τB = idB. Therefore
υB is a bijective homomorphism, hence an isomorphism in BA. Naturality of
υ : ℳ→ ℒ follows from a routine verification.

8.58. Theorem. We have an isomorphism of categories BAM ∼= MLA.

Proof. Combining Lemma 8.57, Theorem 3.35 and Proposition 8.55 yields

BAM ∼= Alg(ℳ) ≡ Alg(ℒ) ∼= MLA.

8.5.2 Rank 0/1 axioms and the finite model property

One consequence of Theorem 8.58 is that the axioms in Definition 8.53
are one-step sound and complete. The notion of one-step soundness and
completeness is as in [342, Definition 5]. This, in turn, entails soundness and
completeness for M with respect to monotone neighbourhood frames.

8.59. Lemma. The axioms (C1) to (C4) (with ≤ replaced by→) are one-step
sound and complete with respect to the monotone neighbourhood functor ℳ.

Proof. One step soundness is immediate. For one-step completeness, let X
be a set, I and J be finite sets, and ai, bi, cj and dj subsets of X (that we
homonymously view as elements of the Boolean algebra PX of subsets of
X) for i ∈ I and j ∈ J . Assume moreover that the clause∨

i

ai bi ∨
∨
j

¬(ci dj)

is valid in the Boolean algebra PℳX, where the a b = {S ∈ ℳX |
¬a ∨ b ∈ S} ∈ P(ℳX). As a consequence, the translation of this clause to
M (where M denotes the language of monotone modal logic),∨

i

(ai → bi) ∨
∨
j

¬ (ci → dj)

is valid over PℳX, as well. As the monotonicity rule a → b/ a → b is
one-step complete for ℳ and , this means that the above clause denotes the
top element of ℳP(X), where ℳ is as in Definition 3.34. Using Lemma 8.57,
the original clause denotes the top element of the Boolean algebra ℒPX, so
that the clause is derivable using (C1) to (C4).

We obtain soundness and completeness for M using [382, Corollary 32].
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8.60. Corollary. The logic M is sound and complete over monotone
models, that is, ϕ ∈M if and only if MM  ϕ, for all ϕ ∈M .

In fact, one-step completeness gives more than completeness, and the
above theorem also implies the finite model property. We can do more, and
use generic, coalgebraic results, to obtain the finite model property for frame
classes defined by rank 0/1 axioms.

8.61. Definition. A rank 0/1 axiom in the language M , M or P is a
formula where each proposition letter appears in the scope of at most one
modal operator.

The appeal of rank 0/1 formulae lies in the fact that one obtains the
finite model property, and completeness with respect to the class of frames
they define [342].

8.62. Theorem. If Φ ⊆M is a set of rank 0/1 formulae, then the following
are equivalent:

1. ϕ ∈M (Φ);

2. MM(Φ)  ϕ;

3. W  ϕ for all W ∈ MM(Φ) of size ≤ 2k, where k is the number of
subformulae of ϕ.

It is this result that we will transfer in the next section to the logic P (Γ)
for suitable sets of consequence pairs Γ.

8.6 Conservativity and the finite model property

We prove that (extensions of) M are conservative extension of (extensions
of) P . This shows that P is the positive fragment of M . We call a
consequence pair ϕ ψ of P -formulae rank 0/1 if both ϕ and ψ are rank
0/1 according to Definition 8.61.

8.63. Theorem. Let Γ be a d-persistent and order-persistent set of rank
0/1 consequence pairs and let Γ̂ = {ϕ → ψ | ϕ ψ ∈ Γ}. Then ϕ `Γ ψ iff
ϕ→ ψ ∈M (Γ̂).

Proof. Observe that ϕ→ ψ is rank 0/1 iff ϕ ψ is. Using Theorem 8.47(2),
Theorem 8.62 and the definition of , we then get ϕ `Γ ψ iff ϕ MF(Γ) ψ if

MF(Γ̂)  ϕ→ ψ iff ϕ→ ψ ∈M (Γ̂).

The case Γ = ∅ yields ϕ ψ ∈ P iff ϕ→ ψ ∈M . Other examples of
Γ satisfying the conditions of Theorem 8.63 are:
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8.64. Example. Examples of sets Γ of rank 0/1-axioms that are d- and
order-persistent are

Γ1 = {ϕ ϕ,> ⊥ ⊥},
Γ2 = {ϕ ∧ (ϕ ψ) ψ},
Γ3 = {ϕ ψ ϕ,> ϕ ∨ (ϕ ψ)}.

For any Γ′1 ⊆ Γ1, the sets Γ′1∪Γ2 and Γ′1∪Γ3 are also d- and order-persistent.

We have seen in Theorem 8.47 that for any d- and order-persistent set Γ
of rank 0/1 consequence pairs, validity in ordered -models and monotone
models coincides. Moreover, M (Γ̂) is a conservative extension of P (Γ).
This allows us to transfer the finite model property from the classical to the
positive setting. We use order-persistence to transfer properties between
the ordered and unordered semantics, and d-persistence to link the ordered
semantics to the deduction system. We proceed in two steps, starting with
the semantics.

8.65. Proposition. Let Γ be an order-persistent set of rank 0/1 consequence
pairs, ϕ ψ any consequence pair, and k the number of subformulae of
ϕ→ ψ. The following are equivalent:

1. W  ϕ→ ψ for all monotone models W ∈ MM(Γ̂);

2. ϕ M ψ for all ordered -models M ∈ OMM(Γ);

3. ϕ M ψ for all ordered -models M ∈ OMM(Γ) of size ≤ 2k;

4. W  ϕ→ ψ for all monotone models W ∈ MM(Γ̂) of size ≤ 2k.

Proof. The implication (1) ⇒ (2) follows from the definition of order-
persistence, and (2) ⇒ (3) is trivial. (3) ⇒ (4) is a consequence of Def-
inition 8.29 and Lemma 8.26. Finally, (4) ⇒ (1) is Theorem 8.62.

Combining this with d-persistence, we have a finite model property:

8.66. Theorem (finite model property). Let Γ be a d- and order-
persistent set of rank 0/1 consequence pairs, ϕ ψ any consequence pair,
and k the number of subformulae of ϕ→ ψ. Then the following are equivalent:

1. ϕ `Γ ψ

2. ϕ OMM(Γ) ψ

3. ϕ M ψ for all M ∈ OMM(Γ) of size ≤ 2k

Proof. The implication (1) ⇔ (2) is Theorem 8.47(1), and (2) ⇔ (3) follows
from Proposition 8.65.

Our last result, decidability, is an immediate corollary, as small models
can be enumerated.
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8.67. Corollary (decidability). Let Γ be a set of rank 0/1 consequence
pairs that is both order-persistent and d-persistent. Then it is decidable
whether ϕ `Γ ψ, for consequence pairs ϕ ψ.

Thus, we get decidability and the finite model property for the logic
P (Γ) for each of the sets of consequence pairs Γ from Example 8.64. As an
application, we find decidability and the finite model property for the logics
WFN2 from [133, Section 5] and WFIRIL discussed in [299, Section 6].

Conclusions of Chapter IV

After recalling positive normal modal logic in Section 6, we have investigated
two positive fragments of monotone modal logic. The first one resembled
the approach taken by Dunn [144] for positive modal logic, in the sense
that we investigated the positive fragment with modalities and . The
second one was closely connected to Lewis’ original definition of modal
logic, by means of a strict implication J equivalent to a boxed material
implication [280, 281, 282]. In the same vain we defined as a boxed
material implication, but with taken from monotone modal logic. We
then investigated the positive fragment of monotone modal logic with modal
operator , which can also be conceived of as a (weak) subintuitionistic
logic weaker than Corsi’s, Restall’s and Došen’s systems [118, 368, 142],

We equipped both positive fragments of monotone modal logic with a
frame semantics based on posets. Interestingly, this led to two different
analogues of monotone frames (Definition 3.36), one where neighbourhoods
are required to be convex, and one where they are required to be co-convex.
Based on these, we gave definitions of descriptive frames and gave dualities
between the categories of descriptive frames and the algebraic semantics for
each of the logics.

In the -fragment we went one step further and used the connection
with classical monotone modal logic to derive completeness results and the
finite model property for extensions of the basic logic with rank 0/1 axioms.

The dualities pave the way for more results for the logics. We list these,
as well as other avenues for future research, below.

Dualities for extensions with rank 1 axioms. An immediate question
is whether we can derive dualities for extensions of the logics discussed in
the chapter by means of rank 1 axioms (or rank 1 consequence pairs). We
expect that techniques resembling those from Section 4 may work in the
positive setting as well.
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Using the dualities. Duality plays a key role in the proof of the Sahlqvist
theorems for normal modal logic [377], positive modal logic [97], and for
distributive modal logics [173]. We expect that the dualities presented in
this chapter should give rise to Sahlqvist theorems for positive monotone
modal logic, as well as the extension of positive logic with a subintuitionistic
implication. Besides, in Subsection 12.5 we will use the duality from Section 8
to define a notion of prime filter extension of an ordered -frame, and derive
a Goldblatt-Thomason theorem. As an application, such theorems may
facilitate examination of the positive fragments of extensions of classical
monotone modal logic.

Monotone subintuitionistic negation. It would be interesting to further
investigate P and its extensions. Of particular interest is the behaviour of
the negation ∼ϕ = ϕ ⊥ induced by .

Intuitionistic logic with a weak subintuitionistic implication. The
poset-based semantics for P allow us to additionally interpret the intuition-
istic implication, giving rise to a modal (dialgebraic) intuitionistic logic [200].
This resembles the fusion of strict and intuitionistic implication researched
in [292, 294, 205] and in Section 13.

More modal extensions of positive logic. Finally, the dualities proven
in this chapter are not the only ones that can be proven using a duality of
functors. We list other examples of dualities from the literature that can
also be proven using a pair of Priestley-dual functors. In each of these cases,
the algebras are given by distributive lattices with additional operators. For
each of the logics, this perspective could give rise to results similar to the
ones derived in Section 8 or Subsection 5.4. Furthermore, we will see (by
example, see Subsection 12.5) that modal positive logics are captured by the
general framework of dialgebraic logic investigated in Chapter V.

1. A ¬-lattice is a distributive lattice D with a unary operator ¬ : D → D
that satisfies ¬(a ∨ b) = ¬a ∧ ¬b and ¬⊥ = > [88, Definition 1].
They arise naturally as algebraic semantics of the logic considered
by Došen in [140], and the category of these can be viewed as a
category of algebras for an endofunctor ℒ¬ on DL. A duality for such
lattices was given by Celani [88], who also investigated some of its
restrictions [92]. The dual frames [88, Definition 2] can be viewed
coalgebras for the endofunctor Kdn on Pries that sends a Priestley
space X to the collection KdnX of closed downsets of X, ordered by
reverse inclusion and topologised by the clopen subbase

	 a =
{
c ∈ KdnX | c ∩ a = ∅

}
, a =

{
c ∈ KdnX | c ∩ a 6= ∅

}
,
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where a ranges over the clopen upsets of X. Define the action of KdnX
on a Priestley morphism f : X→ X′ by

Kdnf : KdnX→ KdnX′ : c 7→ ↓f [c]

(where ↓f [c] = {z′ ∈ X′ | ∃x ∈ c s.t. z′ ≤ f(x)}). The duality between
¬-lattices and their dual frames [88, Theorem 5] can now be obtained
by proving that ℒ¬ and Kdn are Priestley-duals.

2. In [346] Petrovich studies distributive lattices with unary finite-join-
preserving operators. The dual spaces are Priestley spaces with a
so-called Priestley relation [109, Definition 1.2]. In a similar way as in
Item (1) one can derive the duality from [346, Theorem 2.3].

3. Weak Heyting algebras, introduced by Celani and Jansana [98, Defini-
tion 3.1], are distributive lattices with a strict implication operator.
They can easily be modelled as a category of algebras for an endo-
functor ℒJ on DL. The dual spaces are called WH-spaces and are
Priestley spaces with an additional relation [98, Definition 4.4]. The
category they form is isomorphic to the category of V⊆-algebras, where
V⊆ is the functor that sends a Priestley space X = (X,≤,>) to the
Stone space V (X, τ) ordered by inclusion, and a Priestley morphism
to the direct image map. The duality from Theorem 4.15 in [98] can
be obtained by proving that ℒJ and V⊆ are dual with respect to
Priestley duality. This logic is also closely related to the one studied
in Section 13 below.

4. In [91] distributive lattice with implication and fusion are investigated.
These are a weaker version of the negation-free reduct of relevance alge-
bras from [416] where the implication is not required to be residuated
with respect to the fusion operator. They have later been investigated
in [84] and [86] as well. Such algebras can be viewed as the algebras for
an endofunctor on DL in a straightforward manner. The dual spaces
are given by Priestley spaces with two ternary relations satisfying
certain axioms.
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V

Dualities with arms

In Chapters III and IV we have encountered categorical dualities for various
modal logics. In the former chapter we focussed on dualities for modal
extensions of classical logic and modal extensions of infinitary classical logic,
piggy-backing on either Stone duality for Boolean algebras or Tarski duality
for complete atomic Boolean algebras. In the latter, dualities for modal
extensions of positive logic were investigated. These were all based on
Priestley duality for distributive lattices.

In both cases we used the dual categorical notions of algebras and coal-
gebras. These allowed us to isolate the essential part of a duality from the
existing (base) duality, and hence prevented the need to incorporate a proof
for Stone, Tarski or Priestley duality for every new result we proved.

A well-researched propositional logic that lies between positive and clas-
sical propositional logic is intuitionistic logic [100, 49]. In contrast to modal
positive logic and modal classical logic, there is neither a “standard” normal
modal extension of intuitionistic logic, nor a universally agreed semantics.
Indeed many variations have been put forward in the literature. This dates
back to the 1960’s [81, 82] and includes [158, 159, 79, 447, 349, 392, 444,
445, 446, 113, 132, 254] (see [396] for an overview). In addition to the
modal intuitionistic logics that have a relational flavour, there is also inter-
est in concurrent dynamic intuitionistic logic [440], epistemic intuitionistic
logic [443, 217, 357, 15, 235, 370, 371], probabilistic intuitionistic logic [301],
and intuitionistic public announcement logic [26, 296]. More recently, condi-
tional intuitionistic logic has become prominent [436, 437, 108], as well an
intuitionistic adaptation of neighbourhood semantics [127, 128]. Many of
these modal intuitionistic logics are also studied in philosophy, and condi-
tional logics embody non-monotonic reasoning.

Somewhat conspicuously absent from the modal intuitionistic logic lit-
erature is a coalgebraic approach towards duality. The basic setup seems
obvious: modal intuitionistic algebras would be algebras over the category
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Figure 9.1: Dualities with arms.

A D

A′ D′

S
≡op

P

S′′

≡op

jℒ

P′

ℐ D

of Heyting algebras, and intuitionistic frames would be coalgebras for a
suitable version of the Vietoris functor on the category of Esakia spaces (or
intuitionistic Kripke frames).

The reason for this absence is simple: it does not work. More precisely,
coalgebras fail to adequately describe the morphisms between standard and
well-established examples of modal intuitionistic frames in the literature, and
so stops any attempt at duality dead in its tracks. Indeed, it appears to be
folklore that modal intuitionistic logic is not amenable to coalgebraic methods,
as the frame semantics of modal intuitionistic logic does not “fit” with
coalgebras as neatly as the frame semantics for modal logic based on classical
or positive logic. An argument for this has been made in [291, Remark 8] (but
not in journal version [290] of the same paper). We showcase this phenomenon
in Subsection 9.1 using -frames from Wolter and Zakharyaschev [445] as
an example.

In this chapter we show that dialgebras [208] allow us to give a general
(co)algebra-like analysis of many instances of modal intuitionistic logic,
and so provide a solution to the research problem above. Specifically, we
introduce the framework of dialgebraic logic and we establish completeness,
duality, Hennessy-Milner type results and a Goldblatt-Thomason theorem
for dialgebraic logics. These immediately specialise to various flavours of
modal intuitionistic logic. This not only re-proves and systematises results
from the literature, but also provides a large number of new dualities and
results, e.g. for monotone and conditional intuitionistic logic.

Intuitively, duality via dialgebras is based on two dual equivalences, and
in our case one dual equivalence will always be a restriction of the other.
This gives rise to two inclusion functors, usually denoted by j and ℐ. The
“arms” of our picture are given by a functor ℒ that determines the algebras
of our logic and has the same type as j, and a functor D of the same type as
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ℐ that gives rise to (descriptive) frames. This can be depicted as follows:

A D

A′ D′

S
≡op

P

S′

≡op

jℒ

P′

ℐ D

Here P′ and S′ are restrictions of P and S. With sufficient imagination,
ℒ and D form the arms of a figure with their hands in their pocket, see
Figure 9.1.

While our framework captures many existing modal intuitionistic logics
(we give examples in Section 9 and investigate these further in Section 12),
it does not encompass all. The most notable absentees are modal intu-
itionistic logics studied by Fischer-Servi [159], Plotkin and Stirling [349]
and Simpson [392]. We refer to [445] for a discussion of how these fit in a
framework of modal intuitionistic logic that we do cover. On the other hand,
dialgebraic logics are not restricted to modal extensions of intuitionistic
logic. For example, in Section 14 we use it to investigate modal extensions
of the (>,∧,→)-fragment of intuitionistic logic, and we suggest more logical
paradigms that can potentially be studied dialgebraically in the conclusion
of Chapter VI.

We begin our technical development by observing that the main impedi-
ment of a coalgebraic treatment of modal intuitionistic logic is a mismatch
of morphisms, as coalgebraic modelling necessitates that both coalgebra
structure maps and homomorphisms are drawn from the same category. We
illustrate this in Subsection 9.1. Our main insight is that dialgebras present
an elegant solution to resolve this mismatch. In the remainder of Section 9
we develop dialgebraic logic in analogy with coalgebraic logic. To display
the versatility of dialgebraic logic we recall the basic definitions of several
modal extensions of intuitionistic logic and show how these can be viewed as
dialgebraic logics.

In Section 10 we investigate duality for dialgebraic logics. Formally, a
duality always exists. We investigate the move from “descriptive” semantics
to its “underlying” semantics abstractly, by means of a translation. As an
immediate consequence of duality we obtain a Hennessy-Milner theorem
with respect to behavioural equivalence. Furthermore, we give a coherence
condition between the translation and the interpretation of a logic which
implies a Jónsson-Tarski representation theorem and completeness.

Thereafter, in Section 11, we use the duality to define a notion of prime
filter extension of a frame. We show that, under the right circumstances
(which are satisfied in most of our examples) these give rise to Goldblatt-
Thomason theorems. To our best knowledge, every instance of the Goldblatt-
Thomason theorem for dialgebras to a specific modal intuitionistic logic gives
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rise to a new theorem. The closest results found in the literature is are
Goldblatt-Thomason theorems for (non-modal) intuitionistic logic [369, 188]
and for coalgebraic logics over a classical base [278].

Throughout Sections 10 and 11, normal modal logic is used as a running
example. In Section 12 we apply the general dialgebraic theory to other
modal extensions of intuitionistic logic.

9 Dialgebraic logic

Dialgebraic logic is a modest generalisation of coalgebraic logic, where both
coalgebras and algebras are replaced by dialgebras. It is primarily motivated
by the desire for a coalgebraic treatment for modal intuitionistic logics. But
it is suitable for different modal logics as well, such as the one investigated
in Section 14.

The observation that lies at the heart of dialgebraic logic is that the
axioms describing the behaviour of the modal operators often only use a
subset of the connectives available in the base logic. Therefore, we only need
part of the language to describe the “modal level” of the logic. From the
perspective of frame semantics, viewed as coalgebras, we will see that this
corresponds to a more relaxed notion of structure map, while maintaining
a stricter notion of morphism for the morphisms between coalgebras. This
modification can be conveniently described using dialgebras. It turns out to
be sufficient to allow us to describe a wide variety of (frame semantics of)
modal intuitionistic logics.

In this section, we define dialgebraic logics, their algebraic semantics, and
we show how to use dialgebras as frame semantics.

Overview of the section. We start by giving a detailed example that
shows the difficulties that arise from attempting to view frames for modal
intuitionistic logics coalgebraically. This naturally leads to the use of dialge-
bras, which are formally introduced in Subsection 9.2. We also show that
dialgebras can be used to describe the algebraic semantics from the examples
in Subsection 9.1.

Thereafter, in Subsection 9.3, we recall various modal extensions of
intuitionistic logic and their frame semantics from the literature. We show
how each of these types of frames can naturally be viewed dialgebraically.
They will be used as examples throughout this section, and are further
investigated in Section 12.

In the remainder of the section we set out to develop the general framework
of dialgebraic logic, analogous to coalgebraic logic. In Subsection 9.4 we
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define modal extensions of some given base logic using a modal signature
and a set of axioms. We then show how this leads to a sound and complete
algebraic semantics, which are also defined using dialgebras. Finally, in
Subsection 9.5 we show how to interpret formulae in dialgebras that serve as
frames.

Origin of the material. The results presented in the section originate
from joint work with Dirk Pattinson, published in Sections 2, 3, 5, 8 and 9
of [200]. (The remaining sections of the paper form the content of Section 10
below.) The dialgebraic treatment of some of the examples originates from
a single-author submission about Goldblatt-Thomason theorems for modal
intuitionistic logics [198].

9.1 Normal modal intuitionistic logic is not coalgebraic

We naively try to model the extension of intuitionistic logic with a normal box
as a coalgebraic logic. This reveals the incompatibility of modal intuitionistic
logic and coalgebraic logic. A similar analysis was made in [291, Remark 8].
The logic and frames we use for our example have appeared in [445, 446].

Let IPC be the language of intuitionistic logic with an additional unary
operator . The logic IPC is the extension of IPC with the axioms

p ∧ q ↔ (p ∧ q), > ↔ >,

as well as uniform substitution and the congruence rule

p↔ q

p↔ p
.

The language IPC can be interpreted in models based on -frames.

9.1. Definition. A -frame is a tuple (X,≤, R ) where (X,≤) is a poset
and R is a relation on X satisfying

(≤ ◦R ◦ ≤) = R . (9.1)

9.2. Definition. A -model comprises of a -frame and a valuation V
that assigns to each proposition letter p an upset V (p) ∈ Up(X,≤). The
interpretation of a IPC -formula ϕ at a state x in a -model M = (X,≤
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, R , V ) is defined recursively via

M, x  > iff always

M, x  ⊥ iff never

M, x  p iff x ∈ V (p)

M, x  ϕ ∧ ψ iff M, x  ϕ and M, x  ψ

M, x  ϕ ∨ ψ iff M, x  ϕ or M, x  ψ

M, x  ϕ→ ψ iff ∀y ∈ X(if x ≤ y and M, y  ϕ then M, y  ψ)

M, x  ϕ iff ∀y ∈ X(if xR y then M, y  ϕ)

Naively, our first goal is to model -frames as coalgebras on the category
Pos of posets and order-preserving functions. The following endofunctor
appears appropriate:

9.3. Definition. The upper powerset functor Pup maps a poset (X,≤) to
the collection of up-closed subsets of (X,≤) ordered by reverse inclusion. For
an order-preserving function f : (X,≤)→ (X ′,≤′) define Pupf by

Pupf(a) = ↑≤′f [a] = {x′ ∈ X ′ | ∃x ∈ a s.t. f(x) ≤ x′}.

With this definition, it is not hard to see that -frames are precisely
coalgebras for the upper powerset functor: simply identify the relation R
with the map γ : (X,≤) → Pup(X,≤) given by γ(x) = {y ∈ X | xR y}.
Identity (9.1) holds iff γ is order-preserving and γ(x) is up-closed in (X,≤)
for all x ∈ X.

While this looks like a success at first sight, the problem lies elsewhere:
the category Coalg(Pup) has “too many morphisms.”

A morphism between -frames (X,≤, R ) and (X ′,≤′, R′ ) needs to
preserve truth of the formulae in IPC . To guarantee preservation of all
intuitionistic operators, f should be a bounded morphism from (X,≤) to
(X ′,≤′). That is, an order-preserving function that additionally satisfies
∃y ∈ X s.t. x ≤ y and f(y) = y′, whenever f(x) ≤′ y′, for all x ∈ X and
y′ ∈ X ′. In a diagram:

y y′

x f(x)

f

≤
f

≤′

To ensure that x  ϕ iff f(x)  ϕ, f also needs to be a bounded when
viewed as a morphism (X,R )→ (X ′, R ′). We call morphisms satisfying
this -frame morphisms. The collection of -frames and -frame morphisms
constitutes the category WZ (named after the authors of [445]).

A simple computation shows that the Coalg(Pup)-morphisms between
(the coalgebraic rendering of) two -frames (X,≤, R) and (X ′,≤′, R′) are
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precisely the bounded morphisms between (X,R) and (X ′, R′), i.e. they are
not necessarily bounded with respect to the poset order. In other words,
WZ is isomorphic to the (non-full) subcategory of Coalg(Pup) with the
same objects, but whose morphisms satisfy the additional requirement that
they are bounded morphisms between the underlying posets.

A seemingly self-evident solution here is a change of base category: instead
of Pos one can consider the category iKrip of posets and bounded morphisms.
One fortuitous circumstance is that the functor Pup restricts to iKrip, but
the price we have to pay is that the structure maps γ : (X,≤)→ Pup(X,≤)
of Pup-coalgebras are now required to be bounded morphisms (with respect
to the poset structure). In other words, Coalg(Pup) is the full subcategory
of WZ consisting of those -frames where the coalgebraic rendering of the
structure map is bounded, and so fails to contain all -frames.

We can, however, describe WZ as a category of dialgebras. (The formal
definition of a dialgebra is given in Definition 9.5 below.) Intuitively, we
use the flexibility of a dialgebra to “weed out” undesirable Pup-coalgebra
morphisms, i.e. those that are not bounded morphisms between the underlying
posets.

We write i for the obvious inclusion functor iKrip→ Pos and now restrict
Pup to a functor iKrip→ Pos, also denoted by Pup. An (i,Pup)-dialgebra
is a pair (X, γ) of an object X ∈ iKrip together with a morphism

γ : iX → PupX

in Pos. A dialgebra morphism between (X, γ) and (X ′, γ′) is a morphism
f : X → X ′ (in iKrip!) that makes

iX iX ′

PupX PupX
′

if

γ γ′

Pupf

commute. We write Dialg(i,Pup) for the category of (i,Pup)-dialgebras and
morphisms. An easy verification reveals that:

9.4. Theorem. We have

WZ ∼= Dialg(i,Pup).

Thus, the categorical notion of dialgebras generalises that of coalgebras
enough to describe the category of -frames with the desired notion of
morphism between them.
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9.2 Dialgebras

Dialgebras were introduced by Hagino in [208] to describe data types. They
have also been used as a categorical semantics for inductive-inductive defini-
tions [12] and furthermore occur in [350, 105]. The 2-categorically minded
reader may appreciate the fact that categories of dialgebras are precisely
coinserters in the 2-category CAT of categories [214, Appendix A].

In this thesis, we use dialgebras as a generalisation of both coalgebras
and algebras in the paradigm of coalgebraic logic. The formal definition is
as follows.

9.5. Definition. Let ℱ,G : C → D be functors. An (ℱ,G)-dialgebra is a
pair (X, γ) of an object X in C and a morphism γ : ℱX → GX in D. An
(ℱ,G)-dialgebra morphism f : (X, γ)→ (X ′, γ′) is a morphism f : X → X ′

in C satisfying Gf ◦ γ = γ′ ◦ℱf . In diagrams,

ℱX ℱX ℱX ′

objects: arrows:

GX GX GX ′
γ γ

ℱf

γ′

Gf

We denote the category of (ℱ,G)-dialgebras and (ℱ,G)-dialgebra morphisms
by Dialg(ℱ,G).

Evidently, both algebras and coalgebras are instances of dialgebras, where
C = D and either ℱ or G is the identity. For basic constructions (like limits,
colimits, subdialgebras, and quotients) in categories of dialgebras we refer
to [71, Chapter 3].

Among other things, dialgebras describe some extraordinary biological
phenomena.

9.6. Example. Unisexual salamanders [74] reproduce by stealing sperm
from one or more donor species. The information relevant for a “family
tree” for these salamanders is the mother of a child, and the different species
which provided genetic material for its conception. We can model this
dialgebraically.

Let S be the set of all (relevant) species and P0 and Pω the non-empty
powerset functor and the finite powerset functor on Set, respectively. Define
the functor ℱ : Set → Set by ℱX = X × P0S. Then a family tree of a
unisexual salamander is given by a (ℱ,Pω)-dialgebra. Morphisms in this
category of dialgebras relate salamanders which are created via the same
“genetic route.”

We have already seen how the category of -frames can be viewed as a
category of dialgebras in Subsection 9.1. Similarly, -frames [446] can be
modelled dialgebraically.
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9.7. Example. A -frame is a tuple (X,≤, R) where (X,≤) is a poset and
R is a binary relation on X satisfying (≥◦R ◦≥) = R. It is used to interpret
the extension of intuitionistic logic with a finite-join-preserving modality ,
which is interpreted using the relation R as usual. A -frame morphism
from (X,≤, R) to (X ′,≤′, R′) is a bounded morphism f : (X,≤)→ (X ′,≤′)
such that for all x, y ∈ X and z′ ∈ X ′ we have

• If xRy then f(x)R′f(y);

• If f(x)Rz′ then there exists a z ∈ X such that xRz and z′ ≤′ f(z).

While the morphisms are not defined in [446], they are obvious choice of
morphism because they are exactly strong enough to preserve truth of
formulae. We write Frm for the category of -frames and morphisms.

Similarly to -frames, we can model -frames dialgebraically. To this
end, let Pdn : iKrip→ Pos be the functor that sends an intuitionistic Kripke
frame (X,≤) to the collection of downward closed subsets of X ordered by
inclusion. For a bounded morphism f : (X,≤)→ (X ′,≤′) (in iKrip) we let

Pdnf : Pdn(X,≤)→ Pdn(X ′,≤′) : a 7→ {y′ ∈ X ′ | ∃x ∈ a s.t. y′ ≤′ f(x)}.

It can then be shown that

Frm ∼= Dialg(i,Pdn).

We investigate this in more generality in Subsection 9.3.2.

Another important class of examples of dialgebras is given by the algebraic
semantics of modal intuitionistic logics. The algebraic semantics of IPC is
given by Heyting algebras with an operator, defined next.

9.8. Definition. A Heyting algebra with operator (HAO for short) is a
pair (A, ) where A is a Heyting algebra and : A→ A is a function that
satisfies for all a, b ∈ A,

a ∧ b = (a ∧ b), > = >.

A morphism between HAOs (A, ) and (A′, ′) is a Heyting homomorphism
h : A → A′ that satisfies ′ ◦ h = h ◦ . We write HAO for the category
HAOs and HAO morphisms.

To view these as dialgebras, we do not use functors of type iKrip→ Pos,
but instead we use functors HA → DL. While one of them is simply the
inclusion of HA into DL, the other is a functor that closely resembles the
functor also denoted by K defined in Definition 3.7, whose algebras correspond
to normal modal (Boolean) algebras (Theorem 3.10).
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9.9. Definition. Let K : HA → DL be the functor that sends a Heyting
algebra A to the free distributive lattice generated by the set { a | a ∈ A},
subject to a ∧ b = (a ∧ b) and > = >. For a morphism h : A→ B let
Kh : KA→ KB be given on generators by Kh( a) = (ha).

9.10. Remark. As we have done throughout this thesis, we use modalities
with a dot in them to indicate that they serve as formal generators.

9.11. Theorem. Let j : HA→ DL be the embedding of Heyting algebras into
distributive lattice. Then

HAO ∼= Dialg(K, j).

Proof. Let (A, ) be a HAO. Since KA is defined using generators and
relations, we can define a distributive lattice homomorphism α : KA→ jA
by defining the action of α on the generators of KA and verifying that their
images satisfy the relations defining K. So let α ( a) = a. This is well
defined because

α ( a ∧ b) = α ( a) ∧ α ( b) = a ∧ b = (a ∧ b) = α ( (a ∧ b))

and α ( >) = >. Thus (A,α ) is a (K, j)-dialgebra. Conversely, if (A,α) is
a (K, j)-dialgebra then we can define a HAO (A, α) by letting αa = α( a).
It follows from the definition of K that this is indeed a HAO.

Clearly, the two constructions above give rise to a bijective correspon-
dence between HAOs and (K, j)-dialgebras. So we only have to show the
isomorphism on morphisms. To do this, we prove that a function f is a
HAO morphism from (A, ) to (A′, ′) if and only if it is a (K, j)-dialgebra
morphism between the corresponding (K, j)-dialgebras (A,α) and (A′, α′).
Let h : A→ A′ be a Heyting homomorphism and suppose that it is also a
HAO morphism (A, ) → (A′, ′). In order to show that it is a dialgebra
morphism we need to prove that

KA KA′

jA jA′
α

Kh

α′

jh

commutes. It suffices to show that α′(Kh( a)) = jh(α( a)) for all generators
a of A. This follows from the fact that h is a HAO morphism:

α′(Kh( a)) = α′( h(a)) = ′h(a) = h( a) = jh(α( a)).

On the other hand, if h is a dialgebra morphism, then it is also a HAO
morphism because

′h(a) = α′( h(a)) = α′(Kh( a)) = jh(α( a)) = h( a).

This completes the proof of the isomorphism.
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9.12. Remark. We note that, ignoring Example 9.6, all categories of
dialgebras we have seen use an inclusion functor. This is no coincidence: the
theory of dialgebraic logic is based on an inclusion of varieties of algebras,
given by taking a reduct. We will see this in all future examples, as well as
in the general theory.

9.3 Some modal intuitionistic logics

We give examples of modal extensions of intuitionistic logic. These will
serve as running examples of the theory of dialgebraic logic throughout this
section. Most of the logics presented in this subsection have appeared in the
literature before, and detailed references are given upon their definition.

9.3.1 Normal modal intuitionistic logic

We have already encountered the logic IPC in Subsection 9.1. We have
seen how it can be interpreted in -models. For future reference, we define
a notion of morphism between -models.

9.13. Definition. A -model morphism from (X,≤, R, V ) to (X ′,≤′, R′, V ′)
is a -frame morphism f : (X,≤, R) → (X ′,≤′, R′) such that for all p ∈
Prop we have V (p) = f−1(V ′(p)). The category of -models and -model
morphisms is denoted by Mod.

Next, we investigate a slightly different semantics for IPC , introduced
by Božić and Došen [79], and later used by the second author in [137, 138,
139, 140, 136]. It differs from -frames and -models in two ways: first, they
are based on pre-ordered sets rather than posets; second, they have more
relaxed coherence conditions between the relations. The following definition
summarises Definitions 2 and 10 of [79]. The definition of a H -morphism
did not appear in [79], but can be inferred from the desire to preserve truth
of formulae.

9.14. Definition. A H -frame is a tuple (X,≤, R) consisting of a pre-order
(X,≤) and a relation R on X satisfying

(≤ ◦R) ⊆ (R ◦ ≤).

It is called condensed if (R◦≤) = R and strictly condensed if (≤◦R◦≤) = R.
A H -frame morphism from (X,≤, R) to (X ′,≤′, R′) is a bounded mor-

phism f : (X,≤)→ (X ′,≤′) (i.e. a morphism in PreKrip) that is also bounded
with respect to the relation R. We write HFrm for the category of H -frames
and H -frame morphisms, and c-HFrm and sc-HFrm for its full subcategories
of condensed and strictly condensed H -frames, respectively.
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We note that H -frames are used in [357] to interpret an intuitionistic
epistemic logic, and strictly condensed H -frames are used in [395] as
interpreting structures for modal bi-intuitionistic logic.

A ((strictly) condensed) H -model is a ((strictly) condensed) H -frame
(X,≤, R) together with a valuation V : Prop→ Up(X,≤). The interpreta-
tion of IPC -formulae is as expected. Morphisms between H -models are
defined in a similar way as in Definition 9.13.

Each of the categories HFrm, c-HFrm and sc-HFrm can be modelled as
a category of dialgebras. In each case one of the functors is the inclusion
i : PreKrip→ PreOrd, and the other is a variation of the powerset functor.

9.15. Definition.

1. Define the functor Pbd : PreKrip→ PreOrd (the subscript “bd” refers
to Božić and Došen) to send (X,≤) to the powerset PX of X ordered
by

a v2 b iff ∀y ∈ b∃x ∈ a s.t. x ≤ y.

(Observe that this one of the conditions defining the Egli-Milner order,
cf. Definition 6.8.) If f : (X,≤)→ (X ′,≤′) is a morphism in PreKrip,
we define Pbdf : Pbd(X,≤)→ Pbd(X

′,≤′) : a 7→ f [a].

2. The functor Pc
bd : PreKrip→ PreOrd (where the superscript “c” is for

condensed) sends a preordered intuitionistic Kripke frame (X,≤) to
(PX,⊇), and a morphism f in PreKrip to Pc

bdf = f [−].

3. The functor Psc
bd : PreKrip→ PreOrd (the superscript “sc” is for strictly

condensed) sends a preordered intuitionistic Kripke frame (X,≤) to
the collection of upsets of (X,≤) ordered by reverse inclusion. Again,
the Psc

bd sends a morphism f in PreKrip to the direct image map f [−].

Indeed, -frames are special cases of strictly condensed H -frames where
the underlying preorder is a partial order.

9.16. Theorem. We have the following isomorphisms of categories:

HFrm ∼= Dialg(i,Pbd)

c-HFrm ∼= Dialg(i,Pc
bd)

sc-HFrm ∼= Dialg(i,Psc
bd)

Proof. Each isomorphism follows from a verification that is similar to Theo-
rem 9.4, which is proven in-text in Subsection 9.1.

Yet another semantics for the logic IPC is given by descriptive -frames.
We define these and show how they can be modelled as dialgebras for functors
ES→ Pries.
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9.17. Definition. A descriptive -frame is a tuple (X,≤, R,A) where X is
a poset, (X,≤, R) is a -frame and A ⊆ Up(X,≤) is a collection of upsets
such that

1. (X,≤, A) is a descriptive intuitionistic Kripke frame (see Defini-
tion 1.35);

2. A is closed under the map

R : Up(X,≤)→ Up(X,≤) : a 7→ {x ∈ X | R[x] ⊆ a};

3. For all x, y ∈ X, the following tightness condition holds:

xR y iff ∀a ∈ A(x ∈ Ra implies y ∈ a).

A morphism from (X,≤, R,A) to (X ′,≤′, R′, A′) is a -frame morphism
f : (X,≤, R)→ (X ′,≤′, R′) such that f−1(a′) ∈ A for all a′ ∈ A′. We write
D- Frm for the category of descriptive -frames and its morphisms.

Descriptive -models are descriptive -frames (X,≤, R,A) together with
a valuation V that assigns to each proposition letter a subset in A. (This
is sometimes called an admissible valuation.) As we will see shortly, the
subsets in A are precisely the clopen upsets of the topological rendering of
(X,≤, R,A), so that V can be viewed as sending each proposition letter to a
clopen upset.

The crucial functor in modelling descriptive -frames dialgebraically is
the upper Vietoris functor. This is a variation of the Vietoris functors on
Stone spaces (Definition 3.12) and Priestley spaces (Definition 6.16). It
resembles the Smyth powerdomain [393], although upward closure need not
be with respect to the specialisation order.

Recall that we write X for (ordered) topological spaces, such as Priestley
spaces and Esakia spaces. In order to avoid clutter, we often suppress explicit
mention of the partial order ≤. If X is a Priestley or Esakia space then we
write ≤X for the order and τX for the topology of X.

9.18. Definition. For an Esakia space X, let VupX be the collection of
closed upsets ordered by reverse inclusion and topologised by the clopen
subbase

a = {c ∈ VupX | c ⊆ a}, b = {c ∈ VupX | c ∩ b 6= ∅},

where a ranges over the clopen upsets and b over the clopen downsets of X.
For an Esakia morphism f : X→ X′, define

Vupf : VupX→ VupX′ : c 7→ f [c].

In the next lemma and propositions we verify that Vup is indeed a functor
ES→ Pries.
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9.19. Lemma. Let X be an Esakia space. Then VupX is a Priestley space.

Proof. For compactness we use the Alexander subbase theorem. Suppose

VupX ⊆
⋃
k∈K

ak ∪
⋃
`∈L

b`, (9.2)

where K,L are index sets, the ak are clopen upsets of X and the b` are
clopen downsets of X. Since the closed upset XX \

⋃
`∈L b` is in none of the

b`, there must exists a k′ ∈ K such that X \
⋃
`∈L b` ⊆ ak′ . This implies

X ⊆ ak′ ∪
⋃
`∈L b`, so by compactness of X we can find a finite subset L′ ⊆ L

such that X ⊆ ak′ ∪
⋃
`∈L′ b`. It is easy to check that this implies that

ak′ ∪
⋃
`∈L′

b`

is a finite subcover of the cover in (9.2).
Next we prove that VupX satisfies the Priestley separation axiom. Suppose

c 6⊇ c′. We need to find a clopen upset containing c but not c′. Since c 6⊇ c′
we can find x ∈ c′ such that x /∈ c. Then for all y ∈ c we have y 6≤ x (because
y ≤ x would imply x ∈ c) so we can find a clopen upset ay in X containing y
but not x. Then

⋃
y∈c ay is a cover of c and by compactness we can find a

finite subcover, say, a = a1 ∪ · · · ∪ an. Since a is the finite union of clopen
upsets it is a clopen upset itself. By construction c ∈ a and c′ /∈ a (the
latter witnessed by x). The set a is clopen in VupX by definition, and it is
upward closed because VupX is ordered by reverse inclusion.

9.20. Proposition. The assignment Vup : ES→ Pries defines a functor.

Proof. We have already seen in Lemma 9.19 that Vup is well defined on
objects. Functoriality is easy to verify, so we focus on proving that Vup is
well defined on morphisms.

Let f : X→ X′ be an Esakia morphism. For c ∈ VupX, the set Vupf(c) =
f [c] is an upset of X because f is a bounded morphism, and it is closed
because f is a continuous morphism between Stone spaces. Clearly the
map Vupf is also order-preserving. For continuity, we need to show that
(Vupf)−1( a′) and (Vupf)−1( b′) are open in VupX, for all clopen upsets
a′ and clopen downsets b′ of X. For the former compute

(Vupf)−1( a′) = {c ∈ VupX | f [c] ⊆ a′}
= {c ∈ VupX | c ⊆ f−1(a′)}
= f−1(a′).

It follows from monotonicity and continuity of f that f−1(a′) is a clopen upset
of X, so f−1(a′) is clopen in VupX. Similarly, (Vupf)−1( b′) = f−1(b′)
is clopen in VupX for every clopen downset b′ of X′. This proves that Vupf
is a Priestley morphism.
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On passing, we note that Vup extends to an endofunctor on Pries and
restricts to an endofunctor on ES. Since we do not need this, we shall not
elaborate on it. Using the functor Vup and the inclusion ℐ : ES → Pries
we can now model the category of descriptive -frames as a category of
dialgebras.

9.21. Theorem. We have

D- Frm ∼= Dialg(ℐ,Vup).

Proof. Let (X, γ) be an (ℐ,Vup)-dialgebra. Define Rγ by xRγy iff y ∈ γ(x)
and let A = Clp′upX. We claim that (X,≤, R,A) is a descriptive -frame.
We know that (X,≤, A) is a descriptive intuitionistic Kripke frame because
X is an Esakia space (see Subsection 1.4). It follows from a straightforward
computation that (≤◦Rγ ◦≤) = Rγ . The set A is closed under the operation

Rγ because Rγ (a) = γ−1( a). Lastly, for all x, y ∈ X we have xRγy iff
for all a ∈ A(x ∈ a implies y ∈ a) because a closed upset is the intersection
of all clopen upsets that contain it.

Next, suppose given a descriptive -frame (X,≤, R,A). Let X be the
Esakia space corresponding to the descriptive intuitionistic Kripke frame
(X,≤, A) (Subsection 1.4). Define γR : X → VupX by γR(x) = {y ∈ X |
xRy}. We claim that (X, γ) is an (ℐ,Vup)-dialgebra. Condition (9.1) shows
that γR(x) is up-closed for each x ∈ X, and γR is order-preserving. It follows
from the tightness condition of Definition 9.17 that γR(x) is closed for each
x ∈ X. The fact that A is closed under R proves continuity of γ.

It is easy to see that the previous two paragraphs yield a bijective
correspondence between the objects of D-WZ and those of Dialg(ℐ,Vup). If
(X, γ) and (X′, γ′) are two (ℐ,Vup)-dialgebras (descriptive -frames), then a
routine computation (similar to the one at the end of Subsection 9.1) shows
that a bounded morphism from (X,≤X)→ (X ′,≤X′) is a descriptive -frame
morphism if and only if it is an (ℐ,Vup)-dialgebra morphism.

9.3.2 n-ary diamonds

Next, we investigate the extension of intuitionistic logic with an n-ary join-
preserving operator. In case of n = 1 this simply reduces to a diamond
operator, which can be found in [79, 446], and the corresponding frames
reduce to the -frames discussed in Example 9.7. We take a slightly more
general approach because other arities are of interest as well. In particular,
if n = 2 then the modality acts as a fusion operator. These have been inves-
tigated with positive logic as a propositional base in [91, 84, 86], sometimes
in combination with a weak implication operator. Besides, in case n = 2
the modality satisfies the same axioms as the composition operator in arrow
models [70, Examples 1.16 and 1.27].
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So let IPC n be the language obtained from extending intuitionistic
logic with an n-ary operator, denoted by n(ϕ1, . . . , ϕn). We define the logic
IPC n as the extension of IPC with the axioms

n(p1, . . . , pi, . . . , pn) ∨ n(p1, . . . , qi, . . . , pn)↔ n(p1, . . . , pi ∨ qi, . . . , pn)

n(p1, . . . ,⊥, . . . , pn)↔ ⊥

for all i ∈ {1, . . . , n}, together with uniform substitution and the congruence
rule

p1 ↔ q1 · · · pn ↔ qn

n(p1, . . . , pn)↔ n(q1, . . . , qn)
.

(Alternatively we could impose monotonicity rules, because these imply the
congruence rule. This also simplifies the axioms to implications, rather than
bi-implications.)

We can interpret these in the following relational frames.

9.22. Definition. A n-frame is a tuple (X,≤, R) where (X,≤) is a poset
and R is an (n+ 1)-ary relation on X such that:

if (x, y1, . . . , yn) ∈ R and x ≤ x′ and y′i ≤ yi, then (x′, y′1, . . . , y
′
n) ∈ R.

A n-morphism from (X,≤, R) to (X ′,≤′, R′) is a bounded morphism f :
(X,≤)→ (X ′,≤′) such that for all x, yi ∈ X and z′i ∈ X ′:

• if (x, y1, . . . , yn) ∈ R then (f(x), f(y1), . . . , f(yn)) ∈ R′;
• if (f(x), z′1, . . . , z

′
n) ∈ R′ then there exist z1, . . . , zn ∈ X such that

I (x, z1, . . . , zn) ∈ R, and

I z′i ≤ f(zi) for all i ∈ {1, . . . , n}.

We write nFrm for the category of n-frames and morphisms.

A n-model is a n-frame together with a valuation V that assigns
to each proposition letter an upset of (X,≤). An IPC n-formula ϕ can
be interpreted in a n-model M = (X,≤, R, V ) via the usual clauses for
intuitionistic connectives, and

M, x  n(ϕ1, . . . , ϕn) iff ∃y1, . . . , yn ∈ X s.t. (x, y1, . . . , yn) ∈ R
and M, yi  ϕi for each i ∈ {1, . . . , n}.

A routine verification shows that the coherence condition between ≤
and R ensures persistence of the interpretation of IPC n-formulae. The
interpretation of modal operators can alternatively be described as

M, x  n(ϕ1, . . . , ϕn) iff R[x] ∩ Jϕ1KM × · · · × JϕnKM 6= ∅.

Here R[x] = {(y1, . . . , yn) ∈ Xn | (x, y1, . . . , yn) ∈ R}. As a consequence of
the coherence condition from Definition 9.22, R[x] is downward closed as a
subset of (X,≤)n (where we take the n-fold cartesian product in iKrip, which
is computed as in Set). This suggests the following dialgebraic approach.
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9.23. Definition. The functor Pn : iKrip → Pos sends a poset (X,≤) to
the collection of downward closed subsets of the n-fold product (X,≤)n of
(X,≤), ordered by inclusion. If f : (X,≤)→ (X ′,≤′) is a bounded morphism
between posets, then we define Pnf by

Pnf(a) = {(y′1, . . . , y′n) ∈ (X ′)n | ∃(x1, . . . , xn) ∈ a s.t. y′i ≤′ f(xi) for all i }.

9.24. Theorem. We have nFrm ∼= Dialg(i,Pn).

Proof sketch. On objects, the isomorphism follows from identifying the rela-
tion R with the map γR that sends each element to its set of R-successors.
This is well defined and order-preserving because of the coherence condition
from Definition 9.22. Conversely, its being well defined and order-preserving
implies the coherence condition, so we get a bijective correspondence between
suitable relations R and maps γ : i(X,≤)→ Pn(X,≤).

The isomorphism on morphisms follows from unravelling the definitions,
similar to the computations in Subsection 9.1.

The algebraic semantics corresponding to IPC n is given by Heyting
algebras with an n-ary join-preserving operator.

9.25. Definition. A Heyting algebra with n-ary operator (or HAnO) is
a pair (A, n) where A is a Heyting algebra and n : An → A a func-
tion that preserves finite joins (including the bottom element) in each
component. A HAnO morphism from (A, n) to (A′, ′

n) is a Heyting
algebra homomorphism h : A→ A′ such that for all a1, . . . , an ∈ A we have
h( n(a1, . . . , an)) = ′

n(h(a1), . . . , h(an)). We write HAnO for the category
of HAnOs and HAnO morphisms.

We can view HAnOs as dialgebras for a pair of functors HA→ DL. We
use a diamonds with a dot in them to denote formal generators.

9.26. Definition. For a Heyting algebra A, define ℒnA to be the free
distributive lattice generated by { n(a1, . . . , an) | ai ∈ A} modulo

n(a1, . . . , ai, . . . an) ∨ n(a1, . . . , bi, . . . , an) = n(a1, . . . , ai ∨ bi, . . . , an)

n(a1, . . . ,⊥, . . . , an) = ⊥

for all i ∈ {1, . . . , n}. If h : A→ A′ is a Heyting algebra homomorphism then
we define ℒnh on generators by ℒnh( n(a1, . . . , an)) = ′

n(h(a1), . . . , h(an)).
Then ℒn defines a functor HA→ DL.

Using the functor ℒn, we can view HAnO as a category of dialgebras.
Recall that j : HA→ DL denotes the inclusion functor.

9.27. Theorem. We have HAnO ∼= Dialg(ℒn, j).

Proof. This follows from a routine verification.
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9.3.3 Monotone Modal Intuitionistic Logic

The extension of intuitionistic with a monotone modality was studied by
Goldblatt in [185] and [187, Section 6], who called it the “geometric modality.”
It is closely related to its classical counterpart [103, 209, 210, 380, 163], except
that the underlying propositional logic is intuitionistic. Over a classical
base, it encompasses modal logics such as game logic [337], concurrent
propositional dynamic logic [186], coalition logic [344] and alternating-time
temporal logic [13]. To distinguish it from the other modalities above we
denote the monotone modality by M instead of .

Let IPCM denote the language of intuitionistic logic extended with a
unary operator M, and write IPCM for the logic obtained from extending
IPC with the axiom

M(p ∧ q)→ Mp,

uniform substitution, and the congruence rule

p↔ q

Mp↔ Mq
.

Formulae from IPCM can be interpreted in an intuitionistic adaptation
of monotone frames (Definition 3.36). These were introduced by Goldblatt
in [187, Subsection 6.4.1], where they are called neighbourhood spaces. Recall
that Up : Pos→ Set denotes the contravariant functor that sends a poset to
its collection of upsets.

9.28. Definition. An intuitionistic monotone frame is a triple (X,≤, N)
where (X,≤) is a poset and N is a function that assigns to each x ∈ X a
collection of upsets of (X,≤) such that:

• if a ∈ N(x) and a ⊆ b ∈ Up(X,≤), then b ∈ N(x);

• if x ≤ y then N(x) ⊆ N(y).

An intuitionistic neighbourhood morphism between intuitionistic monotone
frames (X1,≤1, N1) and (X2,≤2, N2) is a bounded morphism f : (X1,≤1

)→ (X2,≤2) that satisfies for all x1 ∈ X1 and a2 ∈ Up(X2,≤2):

f−1(a2) ∈ N1(x1) iff a2 ∈ N2(f(x1)).

We write Mon for the category of intuitionistic monotone frames and mor-
phisms.

An intuitionistic monotone model is a tuple M = (X,≤, N, V ) such that
(X,≤, N) is an intuitionistic monotone frame and V : Prop→ Up(X,≤) is a
valuation. The interpretation of IPCM-formulae at a state x in M is defined
recursively, where the propositional cases are as usual and

M, x  Mϕ iff JϕKM ∈ N(x).
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We now explain how to view intuitionistic monotone frames dialge-
braically.

9.29. Definition. For an intuitionistic Kripke frame (X,≤), let ℋ(X,≤) be
the set

{W ⊆ Up(X,≤) | if a ∈W and a ⊆ b ∈ Up(X,≤) then b ∈W}

ordered by inclusion. If f : (X1,≤1) → (X2,≤2) is a bounded morphism
then we define

ℋf : ℋ(X1,≤1)→ ℋ(X2,≤2) : W 7→ {a2 ∈ Up(X2,≤2) | f−1(a2) ∈W}.

Then ℋ : iKrip→ Pos defines a functor.

9.30. Theorem. We have Mon ∼= Dialg(i,ℋ).

Proof. The identification on objects is immediate. Let (X1,≤1, N1) and
(X2,≤2, N2) be two intuitionistic monotone frames (simultaneously conceived
of as (i,ℋ)-dialgebras) and f : (X1,≤1)→ (X2,≤2) a bounded morphism.
We claim that f is an intuitionistic neighbourhood morphism if and only if
it is an (i,ℋ)-dialgebra morphism.

Suppose that f is an intuitionistic neighbourhood morphism. We need
to show that

i(X1,≤1) i(X2,≤2)

ℋ(X1,≤1) ℋ(X2,≤2)

if

N1 N2

ℋf

commutes. So suppose x1 ∈ X1 and a2 ∈ Up(X2,≤2) and compute

a2 ∈ ℋf(N1(x1)) iff f−1(a2) ∈ N1(x1) iff a2 ∈ N2(f(x1)).

If f is a dialgebra morphism then we can show in a similar way that it is
also an intuitionistic neighbourhood morphism.

The algebraic semantics of IPCM is defined as expected.

9.31. Definition. A Heyting algebra with monotone operator (HAM) is
a pair (H,M) of a Heyting algebra H and a map M : H → H satisfying
M(a ∧ b) ≤ Ma for all a, b ∈ H. A morphism between HAMs (H,M) and
(H ′,M′) is a Heyting homomorphism f : H → H ′ satisfying M′ ◦ f = f ◦ M.
Write HAM for the category of HAMs and HAM morphisms.

HAMs can be viewed as dialgebras in a similar way as HAOs (Defini-
tion 9.8). Indeed, if we let ℒM : HA → DL be the functor that sends a
Heyting algebra A to the free distributive lattice generated by { a | a ∈ A}
modulo (a∧ b) ≤ a, and a morphism f : A→ A′ to ℒMf : ℒMA→ ℒMA′ :
a 7→ f(a), then we have:
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9.32. Theorem. HAM ∼= Dialg(ℒM, j).

Here j : HA→ DL again denotes the inclusion functor. We use similar
to and , to emphasise its rôle as formal generator.

9.3.4 Non-Normal Modal Intuitionistic Logic

Neighbourhood semantics are used as interpreting structures for non-normal
modal logics such as logics related to deontic logic [220, 221, 305] and
epistemic logic [417, 333]. The semantics was discovered by Scott [386] and
Montague [314], and is further investigated in e.g. [388, 103, 332, 211], see
also Section 4.

Dalmonte, Grellois and Olivetti recently put forward an intuitionistic
analogue of neighbourhood semantics [127]. These are used to interpret the
extension of intuitionistic logic with two unary modalities and which a
priori do not satisfy any interaction axioms. (We denote the modalities by
and to distinguish them from the normal and discussed previously.)
The frames from [127] are equipped with two neighbourhood functions, one
to interpret each modal operator.

Denote by IPC the extension of IPC with two unary operators
and . We define the logic IPC to be the extension of IPC with uniform
substitution and the congruence rules for and . Then the algebraic
semantics for IPC is given as expected, namely by Heyting algebras with
two functions. (We leave the precise definitions to the reader; it will also be
discussed in Example 9.59.)

We recall the frame semantics from [127].

9.33. Definition. A coupled intuitionistic neighbourhood frame (or CIN-
frame for short) is a tuple (X,≤, N ,N ) such that (X,≤) is a preorder and
N ,N are functions X → PPX such that for all x, y ∈ X:

x ≤ y implies N (x) ⊆ N (y) and N (x) ⊇ N (y).

A coupled intuitionistic neighbourhood morphism (or CIN-morphism) from
(X,≤, N ,N ) to (X ′,≤′, N ′ , N ′ ) is a bounded morphism f : (X,≤) →

(X ′,≤′) such that for all x ∈ X, a′ ∈ PX ′ and N ∈ {N ,N }:

f−1(a′) ∈ N(x) iff a′ ∈ N ′(f(x)).

We write CINF for the category of coupled intuitionistic neighbourhood
frames and their morphisms.

Formulae from IPC can be interpreted in models based on coupled
intuitionistic neighbourhood frames, i.e. coupled intuitionistic neighbourhood
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frames (X,≤, N ,N ) with a valuation V : Prop→ Up(X,≤). Intuitionistic
connectives are interpreted as usual (see Definition 9.2), and

x  ϕ iff JϕK ∈ N (x), x  ϕ iff X \ JϕK /∈ N (x).

Coupled intuitionistic neighbourhood frames can be viewed as dialgebras
for a pair of functions PreKrip→ PreOrd. We write i : PreKrip→ PreOrd for
the inclusion functor. (We also use i as a functor iKrip → Pos. We trust
that there will be no confusion between the two, as the latter is simply a
restriction of the former, and the domain and codomain will always be clear
from context.)

9.34. Definition. Define the functor N : PreKrip → PreOrd on objects by
N(X,≤) = (PPX,⊆)× (PPX,⊇), where we take the (cartesian) product
in the category of preorders. If f : (X,≤)→ (X ′,≤′) is a bounded morphism
then we define Nf : N(X,≤)→ N(X ′,≤′) by

Nf(W1,W2) =
(
{a1 ∈ PX | f−1(a1) ∈W1}, {a2 ∈ PX | f−1(a2) ∈W2}

)
.

9.35. Theorem. We have an isomorphism of categories CINF ∼= Dialg(i,N).

Proof. The identification on objects is obvious. The proof of the isomorphism
on morphisms is similar to the proof of Theorem 9.30.

9.3.5 Conditional Intuitionistic Logic

Conditional intuitionistic logics [436, 437, 108] combine non-monotonic rea-
soning with an intuitionistic base logic. They are closely related to their
classical counterparts, which have been studied in e.g. [287, 102, 103, 165].
It is still an active area of research [414, 29, 180, 181, 182], and a recent
overview of the field can be found in [437].

From a philosophical viewpoint, moving to an intuitionistic base allows
us to separate logical principles that are conditional from those that are
induced by the base logic being classical. We show how this fits in the
dialgebraic framework. Our approach resembles the coalgebraic perspective
of conditional logic given in [268, Section 2].

The language IPC� of conditional intuitionistic logic is intuitionistic
logic with an additional binary modality � (the conditional implication).
The logic IPC� extends IPC with the axioms

((p� q) ∧ (p� r))↔ (p� (q ∧ r)), (p� >)↔ >,

and the rule of uniform substitution and the congruence rule

p↔ q p′ ↔ q′

(p� p′)↔ (q� q′)
.

The algebraic semantics is defined as follows.
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9.36. Definition. A Heyting algebra with conditional operator (HAC)
is a pair (H,�) of a Heyting algebra H together with a binary map
� : H ×H → H that satisfies

a� (b ∧ c) = (a� b) ∧ (a� c) and a� > = >

for all a, b, c ∈ H. A HAC morphism (H,�) → (H ′,�′) is a Heyting
homomorphism h : H → H ′ satisfying h(a� b) = h(a) �′ h(b) for all
a, b ∈ H. Write HAC for the category of HACs and HAC morphisms.

The object part of this definition corresponds to [436, Definition 3]. We
can view HACs as dialgebras in a similar way as in the examples above, see
Example 9.60. Definition 1 of [436] defines frame semantics for conditional
intuitionistic logic by means of “Kripke ICK interpretations.” These are
defined as follows.

9.37. Definition. A Kripke ICK interpretation is a tuple (X,≤, {Ra | a ∈
PX}), where (X,≤) is a preorder and for each subset a ⊆ X we have a
relation Ra ⊆ X ×X that satisfies

(≤ ◦Ra) ⊆ (Ra ◦ ≤).

Such frames can also be viewed an intuitionistic adaptation of selection
function frames (see e.g. [103, Section 10], [268, Section 2]). We define this
alternative perspective next, as well as a notion of morphism.

9.38. Definition. An intuitionistic selection function frame (or ISF-frame
for short) is a tuple (X,≤, s) where (X,≤) is a preorder and

s : X ×PX → PX

is a function such that for all x, y, z ∈ X and a ∈ PX:

if x ≤ y and z ∈ s(y, a), then ∃w ∈ s(x, a) such that w ≤ z.

(In other words, s(y, a) ⊆ ↑≤s(x, a).)
An intuitionistic selection function morphism (ISF-morphism) from

(X1,≤1, s1) to (X2,≤2, s2) is a bounded morphism f : (X1,≤1)→ (X2,≤2)
such that the following commutes:

PX PX ′

PX PX ′

s1 s2

f−1

f [−]

Here f [−] denotes the direct image function. (Unravelling the definitions
shows that this is precisely required to preserve truth of �.) Write ISFF
for the category of intuitionistic selection function frames and morphisms.
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The correspondence with Kripke ICK interpretations arises by identifying
s(x, a) with the set of Ra-successors of x.

9.39. Definition. An intuitionistic selection function model or ISF-model is
a tuple M = (X,≤, s, V ) where (X,≤, s) is an ISF-frame and V : Prop →
Up(X,≤) is a valuation of the proposition letters. The interpretation of
IPC�-formulae in such a model is given by the usual clauses for intuitionistic
connectives, and

M, x  ϕ� ψ iff s(x, JϕKM) ⊆ JψKM.

It can be proven that the interpretation JϕKM of any formula is always
an upset of (X,≤). The intuition behind the interpretation of ϕ� ψ is
that s indicates states where ϕ holds that are somehow relevant to x, and it
is this set of states that should also satisfy ψ.

9.40. Remark. Upon closer inspection of the definition of an ISF-frame
and -model, we note that it contains more information than is actually used.
First, the interpretations of formulae of the form ϕ� ψ relies only on the
action of s on upsets, that is, it would suffices to know the restriction of s
to a function s : X ×Up(X,≤)→ PX. Second, since the interpretation of
any formula is an upset, we have s(x, a) ⊆ JψKM if and only if the upward
closure of s(x, a) is contained in JψKM. So we could further simplify s to a
function s : X ×Up(X,≤) → Up(X,≤). This seems more closely aligned
with (non-intuitionistic) selection function frames, because the rôle of “subset”
in modal logic over a classical base is often replaced by “upset” when working
over an intuitionistic base.

Such adaptation were made in the discussion of ISF-frames in [200,
Section 9]. Here, we have not made these simplifications in an effort to stay
as close to the existing body of literature as possible.

We show how to view intuitionistic selection function frames as dialgebras.

9.41. Definition. For a preorder (X,≤) define C(X,≤) as the collection
of functions PX → PX ordered by g ≤ h iff h(a) ⊆ g(a) for all a ∈ PX,
viewed as a preorder. For a bounded morphism f : (X,≤) → (X ′,≤′) in
PreKrip define Cf by

Cf(h)(a′) = f [h(f−1(a′))].

Then C : PreKrip→ PreOrd defines a functor.

Let i be the inclusion functor PreKrip→ PreOrd.

9.42. Theorem. We have ISFF ∼= Dialg(i,C).

Proof. The isomorphism follows from a routine verification, which is left to
the reader.
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9.4 Language, logic and algebraic semantics

We fix a base logic by means of a finitary variety of algebras A′. Suppose
A′ is defined by the operators in Σ′ and equations in E′. We think of the
algebras in A′ as the algebraic semantics for our base logic, and write L for
the language generated by a set Prop of proposition letters and connectives
corresponding to the operators of A′. In our running examples we have
A′ = HA, the category of Heyting algebras, and we write IPC for the
corresponding language (of intuitionistic propositional logic).

Our goal is to add additional (modal) operators to the signature of A′,
and arrive at a new category of algebras that play the rôle of algebraic
semantics. Guided by the examples from Subsection 9.3, we recognise that
the axioms describing the properties additional modalities sometimes draw
connectives only from a subset Σ of Σ′. As we will see below, this gives rise
to the idea of using certain categories of dialgebras as algebraic semantics.

For the remainder of this section, on top of the variety A′, we fix a subset
Σ ⊆ Σ′ and we write A for the Σ-reduct of A′. This yields an inclusion
functor j : A′ → A. If σ ∈ Σ′ then we write ar(σ) for its arity. Formally, we
define the base language as follows:

9.43. Definition. Let Prop be some set of proposition letters. Then the
language L is given by the grammar

ϕ ::= p | ♠σ(ϕ1, . . . , ϕar(σ)),

where p ranges over Prop and σ over Σ′.

9.44. Examples.

1. If A′ is the category of Heyting algebras, then L is the language of
intuitionistic propositional logic.

2. If A′ = BA then L is the language of classical propositional logic.

3. If A′ = DL then L is the language of positive propositional logic.

4. If A′ = ISL then L is the language of the (>,∧,→)-fragment of
intuitionistic logic.

The number of modal operators and their arities is given by a modal
similarity type:

9.45. Definition. A modal similarity type is given by a set Λ, and for each
λ ∈ Λ a natural number ar(λ) ∈ N.

We think of Λ as indexing a collection of modal operators that can be
added to our base language L.
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9.46. Definition. Let Λ be a modal similarity type. Then the language
L(Λ) is given by the grammar

ϕ ::= p | ♠σ(ϕ1, . . . , ϕar(σ)) | ♥λ(ϕ1, . . . , ϕar(λ)),

where p ∈ Prop, σ ranges over Σ′, and λ ranges over Λ.

9.47. Example. Let A′ = HA and define Λ = { }. Then L is the
language of intuitionistic logic, denoted by IPC. Since we know that
ΣA′ = {>,⊥,∧,∨,→}, we find that the language L(Λ) = IPC(Λ) is given
by the grammar

ϕ ::= > | ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ♥ ϕ.

If we replace ♥ by , we see that this coincides with IPC .

Our next task is to define a logic based on this language. Since we are
not guaranteed any form of implication in our language, we define the logic
in terms of axiom pairs. Intuitively, an axiom pair is a pair of formulae
stipulated to be equal.

9.48. Definition. An axiom pair is a pair (ϕ,ψ) where ϕ,ψ ∈ L(Λ). We
say that (ϕ,ψ) is a one step axiom pair if every proposition letter in ϕ and
ψ occurs in the scope of precisely one operator of the form ♥λ, for some
λ ∈ Λ.

If Σ ⊆ Σ′, then we say that ϕ ∈ L(Λ) is a Σ-formula if it does not contain
any connectives in Σ′ \Σ. A Σ-axiom pair is an axiom pair consisting of two
Σ-formulae.

9.49. Example. Consider the language IPC({ }) and write ♥ for ♥ .

• The pairs (♥♥p,♥p), (♥♥p∧♥p,♥p) and
(
♥(p∧♥p),♥p

)
are axioms

pairs.

• The pairs
(
♥p ∧ ♥q,♥(p ∧ q)

)
and

(
♥(p ∧ q) ∧ ♥p,♥(p ∧ q)

)
are both

one step axiom pairs.

This notion of an axiom pair allows us to define a logic based on L(Λ).
This is a simple equational system. We will see in Remark 9.51 how it relates
to logics given as a set of axioms.

9.50. Definition. Let Λ be a modal similarity type and Ax a collection of
axiom pairs. The logic L(Λ,Ax) is the smallest collection of axiom pairs
containing:

• The axiom pairs arising from EA′ by uniformly replacing the variables
with proposition letters;

• The axiom pairs in Ax;
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• The axiom pair (p, p) (of reflexivity).

Furthermore, we require that L(Λ,Ax) is closed under:

• Symmetry and transitivity:

(p, q)

(q, p)
,

(p, q) (q, r)

(p, r)

• Uniform substitution:
(ϕ,ψ)

(sϕ, sψ)
,

where s is a substitution of the proposition letters;

• The congruence rules:

(p1, q1) · · · (par(σ), qar(σ))(
♠σ(p1, . . . , par(σ)),♠σ(q1, . . . , qar(σ))

)
for all σ ∈ Σ′, and

(p1, q1) · · · (par(λ), qar(λ))(
♥λ(p1, . . . , par(λ)),♥λ(q1, . . . , qar(λ))

)
for all λ ∈ Λ.

The rules should be read as follows: if the axiom pairs above the line are in
ℒ(Λ,Ax), then so is the one below the line.

Sometimes it suffices to think about axioms, rather than axiom pairs.

9.51. Remark. Let IPC(Λ) be some modal extension of the intuitionistic
language and IPC(Λ,Ax) a logic consisting of axiom pairs of IPC(Λ)-
formulae. Then we have (ϕ,ψ) ∈ IPC(Λ,Ax) if and only if (ϕ ↔ ψ,>) ∈
IPC(Λ,Ax), where ϕ↔ ψ is short for (ϕ→ ψ) ∧ (ψ → ϕ). So IPC(Λ,Ax)
is determined uniquely by the formulae ϕ ∈ IPC(Λ) such that (ϕ,>) ∈
IPC(Λ,Ax). (It is essentially this observation that proves that Heyting
algebras are the algebraic semantics of intuitionistic logic.)

Conversely, a modal intuitionistic logic A given by axioms gives rise
to a logic of axiom pairs by letting (ϕ,ψ) be an axiom pair in the logic
if and only if ϕ ↔ ψ ∈ A. Any axiomatisation of intuitionistic logic is
such that the reflexivity, symmetry, transitivity and the congruence rule for
intuitionistic connectives from Definition 9.50 are satisfied. We still have
to (manually) stipulate the congruence rule for modalities. We also usually
mention uniform substitution explicitly, to stress that this rule applies to all
formulae, including those containing modalities.

Therefore we shall define modal intuitionistic logics as sets of axioms,
instead of axiom pairs. This is both more common and more natural.

Similar reasoning allows us to do the same for modal extensions of classical
logic, as well as modal meet-implication logic, investigated in Section 14.
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9.52. Example. Let A′ = HA, Λ = { } with ar( ) = 1, and identify
IPC(Λ) with IPC (that is, we write instead of ♥ ). Let Ax consist of
the axioms

( p ∧ q)↔ (p ∧ q), > ↔ >.

Then the logic IPC(Λ,Ax), viewed as a collection of IPC(Λ)-axioms (instead
of axiom pairs), coincides with the logic IPC discussed at the start of
Subsection 9.1.

We will be interested in one case in particular, namely when Ax consists
entirely of one step Σ-axiom pairs, for some Σ ⊆ Σ′. In this special case,
we can use dialgebras to describe the algebraic semantics of L(Λ,Ax). The
example to keep in mind is the inclusion of distributive lattice connectives
into that set of Heyting algebra connectives (but there are other examples as
well, see for example Section 14). Intuitively, in this case we can use simpler
algebras to describe the “modal level” of the logic.

9.53. Setup. Henceforth we fix Σ ⊆ Σ′. We write A for the Σ-reduct of A′,
and j : A′ → A for the corresponding inclusion functor.

9.54. Definition. Let Λ be a modal similarity type and Ax a collection of
one step Σ-axiom pairs. For an algebra A ∈ A′, define ℒΛ,AxA to be the free
A-algebra generated by the set

{♥λ(a1, . . . , aar(λ)) | λ ∈ Λ, ai ∈ A}

modulo the axioms from Ax, where the proposition letters are replaced
uniformly by elements from A. For an A′-morphism h : A → A′ define
ℒΛ,Axh : ℒΛ,AxA→ ℒΛ,AxA

′ on generators via

ℒΛ,Axh(♥λ(a1, . . . , aar(λ))) = ♥λ(h(a1), . . . , h(aar(λ))).

Then ℒΛ,Ax : A′ → A defines a functor.

Note that this definition is well defined because Ax only contains one
step axioms with connectives in Σ ∪ Λ. For future reference, we note:

9.55. Proposition. Let ℒΛ,Ax be defined via the procedure from Defini-
tion 9.54. Then Dialg(ℒΛ,Ax, j) is a variety of algebras.

Proof. By assumption A′ is a variety of algebras. We add to its signature
an n-ary operation symbol for each n-ary modality in Λ, and to the set of
equations defining A′ the equations obtained from Ax by reading (ϕ,ψ) as
ϕ = ψ and treating proposition letters as variables.

We apply Definition 9.54 to modal signatures and axioms corresponding
to the examples from Subsection 9.3. In each case, the underlying inclusion
of varieties of algebras is the inclusion j : HA → DL of Heyting algebras
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into distributive lattices. This means that the underlying propositional logic
is intuitionistic logic, so that Remark 9.51 allows us to reason in terms of
axioms, rather than axiom pairs.

9.56. Example. Let Λ and Ax be as in Example 9.52. Then the procedure
from Definition 9.54 defines a functor ℒΛ,Ax : HA → DL which sends a
Heyting algebra A to the free distributive lattice generated by { a | a ∈ A}
modulo a ∧ b = (a ∧ b) and > = >. If f : A → A′ is a morphism
in HA, then ℒΛ,Axf is defined on generators by ℒΛ,Axf( a) = f(a). But
this is exactly the same as the functor K from Definition 9.9! So we see
that the dialgebraic approach models IPC as well as the desired algebraic
semantics.

9.57. Example. Let Λ = { n} with ar( n) = n. Then the language
IPC(Λ) corresponds to IPC n from Subsection 9.3.2. Let Ax consist of the
axiom pairs(

n(p1, . . . , pi, . . . , pn) ∨ n(p1, . . . , qi, . . . , pn), n(p1, . . . , pi ∨ qi, . . . , pn)
)(

n(p1, . . . ,⊥, . . . , pn), ⊥
)

These both correspond to one-step Σ-axiom pairs, where Σ = {>,⊥,∧,∨}.
Viewed as axioms (rather than an axiom pair, cf. Remark 9.51) they cor-
respond to the axioms given at the start of Subsection 9.3.2. It is clear
that the resulting logic IPC(Λ,Ax) corresponds with the logic IPC n via
Remark 9.51.

The procedure from Definition 9.54 gives rise to the functor ℒΛ,Ax, which
is easily seen to be naturally isomorphic to ℒn from Definition 9.26.

9.58. Example. Let Λ = {M} with ar(M) = 1. Then the language IPC(Λ)
corresponds bijectively to IPCM from Subsection 9.3.3. Let

Ax :=
{(
M(p ∧ q),M(p ∧ q) ∧ Mp

)}
We note that this is a Σ-axiom pair, where Σ = {>,⊥,∧,∨}. Viewed as an
axiom (rather than an axiom pair, cf. Remark 9.51) this can be rewritten as

M(p ∧ q)→ Mp (9.3)

and the resulting logic IPC(Λ,Ax) corresponds to IPCM from Subsec-
tion 9.3.3.

An easy verification shows that the functor ℒΛ,Ax that arises from the
procedure of Definition 9.54 coincides with the functor ℒM defined in the
paragraph preceding Theorem 9.32. Thus the algebraic semantics given
by our dialgebraic procedure are as desired. Furthermore, it follows from
Theorem 9.69 below and the fact that HAM ∼= Dialg(ℒΛ,Ax, j) that IPCM
is sound and complete with respect to Heyting algebras with monotone
operators.
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9.59. Example. Next we take a dialgebraic perspective of the extension of
intuitionistic logic with two modalities that do not satisfy any axioms, from
Subsection 9.3.4. Thus, we take Λ = { , } where ar( ) = ar( ) = 1 and
Ax = ∅. Then clearly IPC(Λ) = IPC . The resulting logic IPC(Λ,Ax)
(after identifying ♥ with and ♥ with ) coincides with the logic IPC .

Following Definition 9.54 we obtain a notion of algebraic semantics for
IPC as (ℒΛ,Ax, j)-dialgebras. Let us write ℒ instead of ℒΛ,Ax. Then
ℒ sends a Heyting algebra A to the free Heyting algebra generated by
{ a, a | a ∈ A} (and satisfying no additional axioms).

Distributive lattice homomorphisms from ℒ A to jA correspond bijec-
tively with pairs of functions on A. So the algebraic semantics of IPC
can (unsurprisingly) also be given by triples (A, , ) where A is a Heyting
algebra and , : A→ A are functions. It then follows from Theorem 9.69
that these provide a sound and complete semantics for IPC .

9.60. Example. Let Λ = {�} with ar(�) = 2. Then the language
IPC(Λ) corresponds bijectively to IPC� from Subsection 9.3.5. We let Ax
consist of the axiom pairs(

(p� q) ∧ (p� r), p� (q ∧ r)
)
, (p� >,>).

We note that these are Σ-axiom pairs, where Σ = {>,⊥,∧,∨}. Viewed as
axioms (rather than axiom pairs, cf. Remark 9.51) they read

((p� q) ∧ (p� r))↔ (p� (q ∧ r)), (p� >)↔ >, (9.4)

and the resulting logic IPC(Λ,Ax) is the same as IPC� from Subsec-
tion 9.3.5.

The algebraic semantics is given by (ℒΛ,Ax, j)-dialgebras. Let us write
ℒ� instead of ℒΛ,Ax. Following Definition 9.54 we see that ℒ� is defined
by sending a Heyting algebra A to the free distributive lattice generated by
{a� b | a, b ∈ A} modulo relations obtained from (9.4) by replacing p, q
and r with elements of A, replacing � with �, and ↔ with =.

Alternatively, we can view these as pairs (A,�) consisting of a Heyt-
ing algebra A and a function � : A × A → A that satisfies the axioms
from (9.4). It follows from Theorem 9.69 that (ℒ�, j)-dialgebras (or equiv-
alently: Heyting algebras with conditional operators) provide a sound and
complete semantics for IPC�.

In the remainder of this section, we prove that the algebraic semantics
given by (ℒΛ,Ax, j)-dialgebras is a sound and complete semantics for L(Λ,Ax).
While this is to be expected, it is still an important stepping stone in our
general theory of dialgebraic logics.

9.61. Definition. Let Λ be a modal similarity type and Ax a set of one step
Σ-axiom pairs. An dialgebraic logic!algebraic model for the logic L(Λ,Ax) is
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an (ℒΛ,Ax, j)-dialgebra (A,α) together with an assignment V : Prop→ A of
the proposition letters.

The interpretation LϕMA of an L(Λ)-formula ϕ in an algebraic model
A = (A,α, V ) is given by an element of A. It is defined recursively by

LpMA = V (p)

L♠σ(ϕ1, . . . , ϕar(σ))MA = σA(Lϕ1 MA, . . . , Lϕar(σ) MA)

L♥λ(ϕ1, . . . , ϕar(λ))MA = α(♥λ(Lϕ1 MA, . . . , Lϕar(λ) MA))

We write:

1. A (ϕ,ψ) if LϕMA = Lψ MA;

2. (A,α) (ϕ,ψ) if A (ϕ,ψ) for every algebraic model A based on
(A,α); and

3. Dialg(ℒΛ,Ax, j) (ϕ,ψ) if (A,α) (ϕ,ψ) for all (ℒΛ,Ax, j)-dialgebras
(A,α).

9.62. Definition. An algebraic model morphism between (A1, α1, V1) and
(A2, α2, V2) is an (ℒΛ,Ax, j)-dialgebra morphism h : (A1, α1)→ (A2, α2) such
that for all p ∈ Prop, V2(p) = h(V1(p)). The resulting category of algebraic
models and their morphisms is denoted by AlgMod(ℒΛ,Ax, j).

9.63. Proposition. Let A1 = (A1, α1, V1) and A2 = (A2, α2, V2) be two
algebraic models based on (ℒΛ,Ax, j)-dialgebras, and h : A1 →A2 an algebraic
model morphism. Then for all ϕ ∈ L(Λ) we have

LϕMA2 = h(LϕMA1).

Proof. The proof proceeds by induction on the structure of ϕ. The proposi-
tional case holds by definition. If ϕ = ♠σ(ϕ1, . . . , ϕn) then

L♠σ(ϕ1, . . . , ϕar(σ))MA2 = σA2(Lϕ1 MA2 , . . . , Lϕar(σ) MA2)

= σA2(h(Lϕ1 MA1), . . . , h(Lϕar(σ) MA1))

= h(σA1(Lϕ1 MA1 , . . . , Lϕar(σ) MA1))

= h(L♠σ(ϕ1, . . . , ϕar(σ))MA1)

Here we make use of the fact that h is an A′-morphism.
If ϕ = ♥λ(ϕ1, . . . , ϕn) then we have

L♥λ(ϕ1, . . . , ϕn)MA2 = α2

(
♥λ(Lϕ1 MA2 , . . . , Lϕar(λ) MA2)

)
= α2

(
♥λ(h(Lϕ1 MA1), . . . , h(Lϕar(λ) MA1))

)
= α2

(
(ℒh)(♥λ(Lϕ1 MA1 , . . . , Lϕar(λ) MA1))

)
= (jh)

(
α1(♥λ(Lϕ1 MA1 , . . . , Lϕar(λ) MA1))

)
= (jh)

(
L♥λ(ϕ1, . . . , ϕar(λ))MA1

)
= h(L♥λ(ϕ1, . . . , ϕar(λ))MA1)
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This proves the proposition.

9.64. Corollary. Let (A1, α1) and (A2, α2) be two (ℒΛ,Ax, j)-dialgebras and
ϕ,ψ ∈ L(Λ).

1. If h : (A1, α1)→ (A2, α2) is an injective (ℒΛ,Ax, j)-dialgebra morphism
then (A2, α2) (ϕ,ψ) implies (A1, α1) (ϕ,ψ).

2. If h : (A1, α1)→ (A2, α2) is a surjective (ℒΛ,Ax, j)-dialgebra morphism
then (A1, α1) (ϕ,ψ) implies (A2, α2) (ϕ,ψ).

Proof. For the first item, suppose (A2, α2) (ϕ,ψ) and let V1 : Prop→ A1

be any assignment of the proposition letters for (A1, α1). If we define
V2 : Prop→ A2 by V2 = h◦V1 then h becomes an algebraic model morphism
from (A1, α1, V1) to (A2, α2, V2), so by Proposition 9.63 (A1, α1, V1) (ϕ,ψ).
Since V1 is arbitrary, this implies (A1, α1) (ϕ,ψ).

The second item can be proven similarly.

Nest, we make precise the connection between the logic L(Λ,Ax) and its
algebraic semantics given by Dialg(ℒΛ,Ax, j). We construct a Lindenbaum-
Tarski algebra and show how this gives rise to soundness and completeness
of L(Λ,Ax) with respect to its algebraic semantics.

9.65. Lemma. The logic L(Λ,Ax) defines an equivalence relation on L(Λ).

Proof. This follows immediately from the axioms and rules from Defini-
tion 9.50.

9.66. Definition. Denote the equivalence class of a formula ϕ ∈ L(Λ) under
L(Λ,Ax) by [ϕ]. Let Z = {[ϕ] | ϕ ∈ L(Λ)} be the set of equivalence classes.
We can turn this into an object in A′ by defining σZ : Lar(σ) → L by

σZ([ϕ1], . . . , [ϕar(σ)]) = [♠σ(ϕ1, . . . , ϕn)]

This is well defined because of the congruence rule for ♠σ from Definition 9.50.
It satisfies the equations in ΣA′ because these are stipulated to be axiom
pairs in L(Λ,Ax), so with this definition for σZ , Z is an algebra in A′

Next we define a map ζ : ℒΛ,AxZ → jZ. Since ℒΛ,AxZ is given by
generators and relations, it suffices to define the action of ζ on generators
and verify that their images under ζ still satisfy the relations. So define

ζ(♥λ([ϕ1], . . . , [ϕar(λ)])) = [♥λ(ϕ1, . . . , ϕn)].

This is well defined because of the congruence rules for♥λ from Definition 9.50.
Furthermore, the images of the generators satisfy the relations used to define
ℒΛ,Ax because these equations correspond precisely to the relations Ax which
are in L(Λ,Ax) by definition.

So we have now found a (ℒΛ,Ax, j)-dialgebra (Z, ζ). Finally, we turn
this into an algebraic model by setting VZ : Prop → Z : p 7→ [p]. Then
Z = (Z, ζ, VZ) is an algebraic model in AlgMod(ℒΛ,Ax, j).
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The algebraic model Z = (Z, ζ, VZ) plays the rôle of the Lindenbaum-
Tarski algebra for the logic L(Λ,Ax).

9.67. Lemma. For all ϕ ∈ L(Λ), we have LϕMZ = [ϕ].

Proof. Routine induction on the structure of ϕ.

9.68. Lemma. (Z, ζ, VZ) is initial in AlgMod(ℒΛ,Ax, j).

Proof. Let A = (A,α, VA) be any algebraic model. Then the assignment
h : Z→ A : [ϕ] 7→ LϕMA is an algebraic model morphism, which is unique
because it is the only one satisfying h(VZ(p)) = VA(p) for all p ∈ Prop.

Finally, we prove that L(Λ, j) is sound and complete with respect to its
algebraic semantics. This is an analogue of Theorems 7.8 and 8.13.

9.69. Theorem. We have

L(Λ,Ax) ` (ϕ,ψ) if and only if Dialg(ℒΛ,Ax, j) (ϕ,ψ).

Proof. If L(Λ,Ax) ` (ϕ,ψ) then (ϕ,ψ) ∈ L(Λ,Ax), so [ϕ] = [ψ] in Z and
hence LϕMZ = Lψ MZ. Since Z is initial in AlgMod(ℒΛ,Ax, j) (by Lemma 9.68)
and algebraic model morphisms preserve the interpretation of a formula
(Lemma 9.63) it follows that every model based on every (ℒΛ,Ax, j)-dialgebra
satisfies (ϕ,ψ), so that Dialg(ℒΛ,Ax, j) (ϕ,ψ).

Conversely, if Dialg(ℒΛ,Ax, j) (ϕ,ψ) then in particular Z (ϕ,ψ).
By Lemma 9.67 we find [ϕ] = LϕMZ = Lψ MZ = [ψ], so (ϕ,ψ) ∈ L(Λ,Ax),
i.e. L(Λ,Ax) ` (ϕ,ψ).

9.5 Frame Semantics

Now that we have the algebraic semantics set up, our next goal is to define
an interpretation of a logic in frame semantics, such as -frames. Suppose
given a dialgebraic logic (with its algebraic semantics), and let (X, γ) be
a dialgebra which acts as a frame. A priori we do not require that (X, γ)
has an underlying set, so we cannot define truth of a formula in a state of
(X, γ). Instead, we assume given a functor that sends X to its “algebra of
predicates,” and the interpretation of a formula will be viewed as an object in
this algebra of predicates. This is similar to abstract accounts of coalgebraic
logic [251, 279].

Thus, we wish to turn (X, γ) into a dialgebra from the algebraic semantics
of our logic, which plays the rôle of complex algebra of (X, γ). This requires
a natural transformation called the interpretation or semantics, which can
either be given directly or by means of predicate liftings. We define these,
and show how the modal intuitionistic logics from Subsection 9.3 can all be
recast in this dialgebraic light.

Throughout this subsection we work with the following basic setup.
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9.70. Setup. In this subsection, we assume given:

• An inclusion of varieties of algebras j : A′ → A;

• An inclusion of categories i : C′ → C (on which the frame semantics
will be based);

• A contravariant functor p : C→ A that restricts to p′ : C′ → A′, such
that j · p′ = p · i.

We write U : A→ Set for the forgetful functor. In a diagram, this looks as
follows:

C A

Set

C′ A′

p
U

p′
i j

Furthermore, we assume given a dialgebraic logic L(Λ,Ax) with algebraic
semantics given by Dialg(ℒ, j), where ℒ : A′ → A is obtained via the
procedure from Definition 9.54.

We think of p as taking an object X in C or C′ to its algebra of predicates.
In all examples p is part of a dual adjunction. However, we do not yet make
this assumption in general, because in this section we do not need it. It
will play a rôle in Section 10, where it helps us prove a Jónsson-Tarski
representation theorem and completeness.

9.71. Example. In most of our examples we let j be the inclusion HA→ DL
of Heyting algebras into distributive lattices, and i the inclusion of iKrip
or PreKrip into Pos or PreOrd. The functor p is given by up, which takes
an ordered set to its algebra of upsets. Its restriction to PreKrip or iKrip is
denoted by up′.

In Example 9.89 we let i = ℐ be the inclusion of the category of Esakia
spaces into the category of Priestley spaces, and p the functor that takes a
Priestley space to its distributive lattice of clopen upsets. In diagrams:

PreOrd DL Pos DL Pries DL

PreKrip HA iKrip HA ES HA

up up Clpup

up′
i j

up′
i j

Clp′up
ℐ j

9.72. Example. Setup 9.70 can also be used for coalgebraic logic. In case
of Set-coalgebras [341, 383, 419, 268, 279], this looks like:

Set BA

Set

Set BA

Q U

Q



246 Dualities with arms

Here Q denotes the contravariant functor that takes a set to its Boolean
algebra of subsets. Similar figures arise for e.g. coalgebraic positive logic,
with coalgebras for endofunctors on Pos and predicates given by upsets [279,
247, 23], and coalgebraic geometric logic, where formulae are interpreted in
coalgebras for endofunctors on Top and the predicates are open subsets [58,
61].

We work within the setting described in Setup 9.70. We often use a
functor T : C′ → C, and we think of (i,T )-dialgebras as frames for the logic
L(Λ,Ax).

9.73. Definition. Let T : C′ → C be a functor. An interpretation of
L(Λ,Ax) in Dialg(i,T ) is given by a natural transformation

ρ : ℒ · p′ → p · T .

We develop the dialgebraic perspective of -frames and the logic IPC
as a running example in this subsection. At the end of the subsection we
demonstrate the dialgebraic treatment of the other logics and semantics from
Subsection 9.3.

9.74. Example. Consider the logic IPC , i.e. the extension of intuitionistic
logic with a normal box. The algebraic semantics of IPC is given by
Dialg(K, j), where K is as in Definition 9.9 and j : HA→ DL is the inclusion
functor. We know that -frames correspond to (i,Pup)-dialgebras, where
Pup takes an intuitionistic Kripke frame to its collection of upsets ordered
by reverse inclusion, and i : iKrip→ Pos is the inclusion functor.

Let us define an interpretation

ρ : K ·up′ → up ·Pup.

If (X,≤) is an intuitionistic Kripke frame, then in order to define ρ(X,≤) :
K(up′(X,≤))→ up(Pup(X,≤)) it suffices to give its action on the genera-
tors of K(up′X). These are elements of the form a, where a is an upset
of (X,≤). Let ρ(X,≤)( a) = {b ∈ Pup(X,≤) | b ⊆ a}. This is an upset in
Pup(X,≤) because it is ordered by reverse inclusion. To prove that it is well
defined, it suffices to show that the images of a under ρ(X,≤) satisfy the
relations defining K. That is, we need to show that

ρ(X,≤)( a) ∩ ρ(X,≤)( b) = ρ(X,≤)( (a ∩ b)) and ρ(X,≤)( X) = X

(because X is the top element of up′(X,≤)). These equalities follow imme-
diately from the definition of ρ.

Finally, we should prove that ρ is natural. That is, for a bounded
morphism f : (X1,≤1)→ (X2,≤2) we need to show that

K(up′(X1,≤1)) up(Pup(X1,≤1))

K(up′(X2,≤2)) up(Pup(X2,≤2))

ρ(X1,≤1)

ρ(X2,≤2)

K(f−1) (Pupf)−1



Dialgebraic logic 247

commutes. To see this, let a2 be a generator of K(up′(X2,≤2)) and
b1 ∈ Pup(X1,≤1). Then we have

b1 ∈ ρ(X1,≤1)(K(f−1)( a2)) iff b1 ∈ ρ(X1,≤1)( f−1(a2))

iff b1 ⊆ f−1(a2)

iff f [b1] ⊆ a2

iff Pupf(b1) ∈ ρ(X2,≤2)( a2)

iff b1 ∈ (Pupf)−1(ρ(X2,≤2)( a2))

So ρ is an interpretation.

An interpretation gives rise to a contravariant functor (·)+ : Dialg(i,T )→
Dialg(ℒ, j), which sends a (i,T )-dialgebra (X, γ) to the (ℒ, j)-dialgebra
(p′X, γ+), where γ+ is given by the concatenation

γ+ : ℒ(p′X) p(TX) p(iX) j(p′X)
ρX pγ

The action of (·)+ on a morphisms f : (X1, γ1) → (X2, γ2) is given by
f+ = p′f . It follows from naturality of ρ that p′f is an (ℒ, j)-dialgebra
morphism from (X2, γ2)+ to (X1, γ1)+.

9.75. Definition. Let (X, γ) ∈ Dialg(i,T ). Then (X, γ)+ ∈ Dialg(ℒ, j) is
called the complex algebra of (X, γ).

9.76. Example. We carry on with Example 9.74. Let (X,≤, R) be a -
frame, and (X,≤, γ) its rendering as a (i,Pup)-dialgebra. That is, γ : i(X,≤
)→ Pup(X,≤) is given by γ(x) = {y ∈ X | xRy}. Then the complex algebra
of (X,≤, γ) is

K(up′(X,≤)) up(Pup(X,≤)) up(i(X,≤)) j(up′(X,≤)).
ρ(X,≤) γ−1

This map sends a ∈ K(up′(X,≤)) to γ−1(ρ(X,≤)( a)) = {x ∈ X |
γ(x) ⊆ a}. So the (K, j)-dialgebra (up′(X,≤), γ+) corresponds to the
HAO (up′(X,≤), ), where is given by a = {x ∈ X | R[x] ⊆ a}. This is
the usual definition of complex algebra of (X,≤, R) [446, Section 2].

In order to interpret L(Λ)-formulae in an (i,T )-dialgebra, we need a
valuation of the proposition letters. This is simply a map that assigns a
predicate to each proposition letter.

9.77. Definition. Let (X, γ) be a (i,T )-dialgebra. A valuation for (X, γ) is
an assignment V : Prop→ p′X of the proposition letters to predicates of X.
An (i,T )-model is a (i,T )-dialgebra together with a valuation. We say that
the (i,T )-model (X, γ, V ) is based on the (i,T )-dialgebra (X, γ).
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We can turn the collection of (i,T )-models into a category Mod(i,T ) by
using the following notion of morphisms. A (i,T )-model morphism from
(X1, γ1, V1) to (X2, γ2, V2) is a (i,T )-dialgebra morphism f : (X1, γ1) →
(X2, γ2) such that

Prop

up′X1 up′X2

V1 V2

up′f

commutes.

9.78. Example. A -model is a -frame (X,≤, R) together with a valuation
V that assigns to each proposition letter an upset of (X,≤). Let (X,≤, γ)
be the (i,Pup)-dialgebra that corresponds to (X,≤, R). Since up′ takes an
intuitionistic Kripke frame to its Heyting algebra of upsets, such a valuation
also defines a valuation for (X,≤, γ) in the sense of Definition 9.77. So

-models correspond bijectively to (i,T )-models.
Let (X1,≤1, R1, V1) and (X2,≤2, R2, V2) be two -models and (X1,≤1

, γ1, V1) and (X2,≤2, γ2, V2) their corresponding (i,Pup)-models. Then it
follows immediately from the definitions that a bounded morphism f : (X1,≤1

) → (X2,≤2) is a -model morphism if and only if it is a (i,Pup)-model
morphism. Therefore we have an isomorphism of categories

Mod ∼= Mod(i,Pup).

9.79. Definition. Let M = (X, γ, V ) be a model based on the (i,T )-
dialgebra (X, γ). Then V is an assignment for the complex algebra (X, γ)+ =
(p′X, γ+), so we can view (p′X, γ+, V ) as an algebraic model (see Defini-
tion 9.61). We denote it by M+. The interpretation of a L(Λ)-formula ϕ in
a (i,T )-model M is defined to be the predicate LϕMM+ in p′X.

As announced, the interpretation of a formula in a model is given as an
object of its complex algebra. However, in some cases we can define truth of
formulae at a state. Whether or not this is possible depends on the category
C and the functor p.

9.80. Definition. We call the setup from Setup 9.70 concrete if:

• The category C (and hence also the category C′) is concrete, i.e. there
exists a faithful functor UC : C→ Set;

• The functor p takes an element X ∈ C to a collection of subsets of X,
that is, U(pX) is a subset of P(UCX). Moreover, the functor p sends
a morphism f : X → X ′ in C to its inverse.

If this case, we say that a state x in a model M = (X, γ, V ) satisfies ϕ if
x ∈ LϕMM+ , notation: M, x  ϕ. We write JϕKM = {x ∈ X | M, x  ϕ}.
(This is of course the same as LϕM, but we denote it by JϕKM when we think
of it as a subset of X rather than an element of p′X.)
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9.81. Example. Let M = (X,≤, R, V ) be a -model, and Md = (X,≤, γ, V )
the corresponding (i,Pup)-model. Furthermore, identify IPC(Λ), where Λ
contains a single operator of arity 1, with IPC . Then we claim that for all
ϕ ∈ IPC we have

M, x  ϕ iff M′, x  ϕ.

This can be seen by induction on the structure of ϕ. The base case is obvious:
suppose ϕ = p, then we have

M, x  p iff x ∈ V (p) iff x ∈ LpMM+
d

iff Md, x  p.

The inductive cases for propositional connectives are routine. Suppose
ϕ = ψ, then we have

M, x  ψ iff ∀y ∈ X,xRy implies M, y  ψ

iff ∀y ∈ X,xRy implies Md, y  ψ (By induction)

iff ∀y ∈ X,xRy implies y ∈ Lψ MM+
d

(By Definition 9.80)

iff γ(x) ⊆ Lψ MM+
d

(Because γ(x) = R[x])

iff γ(x) ∈ ρ(X,≤)( Lψ MM+
d

) (Definition of ρ)

iff x ∈ γ+( Lψ MM+
d

) (Definition of γ+)

iff x ∈ L ψ MM+
d

(Definition 9.61)

iff Md, x  ψ (Definition 9.80)

So the dialgebraic interpretation of IPC -formulae in (dialgebraic renderings
of) -models coincides with the usual one from [445, 446].

An alternative and possibly more familiar way to define an interpretation
is by using predicate liftings. These were originally introduced for Set-
coalgebras to define modal extensions of classical propositional logic [341,
Definition 3.1], [270, Definition 3.1], [383, Definition 7]. They have since been
adapted for coalgebraic extensions of classical logic interpreted in coalgebras
over Stone spaces [146, Definition 2.5], for coalgebraic positive logic [279,
Theorems 4.7 and 8.8] and for coalgebraic geometric logic [58, Definition 8]
[61, Definition 3.1].

9.82. Definition. Let T : C′ → C be a functor. An n-ary predicate lifting
for T is a natural transformation

λ : (U · p · i)n → U · p · T .

Let T : C′ → C be a functor and recall that we view (i,T )-dialgebras as
frames for our logic. Suppose given for each λ ∈ Λ a predicate lifting λpl of
arity ar(λ). Then we can define an interpretation ρ : ℒ ·p′ → p ·T by letting

ρX(♥λ(a1, . . . , aar(λ))) = λplX(a1, . . . , an).
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We say that the collection Λpl = {λpl | λ ∈ Λ} is sound if the induced natural
transformation ρ is well defined. (That is, if the images of the generators of
ℒ(p′X) under ρX satisfy the relations from the definition of ℒ.)

9.83. Remark. If C = Pos or PreOrd, C′ = iKrip or PreKrip and p = up
we can abbreviate Up = U · up : Pos → Set. Therefore, in these cases a
predicate lifting is a natural transformation

λ : (Up · i)n → Up · T .

This clearly shows the analogy with predicate liftings for Set-coalgebras,
where Up plays the rôle of the contravariant powerset functor and i is simply
the identity. It also makes the notation slightly less cluttered.

9.84. Example. We show how the interpretation ρ from Example 9.74 can
be given by a predicate lifting. Define the predicate lifting λ for Pup on
components by

λ(X,≤) : Up(i(X,≤))→ Up(Pup(X,≤)) : a 7→ {b ∈ Pup(X,≤) | b ⊆ a}.

Then the induced natural transformation ρ is given by

ρ(X,≤)( a) = λ(X,≤)(a) = {b ∈ Pup(X,≤) | b ⊆ a}

which does indeed correspond to the interpretation given in Example 9.74.

In the next examples we will describe the dialgebraic perspective of the
logics discussed in Subsection 9.3. All of these use one of the setups described
in Example 9.71 (and it is clear from context which one). We will skip over
details that are similar to those in the previous examples in this subsection,
or that are routine.

9.85. Example. We know that n-frames can be viewed as (i,Pn)-dialgebras,
where Pn is the functor that sends an intuitionistic Kripke frame (X,≤)
to the collection of downsets of (X,≤)n, ordered by inclusion (see Defini-
tion 9.23 and Theorem 9.24). Since valuations for n-frames assign to each
proposition letter an upset of the underlying poset, n-models correspond
precisely to (i,Pn)-models.

Define the n-ary predicate lifting λ n : (Up · i)n → Up ·Pn by

λ n

(X,≤)(a1, . . . , an)

= {b ∈ Pn(X,≤) | ∃x1 ∈ a1, . . . ,∃xn ∈ an s.t. (x1, . . . , xn) ∈ b}.

It can be shown that this predicate lifting gives rise to the desired interpre-
tation of n in n-models.
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9.86. Example. Intuitionistic monotone frames can be modelled dialge-
braically as (i,ℋ)-dialgebras, where i is the inclusion of iKrip into Pos and
ℋ : iKrip → Pos is an adaptation of the monotone neighbourhood func-
tor given in Definition 9.29. Since valuations for intuitionistic monotone
frames assign to each proposition letter an upset of the underlying poset,
intuitionistic monotone models correspond precisely to (i,ℋ)-models.

Define the predicate lifting λM : Up · i→ Up ·ℋ by

λM(X,≤)(a) = {W ∈ ℋ(X,≤) | a ∈W}.

This gives rise to an interpretation ρM : ℒM · up′ → up · ℋ that sends
ρM(X,≤)( a) to λM(X,≤)(a), and it is easy to verify that this is well defined.

It can be shown in a similar way as in Example 9.81 that this gives rise
to the modality M. We sketch the proof:

Let M = (X,≤, N, V ) be an intuitionistic monotone frame and write
Md = (X,≤, N, V ) for its dialgebraic manifestation. Since the function N
from M acts precisely the same as the dialgebra structure map in Md, we
do not distinguish them and denote both by N . Identify the languages
IPC({M}) and IPCM in the obvious way. We claim that for all ϕ ∈ IPCM,
we have M, x  ϕ iff Md, x  ϕ. This can be shown by induction on the
structure of ϕ, and the only non-trivial case is for ϕ = Mψ. So compute:

M, x  Mψ iff JψKM ∈ N(x)

iff Lψ MM+
d
∈ N(x)

iff N(x) ∈ λM(X,≤)(Lψ MM+
d

)

iff N(x) ∈ ρM(X,≤)( Lψ MM+
d

)

iff x ∈ N+( Lψ MM+
d

)

iff x ∈ LMψ MM+
d

iff Md, x  Mψ

So the predicate lifting λM gives rise to a dialgebraic rendering of monotone
modal intuitionistic logic.

9.87. Example. Recall that the extension of intuitionistic logic with two
free modalities can be interpreted in coupled intuitionistic neighbourhood
models, see Subsection 9.3.4. Dialgebraically, such models correspond to
(i,N)-models, where i : PreKrip → PreOrd is the inclusion functor and
N : PreKrip→ PreOrd is as in Definition 9.34.

Define two predicate liftings λ , λ : Up · i→ Up · N for the functor N
on components by

λ(X,≤)(a) = {(W1,W2) ∈ NX | a ∈W1}

λ(X,≤)(a) = {(W1,W2) ∈ NX | X \ a /∈W2}
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Then a verification similar to that in Examples 9.81 and 9.86 shows that this
yields modalities with the same interpretation as and .

9.88. Example. Conditional intuitionistic logic can be interpreted in intu-
itionistic selection function frames (see Subsection 9.3.5). We have already
seen that these can be represented dialgebraically as (i,C)-dialgebras. Analo-
gous to Example 9.78 it follows that ISF-models correspond to (i,C)-models.

We give the binary predicate lifting for the functor C that yields the
correct interpretation of the modal operator �. Define λ� on components
by

λ�(X,≤) : Up(i(X,≤))×Up(i(X,≤))→ Up(C(X,≤))

: (a, b) 7→ {h ∈ CX | h(a) ⊆ b}

We leave further details to the reader.

9.89. Example. Lastly, we have a look at the interpretation of IPC -
formulae in models based on descriptive -frames (Definition 9.17). Such
frames can be viewed as (ℐ,Vup)-dialgebras, where ℐ is the inclusion of the
category of Esakia spaces into the category of Priestley spaces. In this case,
the predicates are given by clopen upsets, rather than all upsets, so we are
working with the following setup:

Pries DL

ES HA

Clpup

Clp′up
ℐVup j K

Since valuations for descriptive -frames assign to each proposition letter
a clopen upset, descriptive -models correspond to (ℐ,Vup)-models. The
interpretation of IPC is induced by the predicate lifting λ : U·Clpup ·i→
U ·Clpup ·Vup given by

λX(a) = {c ∈ VupX | c ⊆ a}.

Similarly to the examples above, one can prove that this yields the desired
interpretation of the modality (or ♥ ) in descriptive -models.

We complete this section with our our first dialgebraic result for frame
semantics of dialgebraic logics. We prove that morphisms between models
preserve the interpretation of formulae. As a corollary, we obtain that in
concrete settings morphisms preserve truth.

9.90. Proposition. Let M1 and M2 be two (i,T )-models and f : M1 →M2

an (i,T )-model morphism. Then

LϕMM+
1

= (p′f)(LϕMM+
2

)

for all ϕ ∈ L(Λ).
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Proof. If f is a (i,T )-model morphism then p′f : M+
2 →M+

1 is an algebraic
model morphism. The result now follows the definition of interpretation in a
(i,T )-model and Proposition 9.63.

9.91. Corollary. Suppose we work in a concrete setup. Let M1 and M2 be
two (i,T )-models, f : M1 →M2 an (i,T )-model morphism, and x a state in
M1. Then

M1, x  ϕ iff M2, f(x)  ϕ (9.5)

for all ϕ ∈ L(Λ).

Proof. Using Proposition 9.90 and the definition of a concrete setup (Defini-
tion 9.80) we find

M, x  ϕ iff x ∈ LϕMM+
1

iff x ∈ f−1(LϕMM+
2

)

iff f(x) ∈ LϕMM+
2

iff M2, f(x)  ϕ

as desired.

This corollary entails that the morphisms from all examples in Subsec-
tion 9.3 preserve truth in the sense of (9.5).

10 Duality and completeness

Just like algebras and coalgebras are dual constructions, dialgebras are dual
to themselves. Using opposite functors one can always describe the dual of a
category of dialgebras as a category of dialgebras. But we can often give a
more intuitive description of these dual categories. (Think for example of the
classical case, where the dual of the category of normal modal algebras can
be described using descriptive Kripke frames.) Rather than proving dualities
between categories of dialgebras explicitly, we observe that it suffices to prove
dualities of functors (with respect to some base duality). This resembles
the approach taken in Chapters III and IV. The generalisation to dialgebras
requires slight modifications, which are explained in Subsection 10.1. The
natural isomorphism witnessing the duality of functors automatically gives
rise to an interpretation of the logic, and we think of the dialgebras dual to
the algebraic semantics of the logic as the descriptive frames.

In Subsections 10.2, 10.3 and 10.4, we use duality to prove three types of
results. First, we prove a generic Hennessy-Milner theorem in for classes of
descriptive frames, taking behavioural equivalence as notion of bisimulation.
This provides a dialgebraic counterpart of the Hennessy-Milner theorem for
normal modal logic over a classical base [213]



254 Dualities with arms

A second result closely related to duality (and historically preceding
it) is the Jónsson-Tarski representation theorem. It was originally proven
by Jónsson and Tarski in the context of normal modal classical logic, and
it states that every Boolean algebra with operators can be embedded in
the complex algebra of a Kripke frame [240, Theorem 3.10], see also [70,
Theorem 5.43]. A coalgebraic perspective is taken in [277, Theorem 5.3]
and [279, Theorem 6.4]. We give a dialgebraic account of such theorems.
It may seem odd to prove a representation theorem while we already have
a duality. Recall however that a duality always exists, at least formally,
but there is no guarantee that it resembles our intended semantics. We
introduce the notion of a translation to translate descriptive semantics (that
arise from the duality) to other “underlying” semantics. If the interpretation
for the underlying semantics and the translation satisfy a certain coherence
condition then we call the logic canonical, and we obtain a representation
theorem.

Lastly, we show how duality gives rise to completeness with respect to
the (descriptive) semantics arising from a duality, and how the Jónsson-
Tarski representation theorem allows us to transfer this to “non-descriptive”
semantics. This yields general completeness results for canonical dialgebraic
logics.

Throughout the section, we instantiate the theory to the logic IPC ,
interpreted in (descriptive) -frames. Other applications are postponed to
Section 12, where they are grouped by logic.

Origin of the material. This section is based on joint work with Dirk
Pattinson, published as a conference paper [200]. While the technical insights
are largely the same, the presentation and formulation of the results in this
section differs from [200].

10.1 Duality via functors

Let G1,G2 : A → B be a parallel pair of functors, and write Gop
2 ,G

op
1 :

Aop → Bop for the corresponding opposite functors. Then it follows from the
definition of dialgebras that

(Dialg(G2,G2))op ≡ Dialg(Gop
2 ,G

op
1 )

and hence there is a dual equivalence Dialg(G1,G2) ≡op Dialg(Gop
2 ,G

op
1 ).

For many categories of algebras, we have a more concrete (often topologi-
cal) description of a dual category. For example, the opposite category BAop

of BA is equivalent to Stone, and Pries is equivalent to the opposite category
of DL. This leads to the following notion of dual functor.
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10.1. Definition. Consider the following situation, where P and S constitute
a dual equivalence between A and D, and P′ and S′ give a dual equivalence
between A′ and D′:

A D

A′ D′

S
≡op

P

S′

≡op

G

P′

ℱ

We say that the functor G is dual to ℱ (with respect to the given dualities)
if there exists a natural isomorphism ξ : ℱ · S′ → S ·G.

When we speak about dual functors, the duality between the domain
and codomain will always be clear from context. Therefore, we simply call to
functors “dual” instead of “dual with respect to a pair of dualities.” Observe
that, instead of a natural isomorphism ξ : ℱ · S′ → S ·G, we can also give a
natural isomorphism G ·P′ → P ·ℱ or ℱ→ S ·ℒ ·P′. In our examples we
will often give a natural isomorphism of the latter type.

10.2. Theorem. Suppose given two dual equivalences as in Definition 10.1.
If G1 : A′ → A is dual to ℱ1 : D′ → D and G2 : A′ → A is dual to ℱ2 : D′ → D
then we have a dual equivalence

Dialg(G1,G2) ≡op Dialg(ℱ2,ℱ1).

In this thesis we always assume that one of the functors defining a category
of dialgebras is an inclusion of categories. Moreover, we require the the S′

and P′ are restrictions of S and P. This immediately gives rise to a pair of
dual functors.

10.3. Example. Let ℐ : ES → Pries and j : HA → DL be the obvious
inclusion functors. Consider Priestley duality between DL and Pries, and its
restriction to Esakia duality:

DL Pries

HA ES

Pf

≡op

Clpup

Pf′

≡op

j

Clp′up

ℐ (10.1)

Then j and ℐ are dual functors.

We can formulate this example more abstractly.

10.4. Example. Suppose given functors as in the following diagram, where
ℐ and j are inclusion functors (so A′ is a subcategory of A, and D′ is a
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subcategory of D). Moreover assume that the lower dual equivalence is a
restriction of the upper one.

A D

A′ D′

S
≡op

P

S′

≡op

j

P′

ℐ

Then j is dual to ℐ.

To prevent overloading notation, we will usually leave the natural iso-
morphism connection two inclusion functors implicit. Taking into account
the fact that our setups always contain inclusion functors, we can simplify
Theorem 10.2 for our purpose as follows.

10.5. Theorem. Suppose given the following functors:

A D

A′ D′

S
≡op

P

S′

≡op

jℒ

P′

ℐ D

Let j, ℐ be inclusion functors and suppose that S′ and P′ are restrictions of
S, P, respectively. If ℒ is dual to D then

Dialg(ℒ, j) ≡op Dialg(ℐ,D).

Observe that the duality between ℒ and D gives rise to an interpretation.
Indeed, the duality implies the existence of a natural transformation

ℒ ·P′ → P ·D,

which is exactly of the type required in Definition 9.73.

The remainder of this section is devoted to proving a duality between
Heyting algebras with operators (Definition 9.8) and descriptive -frames
(Definition 9.17). The object-part of this duality originates from Wolter and
Zakharyaschev [446].

We have seen in Theorem 9.11 that the category HAO of Heyting algebras
with operators is isomorphic to Dialg(K, j). Also, we know from Theorem 9.21
that the category of descriptive -frames is isomorphic to Dialg(ℐ,Vup).
Therefore we can use Theorem 10.5, applied to the setting from Example 10.3
to derive a duality between Dialg(K, j) and Dialg(ℐ,Vup). This then yields
the duality between HAO and D- Frm.
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So it suffices to prove that Vup and K are dual. To this end, we give
a transformation Vup → Pf · K · Clp′up and prove that it is a natural
isomorphism.

Recall that prime filters of K(Clp′upX) correspond bijectively with dis-
tributive lattice homomorphisms K(Clp′upX)→ 2, where 2 is the two-element
distributive lattice. We use these two perspectives interchangeably. Since K
is defined using generators and relations, we can define such a prime filter
(viewed as a homomorphism) p : K(Clp′upX)→ 2 by specifying the action of
p on generators of K and verifying that the images of the generators under p
satisfy the relations defining K. In this case, the generators are of the form
a, where a ∈ Clp′upX.

10.6. Definition. Let X be an Esakia space. For each c ∈ VupX define a
prime filter ξX(c) : K(ClpupX)→ 2 on generators by

ξX(c)( a) =

{
> if c ⊆ a
⊥ otherwise

This gives rise to a map ξX : VupX → Pf(K(Clp′upX)). We write ξ =
(ξX)X∈ES : Vup → Pf ·K ·Clp′up for the induced transformation.

10.7. Lemma. The transformation ξ is well defined.

Proof. We need to verify that for every Esakia space X and every c ∈ VupX,
the assignment ξX(c) does indeed define a prime filter. When viewed as a map
into 2, the two-element distributive lattice, this comes down to proving that
it is a distributive lattice homomorphism. Since K is defined by generators
and relations, it suffices to show that the images of the generators under
ξX(c) still satisfy the equations from K.

So suppose c ∈ VupX. We need tho show that

1. ξX( a) ∧ ξX( b) = ξX( (a ∧ b)) for arbitrary a, b ∈ Clp′upX; and

2. ξX( X) = ξX(>K), where X is the top element of Clp′upX and >K
denotes the top element of K(Clp′upX).

The first item follows from the fact that [c ⊆ a and c ⊆ b] if and only if
c ⊆ a ∩ b. For the second, note that ξX( X) = > = ξX(>K).

Next, we show that the components of ξ are isomorphisms in the category
Pries.

10.8. Lemma. For each Esakia space X, the function ξX : VupX →
Pf(K(Clp′upX)) is a Priestley isomorphism.

Proof. We need to show that ξX is a homeomorphism and an order-isomorphism
(that is, it both preserves and reflects the order). We begin by showing that
it is an order-isomorphism.
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Recall that Vup is ordered by reverse inclusion. Suppose c, d ∈ VupX and
c ⊇ d. Then it follows immediately from the definition of ξ that ξX(c) ⊆ ξX(d).
So ξX preserves the order. To show that it also reflects the order, we prove
that c 6⊇ d implies ξX(c) 6⊆ ξX(d). If c 6⊇ d then there exists a point x ∈ d
such that x /∈ c. Since c is a closed upset we can find a clopen upset a
containing c and disjoint from x. But then a ∈ ξX(c) while a /∈ ξX(d), as
desired.

Next we prove that ξX is a homeomorphism. Since Priestley spaces are
Stone spaces, it suffices to show that ξX is bijective and continuous. The
topology on Pf(K(Clp′upX)) is generated by sets of the form â and their
complements, where a ∈ Clp′upX. We have

ξ−1
X ( â) = {c ∈ VupX | ξX(c) ∈ â}

= {c ∈ VupX | a ∈ ξX(c)}
= {c ∈ VupX | c ⊆ a}
= a

which is clopen in VupX, so ξX is continuous.

Injectivity follows from the fact that ξX reflects the order. For surjectivity,
suppose q ∈ Pf(K(Clp′upX)). Let cq =

⋂
{a ∈ Clp′upX | a ∈ q} ∈ VupX.

We claim that q = ξX(cq). By definition we have q ⊆ ξX(cq). Conversely,
if b ∈ ξX(cq) then

⋂
{a ∈ Clp′upX | a ∈ q} ⊆ b. Since b is clopen, it

follows from compactness that there exists a finite number a1, . . . , an ∈
Clp′upX such that ai ∈ q for each ai and a1 ∩ · · · ∩ an ⊆ b. Since
distributes over conjunctions (intersections in this case) and q is a filter we
have (a1 ∩ · · · ∩ an) = a1 ∧ · · · ∧ an ∈ q. Monotonicity of implies

(a1 ∩ · · · ∩ an) ≤ b, so the fact that q is a filter entails that b ∈ q. This
proves the other inclusion. We conclude that ξX is also a homeomorphism,
hence a Priestley isomorphism.

Finally, we prove naturality of ξ. Since we already know that its compo-
nents are isomorphisms, this proves that ξ is a natural isomorphism.

10.9. Lemma. The transformation ξ is a natural isomorphism.

Proof. Let f : X1 → X2 be a morphism in ES. We verify that the following
diagram commutes:

VupX1 Pf(K(Clp′upX1))

VupX2 Pf(K(Clp′upX2))

ξX1

Vupf (K(f−1))−1

ξX2
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Let c1 ∈ VupX1. To show that ξX2(Vupf(c1)) = (K(f−1))−1(ξX1(c1)) it
suffices to show that both prime filters agree on elements of the form a2,
where a2 ∈ Clp′upX2. So let a2 ∈ Clp′upX2. Then we have

a2 ∈ ξX2(Vupf(c)) iff f [c] ⊆ a2

iff c ⊆ f−1(a2)

iff f−1(a2) ∈ ξX1(c)

iff K(f−1)( a2) ∈ ξX1(c)

iff a2 ∈ (K(f−1))−1(ξX1(c))

This proves the lemma.

10.10. Theorem. We have a dual equivalence

HAO ≡op D-WZ .

Proof. It follows from Lemma 10.9 that Dialg(K, j) ≡op Dialg(ℐ,Vup). Com-
bining this with Theorems 9.11 and 9.21 yields

HAO ∼= Dialg(ℒ , j) ≡op Dialg(ℐ,Vup) ∼= D-WZ

which proves the dual equivalence.

The natural isomorphism ξ : Vup → Pf′ · K · Clp′up gives rise to an
interpretation of the logic IPC in (ℐ,Vup)-dialgebras. Indeed, we get
ρ : K ·Clp′up → Clpup ·Vup via

K ·Clp′up Clpup ·Pf′ ·K ·Clp′up Clpup ·Vup
∼= Clpup(ξ)

This sends an element a ∈ K(Clp′upX) to the set {c ∈ VupX | c ⊆ a}, so it
corresponds to the interpretation that arises from the predicate lifting given
in Example 9.89.

10.2 Hennessy-Milner theorem

Bisimulations play a crucial rôle in the model theory of modal logic as the
canonical notion of semantic equivalence: bisimilar worlds necessarily satisfy
precisely the same formulae. If the converse is also true, the (usually finitary)
logical language is powerful enough to describe the (typically infinitary)
semantics: this is the so-called Hennessy-Milner property [213].

Bisimulations were introduced in [33] to characterise normal modal logic
over a classical base as the bisimulation-invariant fragment of first-order logic.
Independently, they arose in the field of computer science as an equivalence
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relation between process graphs [310, 338], and as extensional equality in
non-wellfounded set theory [6].

Following Hennessy and Milner’s theorem for normal modal logic, similar
results have been derived for a wide variety of (modal and non-modal) logics,
each with its own appropriate notion of bisimulation. These include monotone
modal logic [209, 210], neighbourhood logic [211], instantial neighbourhood
logic [197] and (bi-)intuitionistic (modal) logics [340, 329, 19, 199, 201].

In this section we use duality to obtain a generic Hennessy-Milner theorem
for dialgebraic logics. We use behavioural equivalence as our notion of
bisimulation, and prove that the class of descriptive models dual to the
algebraic semantics form a Hennessy-Milner class. In specific instances this
often entails a Hennessy-Milner theorem for finite (non-descriptive) frames
in the same way Theorem 5.44 was derived in Subsection 5.4.2. We apply
the general theorem to the setting of normal modal intuitionistic logic. More
examples can be found in Section 12.

In this subsection we use a setup with the following functors and dualities:

A D

A′ D′

S
≡op

P

S′

≡op

jℒ

P′

ℐ D

We assume that the interpretation of L(Λ)-formulae in (ℐ,D)-dialgebras is
given by an interpretation ζ : ℒ ·P′ → P ·D which is also a natural isomor-
phism witnessing that ℒ and D are dual functors. Moreover, throughout
this subsection we assume that the setup is concrete (see Definition 9.80).
This allows us to talk about specific elements of a frame or model. Therefore
we can define the notions of logical equivalence and behavioural equivalence.

10.11. Definition. Let M1 = (X1, γ1, V1) and M2 = (X2, γ2, V2) be two
(ℐ,D)-models, and x1 ∈ X1 and x2 ∈ X2.

1. The states x1 and x2 are called logically equivalent if for all ϕ ∈ L(Λ)
we have

M1, x1  ϕ iff M2, x2  ϕ.

2. The states x1 and x2 are called behaviourally equivalent if there exist
(ℐ,D)-model morphisms f1 : X1 → Z and f2 : X2 → Z such that
f1(x1) = f2(x2).

Since (ℐ,D)-model morphisms preserve truth of formulae, behaviourally
equivalent states are always logically equivalent. Classes of models for which
the converse holds are called Hennessy-Milner classes. In order to obtain
such a class, we need the functor P : D→ A to be separating.
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10.12. Definition. Recall that we work in a concrete setup. The functor
P : D→ A is called separating if for all objects X in D, if x, y ∈ X and x 6= y
then there exists some a ∈ PX such that either x ∈ a and y /∈ a, or vice
versa.

We note that the functors ℘ : Set→ BA, Clp : Stone→ BA, up : Pos→
DL and Clpup : Pries→ DL are all separating. Next we prove that the class
of (ℐ,D)-models forms a Hennessy-Milner class.

10.13. Hennessy-Milner theorem. Suppose the logic L(Λ,Ax) can be
interpreted in (ℐ,D)-dialgebras via the natural isomorphism ζ : ℒ·P′ → P·D.
Moreover, assume that the setup is concrete and that P is separating. Then
the category of (ℐ,D)-models forms a Hennessy-Milner class.

Proof. Let M1 and M2 be two (ℐ,D)-models and x1, x2 two states in M1

and M2, respectively. We have to show that x1 and x2 are logically equivalent
if and only if they are behaviourally equivalent.

By assumption Dialg(ℐ,D) is dually equivalent to Dialg(ℒ, j). Since val-
uations for (ℐ,D)-dialgebras correspond precisely to assignments for (ℒ, j)-
dialgebras, and (ℐ,D)-model morphisms are exactly the morphisms whose
dual preserves valuations/assignments, we have Mod(ℐ,D) ≡op AlgMod(ℒ, j).

Let N = (XN , γN , VN ) be the (ℐ,D)-model whose dual N∗ is the initial
object in AlgMod(ℒ, j). Then by duality there exist unique morphisms
f1 : M1 → N and f2 : M2 → N. Suppose x1 and x2 are not behaviourally
equivalent. Then f1(x1) 6= f2(x2). By assumption this implies that there
exists some element a in N∗ such that f1(x1) ∈ a and f2(x2) /∈ a, or the
other way round. Since N∗ is the initial object in AlgMod(ℒ, j), we must
have a = LϕMN∗ for some ϕ ∈ L(Λ) (see Definition 9.66). This implies that
f1(x1) and f2(x2) are not logically equivalent, and since morphisms preserve
truth neither are x1 and x1.

The opposite implication, i.e. behavioural equivalence implies logical
equivalence, follows immediately from the fact that model morphisms preserve
truth.

We now apply Theorem 10.13 to the setting of normal modal intuitionistic
logic from Subsection 9.3, using the duality between K and V derived in
Subsection 10.1. Apart from logical equivalence and behavioural equivalence
we consider a third, more common, notion of equivalence: intuitionistic Kripke
bisimilarity. This is a straightforward combination of Kripke bisimulations
for normal modal logic over a classical base [70, Section 2.2] and bisimulations
for intuitionistic logic [340, 201].

10.14. Definition. Let M1 = (X1,≤1, R1, V1) and M2 = (X2,≤2, R2, V2)
be two -models. An intuitionistic Kripke bisimulation between M1 and
M2 is a relation B ⊆ X1 ×X2 such that for all (x1, x2) ∈ B:
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1. x1 ∈ V1(p) if and only if x2 ∈ V2(p), for all p ∈ Prop;

2. If x1 ≤1 y1 then ∃y2 ∈ X2 such that (y1, y2) ∈ B and x2 ≤2 y2;

3. If x2 ≤2 y2 then ∃y1 ∈ X1 such that (y1, y2) ∈ B and x1 ≤1 y1;

4. If x1R1y1 then ∃y2 ∈ X2 such that (y1, y2) ∈ B and x2R2y2;

5. If x2R2y2 then ∃y1 ∈ X1 such that (y1, y2) ∈ B and x1R1y1.

Two states x1 ∈ X1 and x2 ∈ X2 are called (intuitionistic Kripke) bisimilar
if there exists a Kripke bisimulation linking them.

An intuitionistic Kripke bisimulation between two descriptive -models
is defined as an intuitionistic Kripke bisimulation between the underlying
(non-descriptive) -models.

10.15. Theorem. Let x1 and x2 be two states in two descriptive -models
M1 and M2. Then the following are equivalent:

1. x1 and x2 are logically equivalent;

2. x1 and x2 are intuitionistic Kripke bisimilar;

3. x1 and x2 are behaviourally equivalent.

Proof. It follows from Theorem 10.13 that (1) and (3) are equivalent. It
follows from a routine argument that bisimilar states satisfy the same for-
mulae, i.e. (2) implies (1) (see for example [201, Proposition 5.5]). Finally,
suppose x1 and x2 are behaviourally equivalent and let f1, f2 be the descrip-
tive model morphisms witnessing this. Then an easy verification shows that
B = {(y1, y2) ∈ X1 × X2 | f1(y1) = f2(y2)} is a Kripke bisimulation, and
since clearly (x1, x2) ∈ B this implies that x1 and x2 are bisimilar. Therefore
(3) implies (2).

If M = (X,≤, R, V ) is a finite -model, then augmenting it with the
set of all upsets of (X,≤) turns it into a descriptive -model. Using this,
we obtain the following Hennessy-Milner theorem for finite -models from
Theorem 10.15. This result also follows from [201, Theorem 5.10].

10.16. Corollary. Let x1 and x2 be two states in two finite -models M1

and M2. Then x1 and x2 are logically equivalent if and only if they are
intuitionistic Kripke bisimilar.

10.3 Jónsson-Tarski representation theorem

We set off to prove an analogue of the Jónsson-Tarski representation theorem
for dialgebraic logics. This states that any (ℒ, j)-dialgebra is a subalgebra
of the complex algebra of some frame. Although we could do without, we
assume that we have a duality for Dialg(ℒ, j). The main reason for this is
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that, in concrete examples, starting with a duality turns out to provide a
more intuitive account of the representation. Note that, in absence of a
concrete description of such a duality, we can always use the formal dual
Dialg(jop,ℒop), with jop,ℒop : (A′)op → Aop.

If ℒ and D are dual, the procedure for obtaining the Jónsson-Tarski
theorem is as follows. Given a (ℒ, j)-dialgebra (A,α)::

(Step 1) Take the dual of (A,α);

(Step 2) Forget about its descriptive structure to get a frame;

(Step 3) Take the complex algebra.

Step 1 we can do by assumption. For Step 2, we need to be able to
translate from (ℐ,D)-dialgebras into (i,T )-dialgebras, where the former are
the duals of (ℒ, j)-algebras and the latter play the rôle of non-descriptive
semantics of the logic. We will do this using the notion of a translation given
in Definition 10.19 below. In Step 3, we need to prove that we actually have
an embedding. We will see two ways of doing so: first we assume the existence
of suitable morphisms satisfying sufficient conditions to prove that they are
injective (ℒ, j)-dialgebra morphisms from (A,α) into the complex algebra
of the dual of (A,α); second, we show that in a more restrictive setup (in
which all of our examples are situated) it suffices to prove a certain coherence
condition between the interpretation ρ and the translation from Step 2.

We begin this subsection with the following setup, which is the minimal
amount of information we need to define translations between semantics.
Once we get closer to the Jónsson-Tarski theorem, we make additional
assumptions, such as having a duality.

10.17. Setup. We assume given a logic L(Λ,Ax) with algebraic semantics
Dialg(ℒ, j) and two interpretations, depicted in the following diagram:

C A D

C′ A′ D′

p P

p′
iT j ℒ

P′
ℐ D

ρ : ℒ · p′ → p · T
ζ : ℒ ·P′ → P ·D

Recall that we assume natural isomorphisms p · i ∼= j · p′ and P · ℐ ∼= j ·P′,
that we usually leave implicit. We do not yet assume that ℒ is dual to D.

10.18. Example. As an example of Setup 10.17, consider two different se-
mantics for the normal modal intuitionistic logic IPC from Subsection 9.3.1.
Filling in the relevant categories and functors yields:

Pos DL Pries

iKrip HA ES

up Clpup

up′
iPup j K

Clp′up
ℐ Vup

ρ : K ·up′ → up ·Pup
ζ : K ·Clp′up → Clpup ·Vup
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Figure 10.1: A translation between dialgebras.

C D C D

C′ D′ C′ D′

u

∼=

u

τi

u′
ℐ T

u′
D

We now define translations from one semantics to another.

10.19. Definition. A translation from Dialg(ℐ,D) to Dialg(i,T ) is a pair
(u, t) such that

1. u : D → C is a functor which restricts to u′ : D′ → C′ and satisfies
i ·u′ ∼= u · ℐ;

2. τ : u ·D→ T ·u′ is a transformation.

See also Figure 10.1. If τ is natural then we call (u, t) a natural translation.

To avoid overloading notation, we will leave the natural isomorphism
between i ·u′ and u · ℐ implicit. If the functor u is clear from context we
sometimes refer to τ as a translation.

A translation gives rise to a map τ̄u that sends objects in Dialg(ℐ,D)
to objects in Dialg(i,T ). Given an (ℐ,D)-dialgebra δ : ℐX → DX, define
τ̄u(X, δ) as the composition

i(u′X) u(ℐX) u(DX) T (u′X)
∼= uδ τX

If moreover the translation is natural, then the assignment τ̄u extends to a
functor τ̄u : Dialg(ℐ,D)→ Dialg(i,T ) by defining its action on morphisms f
as τ̄uf := u′f . This map will play the rôle of sending an (ℐ,D)-dialgebra
to its “underlying” (i,T )-dialgebra in Step 2 of the strategy for obtaining a
Jónsson-Tarski theorem outlined above.

10.20. Remark. We could try to be more general and require only a natural
transformation i · u′ → u · ℐ instead of a natural isomorphism. However,
for our purposes this is not necessary.

Let us look at some examples of (natural) translations. First we consider
two examples of translations relating -frames and H -frames. Subsequently,
we give an example of a translation describing the move from descriptive

-frame to underlying (non-descriptive) -frame.

10.21. Example. Let i : iKrip→ Pos be the inclusion of intuitionistic Kripke
frames into posets, and let us temporarily denote by k : PreKrip→ PreOrd
the inclusion of preordered intuitionistic Kripke frames into the category
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of preordered sets. Further, let Pup : iKrip → Pos be the functor from
Subsection 9.1 whose dialgebras are -frames, and Pbd : PreKrip→ PreOrd
the functor from Definition 9.15 whose dialgebras are H -frames.

There is an obvious forgetful functor

u : Pos→ PreOrd

which takes objects and morphisms in Pos and views them as objects and
morphisms in PreOrd. This clearly restricts to u′ : iKrip→ PreKrip.

We can define a translation τ : u ·Pup → Pbd ·u′ via

τ(X,≤) : u(Pup(X,≤))→ Pbd(u′(X,≤)) : a 7→ a,

because every upset of a poset (X,≤) is in particular a subset of (X,≤) when
we view it as a preorder. It is easy to see that τ is order-preserving on compo-
nents (hence a morphism in PreOrd), and that it is a natural transformation.
So (u, τ) defines a natural translation and τ̄u : Dialg(i,Pup)→ Dialg(k,Pbd)
is a functor.

Interestingly, we can get another translation for the functors from Exam-
ple 10.21 which runs in the opposite direction. This is an example where the
functor u, that we usually think of as a forgetful functor, is not faithful.

10.22. Example. We use the same (inclusion) functors as in Example 10.21.
We construct a translation (q, σ) where q : PreOrd→ Pos and σ : q ·Pbd →
Pup · q′.

Let (X,≤) be a preorder and define an equivalence relation ∼ on X by

x ∼ y iff x ≤ y and y ≤ x (10.2)

Write bxc for the equivalence class of x under ∼ and let bXc = {bxc | x ∈ X}
be the set of equivalence classes. Define the relation . on bXc by bxc . byc
iff x ≤ y. It is easy to check that this is well defined, and that (bXc,.)
forms a poset. Define q : PreOrd→ Pos on objects by

q(X,≤) = (bXc,.).

For a morphism f : (X,≤)→ (X ′,≤′) in PreOrd we define

qf : (bXc,.)→ (bX ′c,.′) : bxc 7→ bf(x)c.

It is easy to see that this is well defined, and that q is indeed a functor.
Furthermore, it restricts to q′ : PreKrip→ iKrip.

Let (X,≤) be a preorder. Investigating Definition 9.15(1) shows that in
Pbd(X,≤) we have a v2 b iff b ⊆ ↑a, where ↑a = {y ∈ X | ∃x ∈ a s.t. x ≤ y}.
Let ∼2 be the equivalence relation on Pbd(X,≤) defined as in (10.2). Then



266 Dualities with arms

it follows that a ∼2 b if and only if ↑a = ↑b. Consequently, each equivalence
class bac in q(Pbd(X,≤)) is represented by ↑a.

We can now define the natural transformation σ by

σ(X,≤) : q ·Pbd → Pup · q′ : bac 7→ {bxc | x ∈ ↑a}.

It follows from the definitions that the components of σ are order-preserving
(hence morphisms in Pos), and a routine verification reveals that σ is natural.
So, we have found a (natural) translation that turns H -frames into -
frames.

10.23. Example. Consider the setting from Example 10.18, with the
inclusion functors i : iKrip → Pos and ℐ : ES → Pries, and functors
Pup : iKrip → Pos and Vup : ES → Pries from Subsection 9.1 and Defi-
nition 9.18. There exists an obvious forgetful functor

u : Pries→ Pos

which takes a Priestley space and simply forgets about the topology. This
restricts to u′ : ES→ iKrip, and it is easy to verify that i ·u′ ∼= u · ℐ.

We can define a translation τ : u ·Vup → Pup ·u′ via

τX : u(VupX)→ Pup(u′X) : c 7→ c,

because every closed upset of X is in particular an upset of u′X. Since the
action of Vup and Pup on morphisms is defined in the same way, τ is a
natural transformation. So (u, τ) is a natural translation.

In Subsection 12.4 we encounter an example of a non-natural translation
in the context of conditional intuitionistic logic.

Now that we have developed the notion of translation required for Step 2
of our route towards a representation theorem, let us proceed to Step 3. We
begin by giving conditions for a natural transformation m : P→ p ·u which
ensure that its components are (ℒ, j)-dialgebra morphisms. Subsequently,
if we assume that D is dual to ℒ and m is injective on components, the
Jónsson-Tarski theorem follows.

But this leaves us with the question of how to find a suitable natural
transformation m. This question is addressed from Setup 10.27 onwards.
We observe that all of our examples contain more information than what we
assumed in Setup 10.17. With this extra information, we can find a condition
involving the interpretation ρ and a translation (u, τ) which guarantees the
existence of a suitable m.

10.24. Lemma. Suppose we are in the situation of Setup 10.17, and that
Dialg(ℐ,D) is dual to Dialg(ℒ, j) (via a duality of functors given by ζ :
ℒ ·P′ → P ·D). Let (u, τ) be a translation from Dialg(ℐ,D) to Dialg(i,T )
and suppose we have a natural transformation m : P→ p ·u such that:
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(m1) m restricts to a natural transformation m′ : P′ → p′ ·u′;
(m2) the following commutes on components:

ℒ ·P′ P ·D

ℒ · p′ ·u′ p · T ·u′ p ·u ·D

ζ

ℒm′ mD

ρu′ p(τ)

Then for each (ℐ,D)-dialgebra (X, δ), the map m′X is an (ℒ, j)-dialgebra
morphism from the complex algebra of (X, δ) to the complex algebra of
τ̄u(X, δ).

Proof. The complex algebra of (X, γ) is

ℒ(P′X) P(DX) P(ℐX) j(P′X).
ζ Pδ ∼=

The translation τ̄u(X, δ) of (X, δ) is given by

i(u′X) u(ℐX) u(DX) T (u′X),
∼= uδ tX

so the complex algebra of τ̄u(X, δ) is

ℒ(p′(u′X)) p(T (u′X)) p(u(DX)) p(u(ℐX)) j(p′(u′X))
ρu′X pτX p(uδ) ∼=

In order to prove that m′X is a (ℒ, j)-dialgebra morphism we need to show
that the outer shell of the following diagram commutes:

ℒ(P′X) P(DX) P(ℐX) j(P′X)

ℒ(p′(u′X)) p(T (u′X)) p(u(DX)) p(u(ℐX)) j(p′(u′X))

ζX

ℒm′
X

Pδ

mDX

∼=

mℐX jm′
X

ρu′X pτX p(uδ) ∼=

We argue that each of the squares in the diagram commutes. The left hand
one commutes by assumption, the centre square by naturality of m and the
right hand square commutes because m′ is a restriction of m.

If we have a duality between Dialg(ℒ, j) and Dialg(ℐ,D) (given by a
duality between ℒ and D), and m′ is pointwise injective, then Lemma 10.24
gives rise a representation theorem.

10.25. Theorem (Representation theorem). Suppose we are in the
situation of Setup 10.17 and Dialg(ℐ,D) is dual to Dialg(ℒ, j) (via a duality
of functors given by ζ : ℒ ·P′ → P ·D). Let (u, τ) be a translation from
Dialg(ℐ,D) to Dialg(i,T ) and m : P→ p ·u a natural transformation which
satisfies (m1), (m2) and
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(m3) The components of m′ are injective.

Then every (ℒ, j)-dialgebra (A,α) embeds into the complex algebra of some
(i,T )-dialgebra.

Proof. Let (A,α) be a (ℒ, j)-dialgebra. Since Dialg(ℒ, j) is dual to Dialg(ℐ,D)
we can find a (ℐ,D)-dialgebra (X, γ) such that (A,α) = (X, γ)∗, where
(X, γ)∗ denotes the (dual) complex algebra of (X, γ). As a consequence of
Lemma 10.24, m′X : (X, γ)∗ → (τ̄u(X, γ))+ is a (ℒ, j)-dialgebra morphism
from the complex algebra of (X, γ) to the complex algebra of τ̄u(X, γ). The
theorem now follows from the fact that (X, γ)∗ = (A,α) and the assumption
that m′X is injective.

Let us use Theorem 10.25 to derive a representation theorem for Heyting
algebras with operators.

10.26. Representation theorem for -frames. Every HAO embeds into
the complex algebra of a -frame.

Proof. We use Theorem 10.25 to show that every (K, j)-dialgebra embeds
in the complex algebra of a (i,Pup)-dialgebra. Since HAOs can be viewed
as (K, j)-dialgebras and -frames as (i,Pup)-dialgebras, this proves the
theorem.

Consider the setup from Example 10.18, which describes both (ℐ,Vup)-
dialgebras (descriptive -frames) and (i,Pup)-dialgebras ( -frames) as se-
mantics for IPC . Let (u, τ) be the translation from Dialg(ℐ,Vup) to
Dialg(i,Pup) given in Example 10.23, which consists of the obvious forgetful
functor u : Pries→ Pos and the natural transformation τ : u·Vup → Pup ·u′
that sends a closed upset c (an element of VupX) to c, viewed as an upset in
Pup(u′X).

Define m : Clpup → up · u on components X ∈ Pries as the inclusion
of the distributive lattice of clopen upsets of X into the distributive lattice
of all upsets of X. In order to use Theorem 10.25, we need to verify that
m satisfies (m1), (m2) and (m3). First, it is known that this restricts to a
natural transformation m′ : Clp′up → up′ ·u′, because the Heyting algebra
of clopen upsets of an Esakia space is a subalgebra of the Heyting algebra of
all its upsets. Clearly, m is also injective, so (m3) is satisfied as well. For
the (m2), we show that

K(Clp′upX) Clpup(VupX)

K(up′(u′X)) up(Pup(u′X)) up(u(VupX))

ζX
∼=

ℒm′X
mVupX

ρu′X up(τX)

commutes. (Here ζ : K · Clp′up → Clpup · Vup is the interpretation
that arises from the duality between K and Vup.) Since K is defined
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using generators of the form a, it suffices to show that mVupX(ζX( a)) =
up(τX)(ρu′X(Km′X( a))) for all a ∈ Clp′upX. It follows from an easy verifi-
cation that both sides evaluate to {c ∈ VupX | c ⊆ a} ∈ up(u(VupX)).

As announced, we now investigate how to obtain a suitable candidate
for the natural transformation m from Theorem 10.25. The key observation
here is that our examples all fall within a setup that is more restrictive
than the one in Setup 10.17. Most importantly, the restriction states that
one interpretation comes from a duality and the other is based on a dual
adjunction. We list the exact setup we work with, and then show that
dialgebraic intuitionistic logics as well as many coalgebraic logics are covered
by it.

10.27. Setup. We add to Setup 10.17 the following assumptions:

• The functor p has a dual adjoint s : A→ C, with units η : idC → s · p
and θ : idA → p · s.

• The functor s restricts to s′ : A′ → C′ (but p′ and s′ need not form a
dual adjunction) and θ restricts to a natural transformation θ′ : idA′ →
p′ · s′ which is pointwise injective.

• The category D is dual to A via the functor P, whose inverse is denoted
by S, and this restricts to a duality between A′ and D′ via P′ and S′.
The functor ℒ is dual to D.

• There exists a (forgetful) functor u : D→ C which is naturally isomor-
phic to s ·P and restricts to u′ : D′ → C′.

In a diagram:

C A D

C′ A′ D′

p

s

S
≡op

P

u

p′
iT

s′

S′

≡op

j ℒ

P′

ℐ D

u′

While this may look like a complicated setup, the next examples show
that have (unknowingly) already been working within it. Moreover, many
conditions relate to the propositional base of the dialgebraic logic, so they
only have to be proven once if we focus on a specific propositional base.

10.28. Example. We specify Setup 10.27 to the realm of modal intuitionistic
logic. We give the overview of functors, and then verify that it satisfies all
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conditions.

Pos DL Pries

iKrip HA ES

up

pf

Pf

≡op

Clpup

u

up′

iT

pf′

Pf′

≡op

j ℒ

Clp′up

ℐ D

u′

Here i, j and ℐ are the obvious inclusion functors and T and D are any
functors (and ℒ comes from the logic).

The functors Pf and Clpup constitute Priestley duality (see Subsec-
tion 1.3), and this restricts to Esakia duality, given by Pf′ and Clp′up
(Subsection 1.4). It is also known that the functors up : Pos → DL
and pf : DL → Pos are dually adjoint, and that they restrict to func-
tors up′ : iKrip → HA and pf′ : HA → iKrip. The unit θ : idDL → up · pf
restricts to θ′ : idHA → up′ · pf′ because θ′A coincides with the composition
of the unit A→ Clp′up ·Pf′ from the duality between HA and ES and the
embedding of the Heyting algebra of clopen upsets of Pf′A into the Heyting
algebra of all upsets of Pf′A.

Finally, u : Pries → Pos is the obvious forgetful functor that forgets
about topology, as is u′ : ES → iKrip. By definition we have pf = u ·Pf,
which implies that u is naturally isomorphic to pf ·Clpup.

A specific example of the functors T ,ℒ and D from the realm of the
normal modal intuitionistic logic IPC is given by T = Pup, ℒ = K and
D = Vup. We will see more such examples in Section 12.

10.29. Example. When restricted to the coalgebraic setting, that is, when
i, j and ℐ are all identity functors, Setup 10.27 simplifies as follows. We
require a dual equivalence between A and D, a dual adjunction between C
and A, and a natural isomorphism between u and s ·P. This can be depicted
as follows:

C A D
p

T
s

S
≡op

ℒ

P
D

u

In case of coalgebraic logic over a classical propositional base this instan-
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tiates to

Set BA Stone
Q

T
uf

Uf

≡op

ℒ

Clp

D

u

Here Q is the contravariant powerset functor, which is known to be dually
adjoint to uf. The duality between BA and Stone given by Uf and Clp is, of
course, Stone duality. Note that this is diagram similar to [273, Equation 2].

The functors T ,ℒ and D depend on the modal logic under consideration.
In case of normal modal classical logic, T and D are given by the contravariant
powerset functor P and the Vietoris functor V , respectively, and ℒ is given
by an analogue of K for BA (see Definition 3.7).

In case of coalgebraic positive logic we get

Pos DL Pries
up

T
pf

Pf

≡op

ℒ

Clpup

D

u

We will give an example based on this setup in Subsection 12.5, where we
view the logic investigated in Section 8 from a dialgebraic point of view.

10.30. Remarks.

1. While we suggested having a concrete duality for A, A′ and Dialg(ℒ, j),
it is not a strict requirement. In absence of such dualities we can
simply use formal duals, i.e. D = Aop, D′ = (A′)op and D = ℒop.
However, in examples the dualities often prove to be insightful, hence
we have chosen to mention them explicitly

2. Note that, in absence of a given u we can simply define it as s ·P.
We have defined it as naturally isomorphic to s ·P (instead of equal
to s ·P) because in examples there is usually an intuitive definition of
a forgetful functor from D to C that is only naturally isomorphic to
s ·P. For example, the forgetful functor from Pries to Pos is naturally
isomorphic to pf ·Clpup, but not equal to it.

3. In [200], a setup where θ : idA → p · s restricts to θ′ : idA′ → p′ · s′
is called well-structured.

We claim that we now have a canonical choice µ for m. Namely, we can
define µ : P→ p ·u as the composition

µ : P p · s ·P p ·uθP ∼=
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The assumption that θ restricts to θ′ then guarantees that µ′ : P′ → p′ ·u′ is
well defined, so (m1) holds. Furthermore, the assumption that θ′ is pointwise
injective implies that µ′ is as well, so (m3) is satisfied too.

We need an additional condition on the logic to ensure that (m2) holds as
well, which we introduce in Definition 10.33. It uses a natural transformation
closely related to the adjoint mate of ρ.

10.31. Definition. Since u is naturally isomorphic to s · P, we have a
natural isomorphism sℒP′ → sPD→ uD. Define ρ̄ as the composition

Tu′ spTu′ sℒp′u′ sℒP′ uD
ηTu′ sρu′ sℒµ′ ∼=

Intuitively, the transformation ρ̄ tells us how to turn a (i,T )-dialgebra
of the form (u′X, γ), where X ∈ D, into a (ℐ,D)-dialgebra. The map ρ̄X
assigns to each element b of G(u′X) and element from DX that, from a
logical point of view, is as closely related to b as possible.

10.32. Remark. Suppose we are in a coalgebraic setting (see Example 10.29)
and u = s ·P. Then ρ̄ is simply the composition of the adjoint mate ρ† of ρ
and the isomorphism between ℒP and PD:

T · s ·P s ·ℒ ·P ·PD

ρ[

ρ†P
∼=

Using ρ̄, we now define canonicity of a logic with respect to a frame
semantics. It is a variation of the condition used in e.g. [273, Theorem 3]
and [279, Theorem 6.4].

10.33. Definition. Within Setup 10.27, the logic L(Λ,Ax) is called canonical
with respect to Dialg(i,T ) if there exists a translation τ : u ·D→ T ·u′ such
that

ρ̄ ◦ τ = iduD.

If we say that a logic L(Λ,Ax) is canonical with respect to Dialg(i,T ),
we always mean that we have the information from Setup 10.27.

While ρ̄ seems like a complicated transformation, in practice it usually
has an easy description. We compute an example.

10.34. Example. Consider the setup from Example 10.18. Then the natural
isomorphism pf ·K ·P′ → u ·Vup is given on components by ξ−1

X , with ξ as
in Definition 10.6. That is, if X is an Esakia space then it is given by

pf(K(P′X))→ u(VupX) : Q 7→
⋂
{a ∈ Clp′upX | a ∈ Q}.

(We can deduce this from the proof of Lemma 10.8.)
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Further unravelling the definition of ρ̄ gives

ρ̄X(D) =
⋂
{a ∈ Clp′upX | a ∈ (ℒµ′X)−1(ρ−1

u′X(ηPupu′X(D)))}

=
⋂
{a ∈ Clp′upX | µ′X(a) ∈ ρ−1

u′X(ηPupu′X(D))}

=
⋂
{a ∈ Clp′upX | ρ( µ′X(a)) ∈ ηPupu′X(D)}

=
⋂
{a ∈ Clp′upX | D ∈ ρ( µ′X(a))}

=
⋂
{a ∈ Clp′upX | D ⊆ µ′X(a)}

=
⋂
{a ∈ Clp′upX | D ⊆ a}

So ρ̄X simply takes an upset D ∈ Pup(u′X) and sends it to the smallest
closed upset containing it, viewed as an element of u′(VupX).

Let τ : u·Vup → Pup ·u′ be the translation given in Example 10.23. Then
it follows immediately from the computation above that ρ̄X ◦ τX = iduVupX
for every Esakia space X. So the logic IPC is canonical with respect to
Dialg(i,Pup).

Among other things, canonicity implies the following representation
theorem.

10.35. Theorem. Let L(Λ,Ax) be a logic with algebraic semantics given by
Dialg(ℒ, j), which can be interpreted in Dialg(i,T ). If L(Λ,Ax) is canonical
with respect to Dialg(i,T ), then every (ℒ, j)-dialgebra embeds into the complex
algebra of an (i,T )-dialgebra.

Proof. We apply Theorem 10.25, with translation (u, τ) and µ as m. We
already know that µ restricts to a natural transformation µ′ : P′ → p′ ·u′
and µ′ is injective on components by assumption, so (m1) and (m3) are
satisfied.

It remains to be shows that (m2) also holds, that is,

ℒP′X PDX

ℒp′u′X pTu′X puDX

ξ
∼=

µ′X µDX

ρu′X p(τX)

commutes. Since ρ̄X ◦ τX = iduDX we have pτX ◦ pρ̄X = idpuDX , and
therefore it suffices to prove that

ℒP′X PDX

ℒp′u′X pTu′X puDX

ξ
∼=

µ′X µDX

ρu′X p(ρ̄X)
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commutes. This is precisely the outer shell of the following diagram:

PDX ℒP′X ℒp′(u′X) pT (u′X)

psPDX psℒP′X psℒp′(u′X) pspT (u′X)

p(u(DX)) pT (u′X)

ξX
∼=

θPDX

µDX

ℒµ′X

θℒP′X

ρu′X

θℒp′(u′X) θpT(u′X)

∼=

psξX
∼=

psℒµ′X psρu′X

pηTu′X
p(ρ̄X)

We prove that each of the squares in the diagram commute, thus proving that
the outer shell commutes. The top three squares in the diagram commute
by naturality of θ. The bottom square commutes by the definition of ρ̄. The
triangle on the left commutes by definition of µ. The right hand triangle
commutes because θ and η are the units of a dual adjunction.

10.36. Example. Combining Example 10.34 and Theorem 10.35 we obtain
an alternative proof of the representation theorem for Heyting algebras with
operators from Theorem 10.26. Indeed, canonicity of IPC with respect to
(i,Pup)-dialgebras (i.e. -frames) allows us to simply apply Theorem 10.35.

10.4 Completeness

Generally, a duality for the algebraic semantics of some logic gives rise to a
sound and complete (frame) semantics for it. This can then be used to get
completeness with respect to other semantics. (For example, completeness
of classical normal modal logic with respect to descriptive Kripke frames
implies completeness with respect to the class of all Kripke frames.) In this
subsection we prove similar results for dialgebraic logics.

Throughout this section, let L(Λ,Ax) be a dialgebraic logic for the
inclusion j : A′ → A of varieties of algebras. Let ℒΛ,Ax = ℒ : A′ → A be the
functor given by the procedure from Definition 9.54, so that the algebraic
semantics of L(Λ,Ax) is given by Dialg(ℒ, j).

Before proving completeness results, we define what we mean by soundness
and completeness.

10.37. Definition. Suppose the logic L(Λ,Ax) can be interpreted in (i,T )-
dialgebras. We say that L(Λ,Ax) is sound with respect to Dialg(i,T ) if

(ϕ,ψ) ∈ L(Λ,Ax) implies Dialg(i,T )  (ϕ,ψ)

for all ϕ,ψ ∈ L(Λ). It is called complete with respect to Dialg(i,T ) if

Dialg(i,T )  (ϕ,ψ) implies (ϕ,ψ) ∈ L(Λ,Ax)

for all ϕ,ψ ∈ L(Λ).
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Dialgebraic logics are always sound. This follows from the requirement
that the interpretation ρ : ℒ · p′ → p · T from Definition 9.73 is well defined.
In this section we investigate when it is also complete. In familiar settings,
this definition of (soundness and) completeness instantiates to the usual
notion of completeness.

10.38. Example. As we have seen, in case of intuitionistic logic we can think
of the logic as a collection of formulae, instead of pairs, because (ϕ,ψ) ∈
L(Λ,Ax) iff (ϕ↔ ψ,>) ∈ L(Λ,Ax). Similarly, we have Dialg(i,T )  (ϕ,ψ)
iff Dialg(i,T )  ϕ↔ ψ. Therefore, in case of dialgebraic intuitionistic logics,
completeness is equivalent to:

Dialg(i,T )  ϕ implies ϕ ∈ L(Λ,Ax).

for all ϕ ∈ IPC(Λ).

10.39. Example. Coalgebraic logic with a classical propositional base for
an endofunctor on Set can be viewed as a specific instance of a dialgebraic
logic. In this setting, akin to Example 10.38, we find that Definition 10.37
reduces to the usual notion of completeness. A similar observation was made
in [279, Remark 8.5].

10.40. Example. Recall that in Chapter IV, modal extensions of positive
logic were defined by means of consequence pairs, denoted by ϕ ψ. Rather
than equating two formulae, a consequence pair ϕ ψ indicates that ϕ
implies ψ. There is a similar correspondence between equational logics and
logics given by consequence pairs as for classical and intuitionistic logics. We
briefly sketch this here.

If P is a modal positive logic over a language P given by consequence
pairs, then we have

ϕ ψ ∈ P iff ϕ ∧ ψ ϕ ∈ P and ϕ ϕ ∧ ψ ∈ P.

This means that the subset P= := {(ϕ,ψ) | ϕ ψ ∈ P and ψ ϕ ∈ P}
contains sufficient information to rebuild P. Furthermore, it can be shown
that P= is an equational system in the sense of Definition 9.50. Conversely,
an equational system L for a dialgebraic positive logic yields a logic of
consequence pairs given by L := {ϕ ψ | (ϕ ∧ ψ,ϕ) ∈ L}.

Viewing a dialgebraic positive logic L(Λ,Ax) as a collection of conse-
quence pairs, completeness can be reformulated as

Dialg(i,T )  ϕ ψ implies ϕ ψ ∈ L(Λ,Ax).

10.41. Remark. In [200] completeness was defined by requiring that the
source of morphisms from the initial (ℒ, j)-dialgebra to the complex algebras
of (i,T )-dialgebras is jointly monic. To distinguish this from the notion of
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completeness from Definition 10.37, let us call this source completeness. In
our setting (with proposition letters) this would be: A logic L(Λ,Ax) is
source complete with respect to Dialg(i,T ) if the source

{Z→M+ |M ∈ Mod(i,T )}, (10.3)

is jointly monic. Here Z is the initial object in the category of models based
on (ℒ, j)-dialgebras (Definition 9.66), and M ranges over models based on
(i,T )-dialgebras (Definition 9.77).

We claim that the two notions of completeness are the same. Suppose
L(Λ,Ax) is complete with respect to Dialg(i,T ), and let ϕ,ψ be formulae
such that [ϕ] 6= [ψ] in Z. Then (ϕ,ψ) /∈ L(Λ,Ax), so by completeness
Dialg(i,T ) 6 (ϕ,ψ). Therefore there exists a model M ∈ Mod(i,T ) such
that M 6 (ϕ,ψ). This implies that the source in (10.3) is jointly monic.

Conversely, suppose L(Λ,Ax) is source complete with respect to Dialg(i,T ).
If (ϕ,ψ) /∈ L(Λ,Ax) then [ϕ] 6= [ψ] in Z and hence by source completeness
there exists a model M such that LϕMM+ 6= Lψ MM+ . This implies M 6 (ϕ,ψ)
and therefore Dialg(i,T ) 6 (ϕ,ψ), hence completeness.

Suppose given a dual equivalence A ≡op D which restricts to A′ ≡op D′.
Let ℐ : D′ → D be the inclusion functor dual to j, and suppose that ℒ is
dual to D. In a diagram:

A D

A′ D′

S
≡op

P

S′

≡op

jℒ

P′

ℐ D

Since ℒ is dual to D, there exists a natural isomorphism ℒ ·P′ → P ·D,
which can act as interpretation of the language L(Λ) in (ℐ,D)-dialgebras.
With this interpretation, we have:

10.42. Theorem. The logic L(Λ,Ax) is complete with respect to the class
of (ℐ,D)-dialgebras.

Proof. Suppose (ϕ,ψ) /∈ L(Λ,Ax). Then by Theorem 9.69 there exists a
(ℒ, j)-dialgebra (A,α) and an assignment V of the proposition letters such
that in the algebraic model A = (A,α, V ) we have LϕMA 6= Lψ MA.

As a consequence of the duality between Dialg(ℒ, j) and Dialg(ℐ,D),
there exists a (ℐ,D)-dialgebra (X, γ) such that (X, γ)∗ = (A,α). Moreover,
the assignment V is a valuation for (X, γ), so we have found a model
M = (X, γ, V ). By definition, the interpretation JϕKM of a formula ϕ in M
is given by the predicate LϕMM∗ . Therefore we find JϕKM 6= JψKM, and hence
Dialg(ℐ,D) 6 (ϕ,ψ).
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As a specific instance, we obtain:

10.43. Theorem. The logic IPC is complete with respect to descriptive
-frames.

Proof. This follows from Theorem 10.42 and the facts that the algebraic
semantics of IPC is given by (K, j)-dialgebras, descriptive -frames are
(ℐ,Vup)-dialgebras, and the functor K is dual to Vup.

Completeness of a logic with respect to its descriptive dual often only
serves as a stepping stone towards completeness with respect to a different
class of frames. (Think of descriptive Kripke frames and (non-descriptive)
Kripke frames.) This relies on the fact that every descriptive frame has
some underlying frame. In this section, we use the translations from Defi-
nition 10.19 together with a natural transformation as in Lemma 10.24 to
transfer completeness with respect to one semantics to completeness with
respect to another.

We work with Setup 10.17, that is, we have two different semantics for
the same logic and we do not assume any duality. In diagram:

C A D

C′ A′ D′

p P

p′
iT j ℒ

P′
ℐ D

ρ : ℒ · p′ → p · T
ζ : ℒ ·P′ → P ·D

10.44. Proposition. Suppose (u, τ) is a translation from Dialg(ℐ,D) to
Dialg(i,T ) and m : P→ p · u is a natural transformation satisfying (m1),
(m2) and (m3). Then for all (X, γ) ∈ Dialg(ℐ,D) and ϕ,ψ ∈ L(Λ),

τ̄u(X, γ)  (ϕ,ψ) implies (X, γ)  (ϕ,ψ).

Proof. It follows from Lemma 10.24 that mX is a (ℒ, j)-dialgebra morphism
from the complex algebra of (X, γ) to the complex algebra of τ̄u(X, γ). By
assumption m′X is injective. Therefore we can use Corollary 9.64(1) to
complete the proof.

10.45. Example. We continue our examples where we compare -frames
and H -frames. Let (u, τ) be the translation from Example 10.21 given
by u : Pos→ PreOrd and τ(X,≤) : u(Pup(X,≤))→ Pbd(u′(X,≤)) : a 7→ a.
Write upPos : Pos → DL and upPreOrd : PreOrd → DL for the functors
sending posets and preorders to their distributive lattice of upsets, and
up′Pos and up′PreOrd for the restrictions.

Observe that there is a bijective correspondence between upsets of a poset
(X,≤) and upsets of u′(X,≤). In fact, these are isomorphic distributive
lattices. Define

m : upPos → upPreOrd ·u
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to be this isomorphism. It is easy to see this is natural. Clearly, it restricts
to m′ : up′Pos → up′PreOrd ·u′ and it is injective on components, so it satisfies
(m1) and (m3). Moreover, it follows immediately from the definitions that

K ·up′Pos upPos ·Pup

K ·up′PreOrd ·u′ upPreOrd ·Pbd ·u′ upPreOrd ·u ·Pup

ζ

Km′ mPup

ρu′ upPreOrd(τ)

commutes, where ζ and ρ are the interpretations of IPC in Dialg(i,Pup)
and Dialg(k,Pbd), respectively. So (m2) holds too. Proposition 10.44 now
implies that for every (i,Pup)-dialgebra (X,≤, γ),

τ̄u(X,≤, γ)  ϕ implies (X,≤, γ)  ϕ

for all IPC -formulae ϕ.
Applying an analogous argument to Example 10.22 (with the translation

(q, σ)) we find that for every (k,Pbd)-dialgebra (X,≤, γ) we have

σ̄q(X,≤, γ)  ϕ implies (X,≤, γ)  ϕ.

It follows that a formula is valid on all -frames if and only if it is valid on
all H -frames, i.e.

Frm  ϕ iff H Frm  ϕ

for all ϕ ∈ IPC .

Combing Proposition 10.44 with the fact that dualities give rise to
complete semantics, we get:

10.46. Example. Consider -frames and descriptive -frames, viewed as
(i,Pup)-dialgebras and (ℐ,Vup)-dialgebras, as semantics for IPC . We know
from Theorem 10.43 that IPC is complete with respect to Dialg(ℐ,Vup).
Furthermore, we have seen a translation from Dialg(i,Pup) to Dialg(ℐ,Vup)
in Example 10.23, and we defined a natural transformation m : Clpup → up·
u satisfying (m1), (m2) and (m3) in the proof of Theorem 10.26. Therefore,
Proposition 10.44 gives

Dialg(i,Pup)  ϕ implies Dialg(ℐ,Vup)  ϕ

for all ϕ ∈ IPC . Completeness of IPC with respect to Dialg(ℐ,Vup) now
implies completeness with respect to Dialg(i,Pup).

Summarising the observations from Examples 10.45 and 10.46, we obtain
the following theorem.

10.47. Theorem. The logic IPC is complete with respect to:
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1. The class of descriptive -frames;

2. The class of -frames;

3. The class of H -frames.

We can turn Example 10.46 into a more general completeness result for
logics that are canonical with respect to some interpretation. In order to
get this, we have to work within the assumptions from Setup 10.27, i.e. we
assume that one of the interpretations comes from a duality, and the other
is based on a dual adjunction.

10.48. Theorem. Work with the assumptions from Setup 10.27 and suppose
L(Λ,Ax) is canonical with respect to Dialg(i,T ). Then L(Λ,Ax) is complete
with respect to Dialg(i,T ).

Proof. It follows form the proof of Theorem 10.35 that the natural trans-
formation µ : P → p · u satisfies (m1), (m2) and (m3), so we can use
Proposition 10.44 to find

Dialg(i,T )  (ϕ,ψ) implies Dialg(ℐ,D)  (ϕ,ψ)

for all ϕ,ψ ∈ L(Λ). Since Theorem 10.42 implies completeness of L(Λ,Ax)
with respect to Dialg(ℐ,D), it follows that

Dialg(i,T )  (ϕ,ψ) implies (ϕ,ψ) ∈ L(Λ,Ax)

as desired.

We finish this section by using Theorem 10.48 to prove completeness of
IPC with respect to -frames. More examples can be found in Section 12,
where we give duality and completeness for the other examples of modal
intuitionistic logics from Subsection 9.3.

10.49. Example. We give an alternative proof of Theorem 10.47(2). We
already have a duality for (the algebraic semantics of) IPC (Theorem 10.10)
as well as a translation τ : u ·Vup → Pup ·u′ (Example 10.23). Furthermore,
we have seen that IPC is canonical with respect to Dialg(i,Pup). Applying
Theorem 10.48 yields then the result.

11 The Goldblatt-Thomason theorem

A prominent question in the study (modal) logics and their semantics is what
classes of frames can be defined as the class of frames satisfying some set of
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formulae. Such a class is usually called axiomatic or modally definable. A
milestone result partially answering this question in the realm of classical
normal modal logic is from Goldblatt and Thomason and dates back to
1974 [190]. It states that an elementary class of Kripke frames is axiomatic
if and only if it reflects ultrafilter extensions and is closed under bounded
morphic images, generated subframes and disjoint unions. The proof in [190]
relies on Birkhoff’s variety theorem [68] and makes use of the algebraic
semantics of the logic. A model-theoretic proof was provided almost twenty
years later by Van Benthem [34].

A similar result for (non-modal) intuitionistic logic was proven by Roden-
burg [369] (see also [188]), where the interpreting structures are intuitionistic
Kripke frames and models. This, of course, requires analogues of the notions
of bounded morphic images, generated subframes, disjoint unions and ultra-
filter extensions. While the first three carry over straightforwardly from the
classical setting, ultrafilters need to be replaced by prime filters.

In recent years, Goldblatt-Thomason theorems for many other logics
have been proven, including ones for positive normal modal logic [97], graded
modal logic [378], modal extensions of  Lukasiewicz finitely-valued logics
[410], LE-logics [116], and modal logics with a universal modality [379]. A
more general approach towards Goldblatt-Thomason theorems, using the
framework of coalgebraic logic, was developed by Kurz and Rosický [278]. In
their paper, they focus on the case where T is an endofunctor on Set, and
prove Goldblatt-Thomason theorems for a wide variety of coalgebraic logics.

In this section, we adapt techniques from [278] to the setting of dialgebraic
logic. An important tool in the proof of the Goldblatt-Thomason theorem
is a notion of (prime) filter extension, because it links the geometric and
algebraic semantics of a logic. The duality and translations from Section 10
give rise to such a notion: when given a frame, we can take its complex
algebra, then get a dual (descriptive) frame, and finally translate this back
to a (non-descriptive) frame. In case of dialgebraic intuitionistic logic this
results in a frame based on the poset of prime filters of the original frame, so
that “prime filter extension” would be an appropriate name. When doing the
same over a classical base (via the perspective described in Example 10.29)
we get ultrafilter extensions, and in Section 14 we encounter an class of
modal logics where the procedure yields a frame based on the semilattice of
all filters of the original frame, so that “filter extension” is a more fitting
name. We will call such extensions “prime filter extensions” except where
the context of an example warrants a different name, such as “ultrafilter
extension” or “filter extension.”

In order to make this work, we need to make extra assumptions concerning
our dialgebraic logic. The precise assumptions are detailed in Setup 11.1
below. At first sight this may look like a long list of assumptions, but it is
important to remember that our starting point is rather general. Once we
specify to a specific propositional base logic (such as intuitionistic logic) and
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we fill in the relevant categories and functors, most of the constraints are
automatically satisfied. In particular, our setup covers coalgebraic logic over
a classical and positive base, and dialgebraic logic over an intuitionistic base
as well as over the meet-implication fragment of intuitionistic logic (which we
investigate in Section 14). Within each of these paradigms we cover a wide
variety of logics, ranging from normal modal logic over a classical base to
the extension of intuitionistic logic with a Lewisian implication (Section 13).

Origins of the material. This section contains an extension of a submis-
sion about Goldblatt-Thomason theorems for modal intuitionistic logics [198].

11.1 Regular subframes, epimorphic images, coproducts

In order to formulate a Goldblatt-Thomason theorem, we need to have ana-
logues of generated subframes, bounded morphic images and disjoint unions.
For the latter there is a natural choice: coproducts. In fact, coproducts gen-
eralise the set-theoretic notion of a disjoint union. We will see in Lemma 11.9
that under reasonable assumptions categories of dialgebras have coproducts.

In order to find the right analogues of generated subframes and bounded
morphic images, we need to think of the rôle they play in the proof of the
Goldblatt-Thomason theorem. The significance of generated subframes is
that dually they yield surjective homomorphisms between complex algebras.
Surjective homomorphisms, in turn, dualise to regular subframes. Similarly,
bounded morphic images correspond to injective homomorphisms. This allows
one to invoke Bikrhoff’s variety theorem to prove the Goldblatt-Thomason
theorem.

It is well known that injective homomorphisms in a variety of algebras
are precisely the monomorphisms, and that surjective homomorphisms are
the regular epimorphisms. Assuming that p and s form a dual adjunction,
we know that p sends epimorphisms to monomorphisms and that s sends
regular epimorphisms to regular monomorphisms. Motivated by our desire
that generated subframes dually correspond to surjections and bounded
morphic images to injective homomorphisms, we will define them via regular
monomorphisms and epimorphisms, respectively. Guided by this, we make
the additional assumption that p sends regular monos to regular epis, and s
sends monos to epis.

Thus, throughout this section we work with the following Setup, which
is an extension of Setup 10.27.

11.1. Setup. Suppose given a logic L(Λ,Ax) with algebraic semantics
Dialg(ℒ, j), where ℒ, j : A′ → A. Furthermore, our setup consists of the
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following categories, functors, and natural transformations:

C A D

C′ A′ D′

p

s

S
≡op

P

u

p′
iT

s′

S′

≡op

j ℒ

P′

ℐ D

u′

ρ : ℒp′ → pT
ζ : ℒP′ → PD
τ : uD→ Tu′

As usual i, j and ℐ are inclusion functors. We also assume

• C′ has coproducts and i preserves them;

• p and s form a dual adjunction with units η : idC → s · p and
θ : idA → p · s. They restrict to the functors p′ and s′, and θ restricts
to a natural transformation θ′ : idA′ → p′ · s′ which is pointwise
injective.

• The functor p sends regular monos to regular epis, and s sends monos
to epis.

• P and S establish a duality between D and A, which restricts to a
duality between D′ and A′.

• There exists a (forgetful) functor u : D→ C which is naturally isomor-
phic to s ·P and restricts to u′ : D′ → C′.

• τ is a natural transformation such that ρ̄ ◦ τ = iduD.

Note that we not only assume the existence of a translation τ , we assume
that it is a natural translation. This is important because it entails that we get
a functor Dialg(ℐ,D)→ Dialg(i,T ). Combining this with the duality between
Dialg(ℒ, j) and Dialg(ℐ,D) allows us to transform homomorphisms between
algebras to morphisms between frames, and this will play an important rôle
in the proof of the Goldblatt-Thomason theorem.

The assumptions preclude conditional intuitionistic logic from the col-
lection of examples the results in this section apply to. Fortunately, all
other examples we have seen do adhere to the assumptions, as we will see in
Section 12 (and in the examples below).

11.2. Lemma. Recall that up : Pos → DL and pf : DL → Pos establish a
dual adjunction. Then

1. up sends regular monos to regular epis, and

2. pf sends monos to epis.
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Proof. Both follow from an easy verification, where for the first item we make
use of the fact that regular monos in Pos are precisely the embeddings [295,
Example 4.15(5)].

11.3. Example. As a consequence of Lemma 11.2 we have:

epi mono

regular mono regular epi

up

pf
up

pf

This implies that they satisfy the condition that p sends regular monos to
regular epis and s sends monos to epis. Using this, we now find two classes of
dialgebraic logics (over two propositional bases) that satisfy the requirements
of Setup 11.1.

1. First, any canonical logic over an intuitionistic base defined within
the framework of Example 10.28 also satisfies the conditions from
Setup 11.1.

2. Second, coalgebraic logics over a positive propositional base (viewed
as dialgebraic logics) from the framework of Example 10.29 adhere to
the requirements of Setup 11.1, provided they are canonical.

11.4. Example. The framework of coalgebraic logic over a classical proposi-
tional base, using the categories and functors from Example 10.29, satisfies
the requirements from Setup 11.1. Indeed, the contravariant powerset functor
Set → BA sends regular monos (= injective functions) to surjective homo-
morphisms, and the functor uf : BA→ Set sends injective homomorphisms
to epimophisms (= surjective functions) in Set.

Yet other examples are the setup for doing coalgebraic logic over the logic
of meet-semilattices, using the dual adjunction and duality from Section 2.
This entails that the setup used in Section 14, where we investigate modal
extensions of the (>,∧,→)-fragment of intuitionistic logic, also adheres to
the assumptions of Setup 11.1.

In this section, we are interested in special classes of frames called
axiomatic.

11.5. Definition. Let Φ ⊆ L(Λ) be a set of axiom pairs. Then we define

Frm Φ := {X ∈ Dialg(i,T ) | X  (ϕ,ψ) for all (ϕ,ψ) ∈ Φ}.

We call a class K ⊆ Dialg(i,T ) axiomatic if it is of the form Frm Φ for some
set Φ of axiom pairs.

In case the logic is defined as a set of axioms rather than axiom pairs
(see Remark 9.51) the definition can be adapted to use axioms instead of
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axiom pairs in the obvious way. In the remainder of this section, we define
regular subframes, epimorphic images and coproducts, and we show that
every axiomatic class of frames is closed under these constructions.

We start by defining analogues of generated subframes and bounded
morphic images, such as given in Definitions 2.5, 2.10 and 3.13 in [70].
We generalise generated subframes to “regular subframes,” because their
definition relies on the existence of a regular monomorphism. Our analogue
of a bounded morphic image uses the notion of an epimorphism, so we call
it an “epimorphic image.”

11.6. Definition. Let X1 = (X1, γ1) and X2 = (X2, γ2) be (i,T )-dialgebras.

1. X1 is called a regular subframe of X2 if there exists an (i,T )-dialgebra
morphism f : X1 → X2 such that if is a regular monomorphism in C.

2. X1 is called an epimorphic image of X2 if there exists an (i,T )-dialgebra
morphism f : X2 → X1 such that if is an epimorphism in C.

11.7. Example. Guided by [70, Definitions 2.5 and 3.13], we could define a
generated sub- -frame of a -frame (X,≤, R) as a -frame (X ′,≤′, R′) such
that:

• X ′ ⊆ X and ≤′ = (≤ ∩ (X ′ ×X ′)) and R′ = (R ∩ (X ′ ×X ′));
• if x ∈ X ′ and x ≤ y or xRy then y ∈ X ′.

With this definition, it can be shown that a -frame X′ is isomorphic to
a generated sub- -frame of a -frame X if and only if the dialgebraic
rendering of X′ is a regular subframe of the dialgebraic rendering of X (as
per Definition 11.6(1)).

We have the following preservation result. Recall that (·)+ : Dialg(i,T )→
Dialg(ℒ, j) is the functor that takes an (i,T )-dialgebra (viewed as a frame
for the language L(Λ)) to its complex algebra.

11.8. Proposition. Let X1 = (X1, γ1) and X2 = (X2, γ2) be (i,T )-dialgebras
and suppose X2  (ϕ,ψ).

1. If X1 is a regular subframe of X2 then X1  (ϕ,ψ).

2. If X1 is an epimorphic image of X2 then X1  (ϕ,ψ).

Proof. This follows from Corollary 9.64 and the fact that (·)+ is defined on
morphisms by f+ = pf , which is assumed to send regular monomorphisms
to surjective functions and epimorphisms to injective functions.

The categorical analogue of a disjoint union is a coproduct, so we use
these as our dialgebraic analogue of disjoint unions. We recall their existence:

11.9. Lemma. Suppose that C′ has coproducts and i preserves them. Then
Dialg(i,T ) has coproducts.
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Proof. This follows from [71, Theorem 3.2.1]. Concretely, the coproduct of a
set {Xk = (Xk,≤k, Rk) | k ∈ K} of (i,T )-dialgebras is computed as follows.
Let X be the coproduct of the Xk in C′ and write ink : Xk → X for the
corresponding inclusion maps. Then i(ink) : iXk → i(

∐
kXk) ∼=

∐
k(iXk) is

the inclusion morphism of iXk into the coproduct
∐
k(iXk) (in C). Moreover,

for each k we have a C-morphism

iXk TXk T (
∐
kXk)

γk T (ink)

So there exists a mediating morphism γ :
∐
k(iXk)→ T (

∐
kXk) such that

for each k ∈ K the following commutes:

iXk
∐
k(iXk)

TXk T (
∐
kXk)

i(ink)

γk γ

T (ink)

Since i preserves coproducts we can view γ as a morphism i(
∐
kXk) →

T (
∐
kXk). The coproduct of the (Xk, γk) in Dialg(i,T ) is given by (X, γ).

Both iKrip and PreKrip have coproducts, and they are computed as in
Set. Moreover:

11.10. Lemma. The inclusions i : iKrip → Pos and i : PreKrip → PreOrd
preserve coproducts.

Proof. This follows from the fact that coproducts in iKrip, Pos PreKrip and
PreOrd are all computed as in Set.

11.11. Example. Let {Xk = (Xk,≤k, Rk) | k ∈ K} be a set of -frames.
Then their coproduct is given by

∐
k Xk = (X,≤, R) where

• X is the disjoint union of the Xk;

• ≤ is defined by letting x ≤ y iff there exists a k ∈ K such that x, y ∈ Xk

and x ≤k y;

• xRy iff there exists k ∈ K such that x, y ∈ Xk and xRky.

Note that (X,≤) is simply the coproduct of the posets (Xk,≤k) in either
iKrip or Pos (the resulting posets are the same).

Our next objective is to show that axiomatic classes are closed under
taking coproducts. First we prove two auxiliary lemmas. Since the functors
p and s are dually adjoint, p sends coproducts to products. We now claim
that p′ does the same.

11.12. Lemma. In Setup 11.1, p′ sends coproducts to products.
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Proof. Let {Xk | k ∈ K} be a K-indexed collection of objects in C′. We
wish to show that p′(

∐
k∈K Xk) =

∏
k∈K p′Xk. Since products in vari-

eties of algebras are computed as in Set, the inclusion functor j : A′ → A
both preserves and reflects products. Therefore it suffices to show that
j(p′(

∐
k∈K Xk)) =

∏
k∈K(jp′Xk). But this follows from the facts that p

send coproducts to products and i preserves coproducts, so that

jp′
( ∐
k∈K

Xk

)
= pi

( ∐
k∈K

Xk

)
= p

( ∐
k∈K

iXk

)
=
∏
k∈K

(piXk) =
∏
k∈K

(jp′Xk).

This proves the lemma.

11.13. Lemma. Let {(Xk, γk) | k ∈ K} be a K-indexed collection of (i,T )-
dialgebras. Then we have (

∐
k(Xk, γk))

+ ∼=
∏
k((Xk, γk)

+).

Proof. Let (X, γ) =
∐
k(Xk, γk). Then for each k we have an inclusion mor-

phism ink : (Xk, γk)→ (X, γ) in Dialg(i,T ). This gives rise to a projection
map

p′(ink) : (X, γ)+ → (Xk, γk)
+.

for each k. In order to prove that (X, γ)+ ∼=
∏
k((Xk, γk)+) it suffices to show

that for any (ℒ, j)-dialgebra (A,α) with dialgebra morphisms tk : (A,α)→
(Xk, γk)+ there exists a dialgebra morphism t : (A,α)→ (X, γ) such that for
all k the diagram

(A,α)

(Xk, γk)
+ (X, γ)+

t
tk

p′(ink)

commutes in Dialg(ℒ, j).
By assumption we have A′-morphisms A → Xk for each k. Also,

p′(
∐
kXk) ∼=

∏
k(p
′Xk) in A′. Therefore we find a unique mediating mor-

phism t : A→
∏

(p′X) = p′(
∐
kXk) such that

A

p′Xk p′X

t
tk

p′(ink)

(11.1)

commutes in A′ for all k. If we can show that t is an (ℒ, j)-dialgebra
morphism from (A,α) to (X, γ)+ then we are done. In other words, we aim
to show that

ℒA jA

ℒ(p′(
∐
kXk)) j(p′(

∐
kXk))

ℒt

α

jt

γ+

(11.2)
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commutes in A.
Since j(p′(

∐
kXk)) is isomorphic to the product

∏
k(jp

′Xk), which has
projections jp′(ink) : j(p′(

∐
kXk))→ j(p′Xk), it suffices to prove that

jp′(ink) ◦ jt ◦ α = jp′(ink) ◦ γ+ ◦ℒt (11.3)

for all k. Commutativity of (11.2) then follows from the uniqueness of the
mediating map of a product. Truth of the equation in (11.3) follows from
commutativity of the following diagram:

ℒA jA

ℒ(p′Xk) j(p′Xk)

ℒ(p′(
∐
kXk)) j(p′(

∐
kXk))

α

ℒt

ℒtk

jt

jtk

γ+
k

γ+

ℒp
′ (ink

) jp ′(in
k )

The top square commutes because tk is assumed to be an (ℒ, j)-dialgebra
morphism, and commutativity of the bottom square we have already seen.
Commutativity of the left and right triangles follows from applying ℒ or j
to the commuting diagram in (11.1).

11.14. Proposition. Let {Xk = (Xk, γk) | k ∈ K} be a set of (i,T )-
dialgebras and suppose that Xk  (ϕ,ψ) for all k ∈ K. Then (

∐
k Xk) 

(ϕ,ψ).

Proof. We need to show that (
∐
k Xk)

+ (ϕ,ψ). Lemma 11.13 states that
(
∐
k Xk)

+ is isomorphic to
∏
k(X

+
k ), so it suffices to show that

∏
k(X

+
k ) 

(ϕ,ψ).
Let V : Prop →

∏
k(X

+
k ) be an assignment of the proposition letters.

Define Vk : A → X+
k by sending p to the k-th projection of V (p). By

assumption we have X+
k (ϕ,ψ), so LϕM(X+

k ,Vk) = Lψ M(X+
k ,Vk). It follows

from the fact that products in Dialg(ℒ, j) are computed coordinate-wise that
LϕM(

∏
k(X+

k ),V ) = Lψ M(
∏
k(X+

k ),V ).

11.15. Corollary. Let K ⊆ Dialg(i,T ) be axiomatic. Then K is closed
under taking regular subframes, epimorphic images, and coproducts.

Proof. This follows from Propositions 11.8 and 11.14.

11.2 (Prime) filter extensions

We define prime filter extensions and derive the results we need for the proof
of the Goldblatt-Thomason theorem in the next subsection.
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11.16. Definition. Let X = (X, γ) be an (i,T )-dialgebra. The prime filter
extension of (X, γ) is pℯX := τ̄u((X+)∗). In other words, we define pℯX to
be the frame underlying the dual descriptive frame of the complex algebra
X+. This turns into a functor if we define pℯ as the composition

Dialg(i,T ) Dialg(ℒ, j) Dialg(ℐ,D) Dialg(i,T )
(·)+ (·)∗ τ̄u

Since we assumed that the translation (τ,u) is natural, pℯ defines an endo-
functor Dialg(i,T )→ Dialg(i,T ).

11.17. Example. Let X = (X,≤, R) be a -frame and (X,≤, γ) its rendering
as an (i,Pup)-dialgebra. Then the complex algebra of X is given by (up′(X,≤
), γ+), where γ+ : ℒ(up′(X,≤))→ j(up′(X,≤)) is defined on generators by

γ+( a) = γ−1(ρ(X,≤)( a)) = {x ∈ X | γ(x) ⊆ a}.

Taking its dual (via the duality from Theorem 10.10) yields the (ℐ,Vup)-
dialgebra (X, (γ+)∗). Here X is the Esakia space Pf(up′(X,≤)) = (Xpe,⊆
,T ), where Xpe is the set of prime filters of (X,≤) and T is the topology
generated by sets of the form â = {q ∈ Xpe | a ∈ q} and their complements.1

The map (γ+)∗ sends a prime filter q ∈ X to the closed set

(γ+)∗ : ℐX→ VupX : q 7→
⋂
{â ∈ Clp′upX | γ+( a) ∈ q} (11.4)

Finally, forgetting about the topology yields the prime filter extension of
X, given by pℯX = (Xpe,⊆, γpe), with γpe defined as in (11.4). Viewing this
as a -frame, we get (Xpe,⊆, Rpe), where

qRpep iff for all a ∈ A, Ra ∈ q implies a ∈ p

Note that the composition of taking the dual of a (ℒ, j)-dialgebra and then
the translation gives a way to turn (ℒ, j)-dialgebras into (i,T )-dialgebras
(i.e. we can turn algebras into frames). By assumption τ is a natural
transformation, and therefore τu : Dialg(ℐ,D) → Dialg(i,T ) is a functor.
Since this composition will be used in the proof of the Goldblatt-Thomason
theorem, we give it its own name.

11.18. Definition. Let (·)+ : Dialg(ℒ, j)→ Dialg(i,T ) be the functor given
by (·)+ = τu · (·)∗.

It follows from the fact that u is naturally isomorphic to pf ·P that
u ·Pf is naturally isomorphic to pf. This, in turn, implies that (·)+ sends
regular epis (= surjective functions) to regular monos and monos (= injective
functions) to epis.

1We denote the topology by T instead of τup′(X,≤) because in this section τ already
denotes a translation.
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11.19. Proposition. Let X ∈ Dialg(i,T ) and ϕ,ψ ∈ L(Λ,Ax). Then
pℯX  (ϕ,ψ) implies X  (ϕ,ψ).

Proof. It suffices to construct an injective (ℒ, j)-dialgebra morphism from
X+ to (pℯX)+. The result then follows from Corollary 9.64. As a con-
sequence of the assumptions and the Jónsson-Tarski representation the-
orem in Subsection 10.3 we have an injective (ℒ, j)-dialgebra morphism
((X+)∗)

∗ → (τ̄u((X+)∗)
∗)+. Furthermore, by duality we have X+ ∼= ((X+)∗)

∗.
Combining these yields

X+ ((X+)∗)
∗ (τ̄u((X+)∗)

∗)+ (pℯX)+∼= (11.5)

which is clearly an injective (ℒ, j)-dialgebra morphism, as required.

As an immediate consequence of Proposition 11.19 we obtain the following
corollary.

11.20. Corollary. Let K ⊆ Dialg(i,T ) be axiomatic. Then K reflects prime
filter extensions. That is, for all X ∈ Dialg(i,T ), pℯX ∈ K implies X ∈ K.

11.3 The Goldblatt-Thomason theorem

We work our way towards a Goldblatt-Thomason theorem for the dialgebraic
logics that fit the assumptions of Setup 11.1. We instantiate this to a
Goldblatt-Thomason theorem for -frames.

11.21. Definition. If Φ ⊂ L(Λ) is a collection of axiom pairs and A ∈
Dialg(ℒ, j) then we write A Φ if A (ϕ,ψ) for all (ϕ,ψ) ∈ Φ. Besides,
we let

Alg Φ = {A ∈ Dialg(ℒ, j) |A Φ}

be the collection of (ℒ, j)-dialgebras satisfying Φ. We say that a class
A ⊆ Dialg(ℒ, j) is axiomatic if A = Alg Φ for some collection Φ of L(Λ)-
formulae.

Since Dialg(ℒ, j) is a variety of algebras (Proposition 9.55), a class of
(ℒ, j)-dialgebras is axiomatic if and only if it is a variety. Indeed, if A = {A ∈
Dialg(ℒ, j) |A Φ}, then it is precisely the variety of algebras in Dialg(ℒ, j)
satisfying ϕx = ψx, where (ϕ,ψ) ∈ Φ and ϕx and ψx are the formulae we get
from ϕ and ψ by uniformly replacing the proposition letters with variables
from some set S of variables. Conversely, suppose A is a variety of algebras
given by a set E of equations using variables in S. For each equation ϕ = ψ in
E, let (ϕp, ψp) be the axiom pair we get from replacing the variables in ϕ and
ψ with proposition letters. Then we have A = Alg{(ϕp, ψp) | ϕ = ψ ∈ E}.

For a class K of (i,T )-dialgebras, write K+ = {X+ | X ∈ K} for the
collection of corresponding complex algebras. Then we have:
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11.22. Lemma. A class K ⊆ Dialg(i,T ) is axiomatic if and only if

K = {X ∈ Dialg(i,T ) | X+ ∈ HSP (K+)}. (11.6)

Proof. Suppose K is axiomatic, i.e. K = Frm Φ. Then HSP (K+) ⊆ Alg Φ
so X+ ∈ HSP (K+) implies X ∈ Frm Φ. This proves ⊇ in (11.6). The other
inclusion is obvious. Conversely, suppose (11.6) holds. Since HSP (K+) is
a variety, Birkhoff’s variety theorem states that it is of the from Alg Φ. It
follows that K = Frm Φ.

We now have all the ingredients to prove the Goldblatt-Thomason theorem
for canonical dialgebraic logics.

11.23. Goldblatt-Thomason theorem. Suppose we are within the confines
of Setup 11.1 and the set Prop of proposition letters is infinite. Let K ⊆
Dialg(i,T ) be closed under prime filter extensions. Then K is axiomatic if
and only if K reflects prime filter extensions and is closed under disjoint
unions, generated subframes and epimorphic images.

Proof. The implication from left to right follows from Corollaries 11.15
and 11.20. For the converse, by Lemma 11.22 it suffices to prove that
K = {X ∈ Dialg(i,T ) | X+ ∈ HSP (K+)}. So suppose X = (X, γ) is a
(i,T )-dialgebra such that X+ ∈ HSP (K+). Then there is a subset {Zk | k ∈
K} ⊆ K such that X+ is the homomorphic image of a sub-dialgebra A of
the product of the Z+

k . In a diagram:

X+ A
∏

Z+
i

surjective injective

Since
∏

Z+
i = (

∐
Zi)

+ by Lemma 11.13, dually this yields

(X+)+ A+

((∐
Zi
)+)

+

regular subframe epimorphic image

Here we use the fact that s sends regular epis to regular monos, and monos
to epis. We have

∐
Zi ∈ K because K is closed under coproducts, and(

(
∐

Zi)
+
)

+
∈ K because K is closed under prime filter extensions. Further-

more, A+ ∈ K since K is closed under epimorphic images and (X+)+ ∈ K
for K is closed under regular subframes. Finally, since K reflects prime filter
extensions we find X ∈ K.

We can instantiate this theorem to our examples to obtain Goldblatt-
Thomason theorems for a wide variety of modal intuitionistic logics from
the literature. In particular, we obtain the following theorem for -frames.
Other applications are given in Section 12.
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11.24. Theorem. Assume that Prop is infinite. Let K ⊆WZ be a class of
-frames that is closed under prime filter extensions. Then K is axiomatic if

and only if K reflects prime filter extensions and is closed under coproducts,
regular subframes and epimorphic images.

Proof. The setup for interpreting IPC in (i,Pup)-dialgebras (= -frames)
satisfies the assumptions made in Setup 11.1. In particular, we have seen a
duality between K and Vup in Subsection 10.1, and in Example 10.34 we
showed that ρ̄ ◦ τ = iduVup . Therefore we can apply Theorem 11.23.

Using straightforward adaptations we can prove a Goldblatt-Thomason
theorem for H -frames by Božić and Došen [79] as well.

12 Applications

We study the modal intuitionistic logics given in Subsection 9.3 and the logic
from Section 8 using their dialgebraic perspective and the theory developed
thus far. Each subsection investigates a logic, and is roughly structured as
follows.

1. We instantiate the definitions of a generated subframe, epimorphic
image, and coproduct.

2. We give a concrete definition of descriptive frames, in terms of descrip-
tive intuitionistic Kripke frames or descriptive rings of upsets with
extra structure.

3. We show how to view these descriptive frames dialgebraically. In each
case we construct a functor D : ES→ Pries (except in Subsection 12.5,
where D is of type Pries→ Pries) such that the category of descriptive
frames is isomorphic to Dialg(ℐ,D). (Recall that ℐ is the inclusion of
ES into Pries.)

4. We prove that the functor D is dual to the functor giving the algebraic
semantics of the logic under consideration. As a consequence of
Theorem 10.5 this gives rise to a dual equivalence between the algebraic
semantics and the descriptive semantics.

5. We then use this to prove a Hennessy-Milner theorem. For some
logics we give a third equivalence notion (besides logical equivalence
and behavioural equivalence) and include it in the Hennessy-Milner
theorem.

6. We give a translation from descriptive to non-descriptive semantics,
and where possible we show canonicity. We apply the theory from
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Sections 10 and 11 to obtain a Jónsson-Tarski representation theorem
completeness, and a Goldblatt-Thomason theorem.

The subsections of this section do not depend on each other and can be read
(or skipped) in any order.

12.1 Intuitionistic logic with n-ary diamonds

We study the extension of intuitionistic logic with an n-ary diamond-like
operator, introduced in Subsection 9.3.2. Recall that n is some arbitrary but
fixed natural number. In the special cases n = 1 and n = 2 the results in this
section specialise to the extension of intuitionistic logic with a unary diamond
interpreted in -frames [446] and a binary fusion operator as in [91, 84, 86].

Regular subframes and epimorphic images can be defined via n-frame
morphisms that are either embeddings or surjections between the underlying
posets. Coproducts are defined in the same way as for -frames.

Se work towards a duality for the algebraic semantics of IPC n .

12.1. Definition. A general n-frame is a tuple (X,≤, R,A) where (X,≤
, R) is a n-frame and A ⊆ Up(X,≤) is a collection of upsets of (X,≤) such
that (X,≤, A) is a general intuitionistic Kripke frame and A is closed under
the map R : (Up(X,≤))n → Up(X,≤) given by

R(a1, . . . , an) = {x ∈ X | ∃y1, . . . , yn ∈ X s.t.

(x, y1, . . . , yn) ∈ R and yi ∈ ai for all i}

A general n-frame morphism from (X1,≤1, R1, A1) to (X2,≤2, R2, A2) is a

n-frame morphism f : (X1,≤1, R1)→ (X2,≤2, R2) such that f−1(a2) ∈ A1

for all a2 ∈ A2.

12.2. Definition. A general n-frame (X,≤, R,A) is called descriptive if
(X,≤, A) is a descriptive intuitionistic Kripke frame and we have

(x, y1, . . . , yn) ∈ R iff ∀a1, . . . , an ∈ A
(

(y1 ∈ a1 and . . . and yn ∈ an)

implies x ∈ R(a1, . . . , an)
)
.

We write D- nFrm for the category of descriptive n-frames and general

n-frame morphisms. Models based on descriptive n-frames are defined as
expected.

The condition from Definition 12.2 corresponds to the tightness condition
for normal modal logic over a classical base [70, Definition 5.65]. Our next
goal is to model descriptive -frames as dialgebras. We construct a functor
Vdn : ES→ Pries enabling this.
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Recall that Clpdn : Pries→ Set is the contravariant functor that sends
a Priestley space to its set of downset. We write Clp′dn : ES→ Set for its
restriction to Esakia spaces.

If X is an Esakia space, then we write Xn for its n-fold product, which is
given by the n-fold product of the underlying Stone space ordered pointwise.
We write πi : Xn → X for the i-th projection The topology on Xn is generated
by sets of the form π−1

i (d), where d is open in X.

12.3. Lemma. Let X be an Esakia space. Then the topology on Xn is
generated by the basis

{(a1 ∩ b1)× · · · × (an ∩ bn) | a1, . . . , an ∈ Clp′upX, b1, . . . , bn ∈ Clp′dnX}.

Proof. The sets in the given basis are open in the product topology on X
because

(a1 ∩ b1)× · · · × (an ∩ bn) = π−1
1 (a1 ∩ b1) ∩ · · · ∩ π−1

n (an ∩ bn).

Conversely, let π−1
i (d) be an arbitrary generating open. Then d is open in X,

and since the topology of X is genrated by a subbase of clopen upsets and
clopen downsets we have d =

⋃
i∈I(ai∩bi), where ai ∈ Clp′upX, bi ∈ Clp′dnX

and I is some (potentially infinite) index set. (Here we use the fact that the
finite intersection of clopen upsets is a clopen upset, and similar for clopen
downsets.) But this means that

π−1
i (d) =

⋃
i∈I

X × · · · ×X︸ ︷︷ ︸
i− 1 copies

×(ai ∩ bi)×X × · · · ×X︸ ︷︷ ︸
n− i coplies

where X is the (clopen) set underlying X.
Finally, to see that the given set forms a basis (rather than a subbase)

we note that it is closed under finite intersections. Indeed

[(a1 ∩ b1)× · · · × (an ∩ bn)] ∩ [(a′1 ∩ b′1)× · · · × (a′n ∩ b′n)]

= ((a1 ∩ a′1) ∩ (b1 ∩ b′1))× · · · × ((an ∩ a′n) ∩ (bn ∩ b′n))

which is again in the given basis.

12.4. Definition. For an Esakia space X, define VdnX as the collection of
closed downsets of Xn, ordered by inclusion and topologised by the clopen
subbase

(a1, . . . , an) = {c ∈ VdnX | c ∩ (a1 × · · · × an) 6= ∅}
(b1, . . . , bn) = {c ∈ VdnX | πi[c] ⊆ bi for some 1 ≤ i ≤ n}

where a1, . . . , an range over the clopen upsets and b1, . . . , bn over the clopen
downsets of X. If f : X1 → X2 is an Esakia morphism, then we define
Vdnf : VdnX1 → VdnX2 by

Vdnf(c) = {(x′1, . . . , x′n) ∈ Xn2 | ∃x1, . . . , xn ∈ X1 s.t. (x1, . . . , xn) ∈ c
and x′i ≤ f(xi) for each 1 ≤ i ≤ n}.
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12.5. Proposition. The assignment Vdn from Definition 12.4 defines a
functor ES→ Pries.

Proof. We verify that Vdn is well defined. Proving functoriality is routine.
Suppose X is an Esakia space. To see that VdnX is a Priestley space we

have to show that it is compact and satisfies the Priestley separation axiom.
For the latter, suppose c, c′ ∈ VdnX and c 6⊆ c′. Then there exists an element
(x1, . . . , xn) ∈ c such that (x1, . . . , xn) /∈ c′. Since c′ is assumed to be closed
in Xn, we can find an open set a of Xn containing (x1, . . . , xn) disjoint from
c′. Then we have

↑{(x1, . . . , xn)} =
⋂
{a1 × · · · × an | xi ∈ ai, ai ∈ ClpupX}

and the intersection is disjoint from c′. Since Xn is a Stone space and the
intersection is directed, this yields a clopen upsets a1, . . . , an ∈ ClpupX
such that a1 × · · · × an contains (x1, . . . , xn) and is disjoint from c′. This
implies that c ∈ (a1, . . . , an) while c′ /∈ (a1, . . . , an). It is obvious that

(a1, . . . , an) is an upset in VdnX, so the Priestley separation axiom is
satisfied.

For compactness, suppose that

VdnX ⊆
⋃
k∈K

(ak,1, . . . , ak,n) ∪
⋃
`∈L

(b`,1, . . . , b`,n) (12.1)

is an open cover of VdnX. Let c := Xn \
⋃
k∈K(ak,1 × · · · × ak,n). By

construction c is a closed downset and c /∈ (ak,1, . . . , ak,n) for all k ∈ K.
So there must be some `′ ∈ L such that c ∈ (b`′,1, . . . , b`′,n). This implies

Xn ⊆
⋃
k∈K

(ak,1 × · · · × ak,n) ∪
⋃
i=1n

π−1
i (b`′,i).

Compactness of Xn yields a finite K ′ ⊆ K such that

Xn ⊆
⋃
k∈K′

(ak,1 × · · · × ak,n) ∪
⋃
i=1n

π−1
i (b`′,i),

and it then follows from an easy verification that⋃
k∈K′

(ak,1, . . . , ak,n) ∪ (b`′,1, . . . , b`′,n)

is a finite subcover of the cover in (12.1).
Finally, we show that Vdn is well defined on morphisms. Let f : X1 → X2

be an Esakia morphism. If c1 ∈ VdnX1 then Vdnf(c1) is the downward
closure of the image of c under fn : Xn1 → Xn2 . Since continuous functions
between Stone spaces send closed sets to closed sets this is closed again.
Moreover, its downwards closure is closed, because the downward closure of
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a closed set in an Esakia space is automatically closed. So Vdnf(c) ∈ VdnX2.
It is easy to see that Vdnf is order-preserving, using the fact that VdnX
and VdnX′ are ordered by inclusion. For continuity, it suffices to show that
(Vdnf)−1( (a′1, . . . , a

′
n)) is clopen in VdnX for all a1, . . . , a

′
n ∈ Clp′upX′. (A

similar statement for opens of the form (b′1, . . . , b
′
n) then follows from taking

complements.) So compute

(Vdnf)−1( (a′1, . . . , a
′
n)) = {c ∈ VdnX | Vdnf(c) ∩ (a′1 × · · · × a′n) 6= ∅}

= {c ∈ VdnX | f [c] ∩ (a′1 × · · · × a′n) 6= ∅}
= {c ∈ VdnX | c ∩ (f−1(a′1)× · · · × f−1(a′n)) 6= ∅}
= (f−1(a′1), . . . , f−1(a′n))

This is clopen in VdnX because each of the f−1(a′i) is a clopen upset of
X.

12.6. Theorem. We have D- nFrm ∼= Dialg(ℐ,Vdn).

Proof. The proof is similar to that of Theorem 9.21.

Our next objective is to show that Dialg(ℐ,Vdn) is dually equivalent
to Dialg(ℒn, j). We do so by defining a natural isomorphism ξ : Vdn →
Pf ·ℒn ·Clp′up.

12.7. Definition. Let X be an Esakia space and c ∈ VdnX. Define the prime
filter ξX(c) (viewed as a morphism ℒn(Clp′upX)→ 2) on generators by

ξX(c) : ℒn(Clp′upX)→ 2

: n(a1, . . . , an) 7→
{
> if c ∩ (a1 × · · · × an) 6= ∅
⊥ otherwise

This is easily seen to be well defined. So we obtain an assignment ξ : Vdn →
Pf ·ℒn ·Clp′up.

12.8. Lemma. The assignment ξ from Definition 12.7 defines a natural
transformation.

Proof. First we verify that the components of ξ are morphisms in Pries.
Let X be an Esakia space. To see that ξX is order-preserving, suppose
c, c′ ∈ VdnX and c ⊆ c′. Then it follows immediately from the definition
of ξX that ξX(c)( (a1, . . . , an)) ≤ ξX(c′)( (a1, . . . , an)). Viewing the prime
filters as sets rather than homomorphisms, this implies ξX(c) ⊆ ξX(c′), so ξX
is order-preserving.

The topology on Pf(ℒn(Clp′upX)) is generated by sets of the form
θ( (a1, . . . , an)) = {q ∈ Pf(ℒn(Clp′upX)) | (a1, . . . , an) ∈ q}, and their
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complements. Continuity of ξX follows from the fact that

ξ−1
X (θ( (a1, . . . , an))) = {c ∈ VdnX | ξX(c) ∈ θ( (a1, . . . , an))}

= {c ∈ VdnX | (a1, . . . , an) ∈ ξX(c)}
= (a1, . . . , an)

which is clopen in VdnX.
Lastly we prove naturality. Let f : X→ X′ be an Esakia homomorphism.

We need to show that

VdnX Pf(ℒn(Clp′upX))

VdnX′ Pf(ℒn(Clp′upX′))

ξX

Vdnf (ℒn(f−1))−1

ξX′

commutes. To this end, let c ∈ VdnX and (a′1, . . . , a
′
n) ∈ ℒn(Clp′upX′).

Then we have

(a′1, . . . , a
′
n) ∈ (ℒn(f−1))−1(ξX(c))

iff ℒn(f−1)( (a′1, . . . , a
′
n)) ∈ ξX(c)

iff (f−1(a′1), . . . , f−1(a′n)) ∈ ξX(c)

iff c ∈ (f−1(a′1), . . . , f−1(a′n))

iff Vdnf(c) ∈ (a′1, . . . , a
′
n)

iff (a′1, . . . , a
′
n) ∈ ξX′(Vdnf(c))

It follows that the diagram commutes, as desired.

Next we show that ξ is isomorphic on components. The proof of surjec-
tivity in the next lemma is surprisingly comlicated.

12.9. Lemma. The natural transformation ξ is a natural isomorphism.

Proof. We need to show that the components of ξ are isomorphism. We
already know that they are Priestley morphisms. Since a bijective continuous
function between Stone spaces is automatically a homeomorphism, it suffices
to show that the components of ξ are bijective embeddings.

Let X be an Esakia space and c, c′ ∈ VdnX. If c 6⊆ c′ then by the Priestley
separation axiom there exist a1, . . . , an ∈ Clp′upX such that c ∈ (a1, . . . , an)
and c′ ∈ (a1, . . . , an). This implies that (a1, . . . , an) ∈ ξX(c) while

(a1, . . . , an) /∈ ξX(c′). Therefore ξX(c) 6⊆ ξX(c′). Since we already know that
ξX is order-preserving, this proves that ξX is an embedding.

It follows from the fact that ξX is an embedding and the fact that
VdnX is partially ordered that ξX is injective. For surjectivity, suppose
q ∈ Pf(ℒn(Clp′upX)). Define

cq := Xn \
⋃
{a1 × · · · × an | (a1, . . . , an) /∈ q}.
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Then we have ξX(cq) ⊆ q by construction. For the converse inclusion, suppose
(a1, . . . , an) /∈ ξX(cq). Then we have

a1 × · · · × an ⊆
⋃
{d1 × · · · × dn | (d1, . . . , dn) /∈ q} (12.2)

We claim that there exist c1, . . . , cn ∈ Clp′upX such that a1 ⊆ c1, . . . , an ⊆ cn
and (c1, . . . , cn) /∈ q. To prove this, we use the following claim.

12.10. Claim. For each m ∈ {1, . . . , n−1} and (x1, . . . , xm) ∈ a1×· · ·×am,
we can find clopen upsets d1, . . . , dm, cm+1, . . . , cn such that xi ∈ di for every
i ∈ {1, . . . ,m} and ai ⊆ ci for every i ∈ {m+ 1, . . . , n}.

Proof of claim. We proof the claim by induction on −m. For the base case,
let ~x = (x1, . . . , xn−1) ∈ a1 × · · · × an−1. It follows from (12.2) that for
each y ∈ an there exist dy1, . . . , d

y
n ∈ Clp′upX such that (x1, . . . , xn−1, y) ∈

dy1 × · · · × d
y
n and (dy1, . . . , d

y
n) /∈ q. This implies that an ⊆

⋃
y∈an d

y
n, and

since this is an open cover of a closed set in X we can find a finite subcover
indexed by some finite set Y ⊆ an. (So an ⊆

⋃
y∈Y d

y
n.) Now set

di :=
⋂
{dyi | y ∈ Y } for i ∈ {1, . . . , n− 1}

cn :=
⋃
{dyn | y ∈ Y }

Then xi ∈ di for all i ∈ {1, . . . , n−1} and an ⊆ cn by construction. Moreover,
using the fact that distributes over finite disjunctions, and by monotonicity,
we find

(d1, . . . , dn−1, cn) =
∨
{ (d1, . . . , dn−1, d

y
n) | y ∈ Y }

≤
∨
{ (dy1, . . . , d

y
n−1, d

y
n) | y ∈ Y }

The latter is not in q because q is a prime filter, and therefore

(d1, . . . , dn−1, cn) /∈ q.

Next we prove the inductive step. Suppose m ∈ {1, . . . , n − 2} and
(x1, . . . , xm) ∈ a1 × · · · × am. By the inductive hypothesis, for each y ∈
xm+1 we can find clopen upsets dy1, . . . , d

y
m+1, c

y
m+2, . . . , c

y
n ∈ Clp′upX such

that x1 ∈ d1, . . . , xm ∈ dm, y ∈ dm+1 and am+2 ⊆ cm+2, . . . , an ⊆ cn and
(dy1, . . . , d

y
m+1, c

y
m+2, . . . , c

y
n) /∈ q. Like in the base case, we get an open

cover am+1 ⊆
⋃
y∈am+1

dym+1 hence a finite subcover indexed by some finite
Y ⊆ am+1. Define

di :=
⋂
{dyi | y ∈ Y } for i ∈ {1, . . . ,m}

cm+1 :=
⋃
{dym+1 | y ∈ Y }

ci :=
⋂
{cyi | y ∈ Y } for i ∈ {m+ 2, . . . , n}
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Then xi ∈ di for all i ∈ {1, . . . ,m} and ai ⊆ ci for all i ∈ {m+ 1, . . . , n} and
akin to the base case we find (d1, . . . , dm, cm+1, . . . , cn) /∈ q. This proves
the claim.

Now, as a consequence of the claim, for each x ∈ a1 we can find clopen
upsets dx, cx2 , . . . , c

x
n such that x ∈ dx and ai ⊆ cxi for all i ∈ {2, . . . , n} and

(dx, cx2 , . . . , c
x
n) /∈ q. Then we have an open cover a1 ⊆

⋃
x∈a1

dx, hence a
finite subcover indexed by some finite Y ⊆ a1. Define

c1 :=
⋃
{dx | x ∈ Y }

ci :=
⋂
{cxi | x ∈ Y } for i ∈ {2, . . . , n}

Then by construction ai ⊆ ci for all i ∈ {1, . . . , n} and it can be shown in a
similar way as in the base case of the claim that (c1, . . . , cn) /∈ q.

This proves that ξX(cq) = q, so that ξX is surjective, hence bijective.

12.11. Theorem. We have a dual equivalence HAnO ≡op D- nFrm.

Proof. It follows from the natural isomorphism ξ and Theorem 10.5 that
Dialg(ℒn, j) ≡op Dialg(ℐ,Vdn). Combining this with the fact that HAnO ∼=
Dialg(Dn, j) (Theorem 9.27) and D- nFrm ∼= Dialg(ℐ,Vdn) (Theorem 12.6)
yields the duality.

We can use the duality to prove a Hennessy-Milner theorem. As we
did for -frames in Subsection 10.2 we use a third equivalence notion: -
bisimulation. This is closely related to the notion of an intuitionistic Kripke
bisimulation from Definition 12.12, but slightly adapted to ensure that
behavioural equivalence still implies bisimilarity. (This is necessary because
the morphisms between (descriptive) -frames are not standard bounded
morphisms.)

12.12. Definition. Let M = (X,≤, R, V ) and M′ = (X ′,≤′, R′, V ′) be two

n-models. A -bisimulation between M and M′ is a relation B ⊆ X ×X ′
such that for all (x, x′) ∈ B:

1. x ∈ V (p) if and only if x′ ∈ V ′(p), for all p ∈ Prop;

2. If x ≤ y then ∃y′ ∈ X ′ such that (y, y′) ∈ B and x′ ≤′ y′;

3. If x′ ≤′ y′ then ∃y ∈ X such that (y, y′) ∈ B and x ≤ y;

4. If (x, y1, . . . , yn) ∈ R then ∃z1, . . . , zn ∈ X and ∃z′1, . . . , z′n ∈ X ′ such
that yi ≤ zi and ziBz

′
i for all i ∈ {1, . . . , n}, and (x′, z′1, . . . , z

′
n) ∈ R′;

5. If (x′, y′1, . . . , y
′
n) ∈ R′ then ∃z′1, . . . , z′n ∈ X ′ and ∃z1, . . . , zn ∈ X such

that y′i ≤ z′i and ziBz
′
i for all i ∈ {1, . . . , n}, and (x, z1, . . . , zn) ∈ R′.



Applications 299

Two states x1 ∈ X1 and x2 ∈ X2 are called -bisimilar if there exists a
-bisimulation linking them.

A -bisimulation between two descriptive n-models is defined as an
intuitionistic Kripke bisimulation between the underlying (non-descriptive)

-models.

It is easy to see that bisimilar states are logically equivalent. Moreover,
by design behavioural equivalence implies bisimilarity (in the same way as
in Theorem 10.15). Therefore, applying Theorem 10.13 we obtain:

12.13. Theorem. Let x1 and x2 be two states in two descriptive n-models
M1 and M2. Then the following are equivalent:

1. x1 and x2 are logically equivalent;

2. x1 and x2 are -bisimilar;

3. x1 and x2 are behaviourally equivalent.

If M = (X,≤, R, V ) is a finite n-model, then augmenting it with the
set of all upsets of (X,≤) turns it into a descriptive n-model. Using this,
we can obtain the following Hennessy-Milner result for finite n-models from
Theorem 12.13.

12.14. Corollary. Let x1 and x2 be two states in two finite n-models M1

and M2. Then x1 and x2 are logically equivalent if and only if they are
-bisimilar.

We will now show that the logic IPC n is canonical with respect to the
class of n-frames. Consider the following translation. Let u : Pries→ Pos
be the obvious forgetful functor and define:

12.15. Definition. Define τ : u ·Vdn → Pdn ·u′ on components by

τX : u(VdnX)→ Pdn(u′X) : c 7→ c.

Then (u, τ) defines a translation from Dialg(ℐ,Vdn) to Dialg(i,Pn).

If (X,≤, R,A) is a descriptive n-frame, then the translation simply
sends it to the n-frame (X,≤, R). Furthermore, the translation is easily
seen to be natural. In order to prove completeness, all we have to do is show
that ρ̄X ◦ τX = iduVdnX for every Esakia space X. Let us begin by computing
the action of ρ̄ on components. Recall that its components are given by

Pdn(u′X) pf(up(Pdn(u′X))) pf(ℒn(up′(u′X)))

pf(ℒM(Clp′upX)) ∼= uVdnX

ηPdnu′X ρ−1
u′X

(ℒnµ′X)−1
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The isomorphism on the right is given by ξ−1, so it sendsQ ∈ pf(ℒn(Clp′upX))
to the set Xn \

⋃
{a1 × · · · × an | (a1, . . . , an) /∈ Q}.

Let d ∈ Pdn(u′X) and a1, . . . , an ∈ Clp′upX. Then we have

ρ̄(d) ∩ (a1 × · · · × an) = ∅ iff (a1, . . . , an) /∈ (ℒnµ
′
X)−1(ρ−1

u′X(ηPdnu′X(d)))

iff ρu′X(ℒnµ
′
X( (a1, . . . , an))) /∈ ηPdnu′X(d)

iff ρu′X( (a1, . . . , an)) /∈ ηPdnu′X(d)

iff d /∈ ρu′X( (a1, . . . , an))

iff d ∩ (a1 × · · · × an) ∩ ∅

So ρ̄X simply sends d ∈ Pdn(u′X) to the smallest closed downset containing
it, viewed as an element in u(VdnX).

Using this we can prove the following lemma.

12.16. Lemma. For every Esakia space X we have ρ̄X ◦ τX = iduDX.

Proof. Let c ∈ VdnX. Then ρ̄X(τX(c)) = ρ̄(c) = c.

So IPC n is canonical with respect to n-frames. As a consequence of
Theorems 10.35 and 10.48 we obtain the following two theorems.

12.17. Theorem. Every HAnO operator embeds into the complex algebra of
a n-frame.

12.18. Theorem. The logic IPC n is complete with respect to the class of

n-frames.

Moreover, we can apply Theorem 11.23 to obtain a Goldblatt-Thomason
theorem for n-frames. Before stating this, we give the notion of a prime filter
extension of a n-frame that one obtains from unravelling Definition 11.16.

12.19. Definition. The prime filter extension of a n-frame X = (X,≤, R)
is the n-frame pℯX = (Xpe,⊆, Rpe), where Xpe is the set of prime filters
on (X,≤) and Rpe is given by

(p, q1, . . . , qn) ∈ Rpe iff ∀a1, . . . , an ∈ up′(X,≤),

ai ∈ qi for all i implies p ∈ R(a1, . . . , an) ∈ p.

12.20. Theorem. Assume that Prop is infinite and let K ⊆ nFrm be a
class of n-frames that is closed under prime filter extensions. Then K is
axiomatic if and only if K is closed under coproducts, regular subframes and
epimorphic images, and reflects prime filter extensions.
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12.2 Monotone modal intuitionistic logic

We investigate duality for monotone modal intuitionistic logic, discussed in
Subsection 9.3.3. First, let us translate the notions of generated subframe,
epimorphic image and coproduct to intuitionistic monotone frames.

12.21. Definition. Let X = (X,≤, N) and X′ = (X ′,≤′, N ′) be two intu-
itionistic monotone frames. Then we say that X is a regular subframe of X′ if
there exists an intuitionistic monotone frame morphism f : X→ X′ such that
f : (X,≤) → (X ′,≤′) is an embedding. We call X is an epimorphic image
of X′ if there exists an intuitionistic monotone frame morphism e : X′ → X
such that e : X ′ → X is surjective.

12.22. Definition. Let {(Xk,≤k, Nk) | k ∈ K} be a collection of intuitionis-
tic monotone frames. Then their coproduct is given by

∐
k∈K(Xk,≤k, Nk) =

(X,≤, N), where (X,≤) is the coproduct of the intuitionistic Kripke frames
(Xk,≤k) and N is given by

a ∈ N(xk) iff a ∩Xk ∈ Nk(xk)

for all a ∈ Up(X,≤) and k ∈ K.

As a consequence of Corollary 11.15 we know that every axiomatic class of
intuitionistic monotone frames is closed under constructing regular subframes,
epimorphic images and coproducts.

We now work our way towards a duality and prove canonicity of IPCM
with respect to intuitionistic monotone frames. This will give rise to a
Hennessy-Milner theorem, a Jónsson-Tarski representation theorem, com-
pleteness, prime filter extensions, and a Goldblatt-Thomason theorem.

12.23. Definition. A general intuitionistic monotone frame is a tuple
(X,≤, N,A) where (X,≤, N) is an intuitionistic monotone frame and A ⊆
Up(X,≤) is a collection of upsets of (X,≤) such that (X,≤, A) is a general
intuitionistic Kripke frame and A is closed under the map

MN : UpX → UpX : a 7→ {x ∈ X | a ∈ N(x)}.

A general (intuitionistic monotone) neighbourhood morphism between (X,≤
, N,A) and (X ′,≤′, N ′, A′) is an intuitionistic neighbourhood morphism
f : (X,≤, N)→ (X ′,≤′, N ′) that satisfies f−1(a′) ∈ A for all a′ ∈ A′.

Based on this definition of general frame, we can give different definitions
of descriptive frames. Here we consider a notion inspired by σ canonical
extension of a (distributive) lattice [240, 171, 170, 172]. An alternative
approach, based on the π canonical extension, is discussed in Remark 12.41
below.

We say that an upset c in a general intuitionistic monotone frame (X,≤
, N,A) is closed if it is the intersection of elements in A.
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12.24. Definition. A σ-descriptive intuitionistic monotone frame is a
general intuitionistic monotone frame (X,≤, N,A) such that for all x ∈ X
and d ∈ UpX we have: d ∈ N(x) if and only if there exists a closed c ∈ UpX
such that

• c ⊆ d; and

• for all a ∈ A, c ⊆ a implies a ∈ N(x).

We write σD-IMF for the category of σ-descriptive intuitionistic monotone
frames and general frame morphisms.

We show how to view these as dialgebras.

12.25. Definition. For an Esakia space X, let DX be the collection of subsets
W ⊆ UpX such that an upset d of X is in W if and only if there exists a
closed upset c such that

• c ⊆ d; and

• for all a ∈ Clp′upX, c ⊆ a implies a ∈W .

(In particular, this implies that W is upward closed under inclusion in UpX.)
Order DX by inclusion, and equip it with the topology generated by the sets

a = {W ∈ DX | a ∈W}, b = {W ∈ DX | X \ b /∈W},

where a ranges over the clopen upsets and b over the clopen downsets of X.
If f : X→ X′ is an Esakia morphism, we define

Df : DX→ DX′ : W 7→ {d′ ∈ UpX′ | f−1(d′) ∈W}.

12.26. Proposition. The assignment D from Definition 12.25 defines a
functor.

Proof. We start by proving that DX is a Priestley space whenever X is
an Esakia space. Suppose W,W ′ ∈ DX and W 6⊆ W ′. Then there must
exists a clopen upset a such that a ∈ W and a /∈ W ′, so that W ∈ a and
W ′ /∈ a. Since the elements of DX are ordered by inclusion, a is an upset.
It is clopen by definition, so we have shown that DX satisfies the Priestley
separation axiom.

For compactness, suppose we have an open cover

DX ⊆
⋃
k∈K

ak ∪
⋃
`∈L

b`. (12.3)

Construct an element W ∈ DX by taking the clopen upsets {a ∈ Clp′upX |
∃` ∈ L s.t. X \ b` ⊆ a} and adding closed and arbitrary upsets according to
the clauses of Definition 12.25. Then W /∈ b` for all ` ∈ L, so there must
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exists a k′ ∈ K such that W ∈ ak′ . This implies that there exists an `′ ∈ L
such that X \ b`′ ⊆ ak′ . Since elements of DX are upclosed under inclusion,
if they are not in b`′ then they must be in ak′ , so ak′ ∪ b`′ is a finite
subcover of the cover in (12.3).

The proof that D is well defined on morphisms is similar to the argument
given in [146, Subsection 2.5]. Functoriality follows from the fact that the
categories under consideration are concrete, and composition of morphisms
is defined as in Set.

12.27. Theorem. σD-IMF ∼= Dialg(ℐ,D).

Proof. The object-part of the theorem follows directly from the definition,
keeping in mind that descriptive intuitionistic Kripke frames correspond to
Esakia spaces. The morphism-part of the theorem follows from a computation
similar to that in Theorem 9.21 or Theorem 9.30.

Our next goal is to show that HAM and σD-IMF are dually equivalent.
We do so by using their dialgebraic perspectives, and proving a duality of
functors.

12.28. Definition. Let X be an Esakia space. For each W ∈ DX, define
a prime filter (viewed as homomorphism) ξX(W ) : ℒM(Clp′upX) → 2 on
generators by

ξX(W )( a) =

{
> if a ∈W
⊥ otherwise

This gives rise to a map ξX : DX→ Pf(ℒM(Clp′upX)). We write ξ for the
induced transformation D→ Pf ·ℒM ·Clp′up.

It is easy to show that ξX is well defined for each Esakia space X, by
proving that the images of the generators under ξX satisfy monotonicity. That
is, if a ⊆ b then ξX(W )( a) ⊆ ξX(W )( b). Furthermore, if W,W ′ ∈ DX and
W ⊆W ′, then clearly ξX(W ) ⊆ ξX(W ′), so ξX is order-preserving. It is also
continuous because the topology on Pf(ℒM(Clp′upX)) is generated by sets
of the form

â = {Q ∈ Pf(ℒM(Clp′upX)) | a ∈ Q},

and their complements, where a ∈ Clp′upX, and ξ−1
X ( â) = {W ∈ DX | a ∈

W} = a which is clopen in DX.

Thus, we have established that ξ is indeed a transformation. Next let us
prove naturality.

12.29. Lemma. The assignment ξ : D → Pf · ℒM · Clp′up is a natural
transformation.
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Proof. We have seen above that it is a transformation, so we only need to
show naturality. That is, for an Esakia morphism f : X1 → X2 we need to
show that

DX1 Pf(ℒM(Clp′upX1))

DX1 Pf(ℒM(Clp′upX1))

ξX1

Df (ℒM(f−1))−1

ξX1

commutes. To this end, let W1 ∈ DX1 and a2 ∈ Clp′upX2. Then we have

a2 ∈ ξX2(Df(W1)) iff a2 ∈ Df(W1)

iff f−1(a2) ∈W1

iff f−1(a2) ∈ ξX1(W1)

iff (ℒ(f−1))( a2) ∈ ξX1(W1)

iff a2 ∈ (ℒ(f−1))−1(ξX1(W1))

Since ξX2(Df(W1)) and (ℒM(f−1))−1(ξX1(W1)) contain the same elements
of the form a2, they are the same prime filters.

12.30. Lemma. The assignment ξ : D → Pf · ℒM · Clp′up is a natural
isomorphism.

Proof. As in Lemma 10.8, it suffices to prove that for each Esakia space X,
ξX is an order-embedding, continuous, and a bijection. We already argued
that ξX is continuous and preserves the order. To show that it also reflects
it, suppose W,W ′ ∈ DX are such that W 6⊆W ′. Since elements of DX are
determined uniquely by the clopen upsets they contain, this means that there
exists a clopen upset a ∈ Clp′upX such that a ∈W but a /∈W ′. Therefore
ξX(W ) 6⊆ ξX(W ′).

For injectivity, suppose W 6= W ′. Then without loss of generality there
exists a clopen upset a such that a ∈W and a /∈W ′, so that ξX(W ) 6= ξX(W ′).

For surjectivity, let Q be any prime filter in Pf(ℒM(Clp′upX)). Define
WQ ⊆ UpX by

• If a ∈ Clp′upX, let a ∈WQ iff a ∈ Q;

• If c is a closed upset of X, let c ∈WQ iff every upclosed clopen superset
of c is in WQ;

• If d is any upclosed subset of X, let d ∈ WQ if there exists a closed
upset c with c ⊆ d and c ∈WQ.

If a, b ∈ Clp′upX and a ⊆ b, then a ≤ b in ℒM(Clp′upX). Therefore, if
a ⊆ b and a ∈ WQ we also have b ∈ WQ, and hence WQ is upclosed under
inclusion in UpX. Furthermore, it follows from the construction of WQ that
it is an element of DX. Also by construction we have a ∈ Q if and only if
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a ∈ WQ, for all a ∈ Clp′upX. This implies ξX(WQ) = Q, hence surjectivity
of ξX.

12.31. Theorem. We have a dual equivalence HAM ≡op σD-IMF.

Proof. The assignment ξ from Definition 12.28 was shown to be a natural
isomorphism, so by Theorem 10.5 Dialg(ℒM, j) ≡op Dialg(ℐ,D). The proof
is completed by remembering that HAM ∼= Dialg(ℒM, j) and σD-IMF ∼=
Dialg(ℐ,D), from Theorems 9.32 and 12.27.

The duality from Theorem 12.31 gives rise to a Hennessy-Milner theorem.
As we did for -frames at the end of Subsection 10.2 we consider a third
notion of bisimulation, and use the result from Theorem 10.13 to obtain a
Hennessy-Milner theorem for this third notion as well. Thus, guided by [209,
Definition 4.10] we define an intuitionistic monotone bisimulation as follows:

12.32. Definition. Let M1 = (X1,≤1, N1, V1) and M2 = (X2,≤2, N2, V2) be
two intuitionistic monotone models. An intuitionistic monotone bisimulation
between M1 and M2 is a relation B ⊆ X1×X2 such that for all (x1, x2) ∈ B:

1. x1 ∈ V (p) if and only if x2 ∈ V2(p), for all p ∈ Prop;

2. If x1 ≤1 y1 then ∃y2 ∈ X2 such that (y1, y2) ∈ B and x2 ≤2 y2;

3. If x2 ≤2 y2 then ∃y1 ∈ X1 such that (y1, y2) ∈ B and x1 ≤1 y1;

4. If a1 ∈ N1(x1) then ∃a2 ∈ Up(X2,≤2) s.t. a2 ∈ N2(x2) and a2 ⊆
B[a1];

5. If a2 ∈ N2(x2) then ∃a1 ∈ Up(X1,≤1) s.t. a1 ∈ N1(x1) and a1 ⊆
B−1[a2].

Two states x1 ∈ X1 and x2 ∈ X2 are called (intuitionistic monotone)
bisimilar if there exists an intuitionistic monotone bisimulation linking them.

An intuitionistic monotone bisimulation between two descriptive intuition-
istic monotone models is defined as an intuitionistic monotone bisimulation
between the underlying (non-descriptive) intuitionistic monotone models.

12.33. Theorem. Let x1 and x2 be two states in two descriptive intuitionistic
monotone models M1 and M2. Then the following are equivalent:

1. x1 and x2 are logically equivalent;

2. x1 and x2 are intuitionistic monotone bisimilar;

3. x1 and x2 are behaviourally equivalent.

Proof. As in Theorem 10.15, the difficult implication (from (1) to (3)) is
taken care of by Theorem 10.13. The implication (2) ⇒ (1) holds by design,
and the last implication follows from an argument similar to that in the
proof of Theorem 10.15.
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If M = (X,≤, R, V ) is a finite intuitionistic monotone model, then
augmenting it with the set of all upsets of (X,≤) turns it into a descriptive
intuitionistic monotone model. Using this, we obtain the following Hennessy-
Milner result for finite intuitionistic monotone models from Theorem 12.74.

12.34. Corollary. Let x1 and x2 be two states in two finite intuitionistic
monotone models M1 and M2. Then x1 and x2 are logically equivalent if
and only if they are bisimilar.

Above, we already used the fact that descriptive intuitionistic monotone
frames have an underlying non-descriptive intuitionistic monotone frame.
Formally, the move from descriptive to non-descriptive frame corresponds to
the following translation.

12.35. Definition. Define τ : u ·D→ ℋ ·u′ on components by

τX : u(DX)→ ℋ(u′X) : W 7→W.

Then (u, τ) defines a translation from Dialg(ℐ,D) to Dialg(i,ℋ).

If (X, N) is a descriptive intuitionistic monotone frame, viewed as (ℐ,D)-
dialgebra, then the translation (u, τ) sends this to the dialgebra

i(u′X) u(ℐX) u(DX) ℋ(u′X)
∼= uN τX

The translation is easily seen to be natural. In order to prove completeness,
all we have to do is show that ρ̄X ◦ tX = iduDX. Let us begin by computing
the action of ρ̄ on components. Recall that these are given by

ℋ(u′X) pf(up(ℋ(u′X))) pf(ℒM(up′(u′X)))

pf(ℒM(Clp′upX)) ∼= uDX

ηℋu′X ρ−1
u′X

(ℒMµ′X)−1

The isomorphism on the right is given by ξ−1, so it sendsQ ∈ pf(ℒM(Clp′upX))
to the collection W of upsets of X containing all upsets d of X such that
there exists a closed upset c satisfying:

• c ⊆ d; and

• for all a ∈ Clp′upX, c ⊆ a implies a ∈ Q.

So if X is an Esakia space and W ∈ ℋ(u′X), then the set ρ̄X(W ) is determined
uniquely by the clopen upsets it contains.
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Let W ∈ ℋ(u′X) and a ∈ Clp′upX. Then we have

a ∈ ρ̄X(W ) iff a ∈ (ℒMµ′X)−1(ρ−1
u′X(ηℋu′X(W )))

iff (ℒMµ′X)( a) ∈ ρ−1
u′X(ηℋu′X(W ))

iff µ′X(a) ∈ ρ−1
u′X(ηℋu′X(W ))

iff a ∈ ρ−1
u′X(ηℋu′X(W ))

iff ρu′X( a) ∈ ηℋu′X(W )

iff W ∈ ρu′X( a)

iff a ∈W

Pulling this through the last isomorphism, we find that ρ̄X(W ) consists of
those upsets d of X such that there exists a closed upset c of X satisfying:

• c ⊆ d; and

• for all a ∈ Clp′upX, c ⊆ a implies a ∈W .

Using this we can prove the following lemma.

12.36. Lemma. For every Esakia space X we have ρ̄X ◦ τX = iduDX.

Proof. This follows from the fact that elements of DX are determined by
the clopen upsets they contain in the same way as ρ̄X is.

So IPCM is canonical with respect to intuitionistic monotone frames. As
a consequence of Theorems 10.35 and 10.48 we obtain the following two
theorems.

12.37. Theorem. Every Heyting algebra with monotone operator embeds
into the complex algebra of an intuitionistic monotone frame.

12.38. Theorem. The logic IPCM is complete with respect to the class of
intuitionistic monotone frames.

Moreover, we can apply Theorem 11.23 to obtain a Goldblatt-Thomason
theorem for intuitionistic monotone frames. Before stating this, we give the
notion of a prime filter extension of an intuitionistic monotone frame that
one obtains from unravelling Definition 11.16.

12.39. Definition. The prime filter extension of an intuitionistic monotone
frame X = (X,≤, N) is the intuitionistic monotone frame pℯX = (Xpe,⊆
, Npe), where Xpe is the set of prime filters on (X,≤) and Npe is given as
follows. Let MN (a) = {x ∈ X | a ∈ N(x)}. For q ∈ Xpe and D ∈ Up(Xpe,⊆)
define:

• If a ∈ up′(X,≤), then â ∈ Npe(q) if MNa ∈ q;

• If D is closed then D ∈ Npe(q) if â ∈ Npe(q) for all â containing D;
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• For any D, D ∈ Npe(q) if there is a closed upset C ⊆ D such that
C ∈ Npe(q).

Here â = {q ∈ Xpe | a ∈ q}, and a “closed upset” means closed in the
topology on X generated by A∪−A. Another way of characterising a closed
upset is as an upset obtained as the intersection of sets in A.

12.40. Theorem. Suppose Prop is infinite and et K ⊆ IMF be a class of
intuitionistic monotone frames that is closed under prime filter extensions.
Then K is axiomatic if and only if K is closed under coproducts, regular
subframes and epimorphic images, and reflects prime filter extensions.

12.41. Remark. An alternative way of defining descriptive monotone in-
tuitionistic frames is inspired by the π-extension of a (distributive) lat-
tice [240, 171, 170, 172]. Let (X,≤, N,A) be a general intuitionistic monotone
frame. Then we call an upset e ∈ Up(X,≤) open if e =

⋃
{a ∈ A | a ⊆ e}. A

π-descriptive intuitionistic monotone frame is a general intuitionistic mono-
tone frame (X,≤, N,A) such that for all x ∈ X and all upsets d ∈ Up(X,≤)
we have d ∈ N(x) if and only if for every open upset e containing d there
exists an a ∈ A such that a ⊆ e.

The category of π-descriptive intuitionistic monotone frames can also be
modelled as a category of dialgebras, and they give rise to a duality and a
different notion of prime filter extension. In fact, the entire content of this
subsection can be adapted to this alternative definition of descriptive frame.
We skip the details.

A similar observation for monotone modal logic over a classical base was
made in [209, Subsection 7.6].

12.3 Non-normal modal intuitionistic logic

We derive a duality for the extension of intuitionistic logic with two free
modalities from [127] discussed in Subsection 9.3.4, and instantiate the
Hennessy-Milner theorem from Subsection 10.2. We then prove that the
logic is canonical with respect to the semantics given in Subsection 9.3.4, so
that we can invoke our general theorems to obtain a representation theorem,
completeness, and a Goldblatt-Thomason theorem.

First, we give the notions of generated subframe, epimorphic image, and
coproduct of CIN-frames.

12.42. Definition. Let X = (X,≤, N ,N ) and X′ = (X ′,≤′, N ′ , N ′ ) be
two CIN-frames. Then we say that X is a regular subframe of X′ if there
exists a CIN-morphism f : X → X′ such that f : (X,≤) → (X ′,≤′) is
an embedding. We call X is an epimorphic image of X′ if there exists a
CIN-morphism e : X′ → X such that e : X ′ → X is surjective.



Applications 309

12.43. Definition. Let {Xk = (Xk,≤k, N ,k, N ,k) | k ∈ K} be a collection
of CIN-frames. Then their coproduct is given by

∐
k∈K Xk = (X,≤, N ,N ),

where (X,≤) is the coproduct of the intuitionistic Kripke frames (Xk,≤k),
and N and N are given by

a ∈ N (xk) iff a ∩Xk ∈ N ,k(xk)

a ∈ N (xk) iff a ∩Xk ∈ N ,k(xk)

for all a ∈ PX and k ∈ K.

Our approach towards duality resembles Došen’s duality for (classical)
neighbourhood frames [141], which is also discussed in Subsection 4.3. It
differs from the approach in [141] (and also from that in Subsection 12.2)
in that we have two neighbourhood functions. This gives rise to a more
interesting topology on DX, generated by four types of subbasic opens.

12.44. Definition. A general CIN-frame is a tuple (X,≤, N ,N ,A) such
that (X,≤, N ,N ) is a CIN-frame, (X,≤, A) is a general intuitionistic
Kripke frame, and A is closed under the maps

N : Up(X,≤)→ Up(X,≤) : a 7→ {x ∈ X | a ∈ N (x)}
N : Up(X,≤)→ Up(X,≤) : a 7→ {x ∈ X | X \ a /∈ N (x)}

It is called descriptive if (X,≤, A) is a descriptive intuitionistic Kripke frame
and for all x ∈ X, N (x) ⊆ A and N (x) ⊆ −A. (Here −A = {X \ a | a ∈
A}.)

A general CIN-morphism from (X,≤, N ,N ,A) to (X ′,≤′, N ′ , N ′ , A′)
is a CIN-morphism f : (X,≤, N ,N )→ (X ′,≤′, N ′ , N ′ ) such that f−1(a′) ∈
A for all a′ ∈ A′. We write D-CINF for the category of descriptive CIN-frames
and general CIN-morphisms.

We now give a functor D : ES→ Pries such that the category of descriptive
CIN-frames is isomorphic to Dialg(ℐ,D). This is an adaptation of the functor
D used in Subsection 4.3.

12.45. Definition. For an Esakia space X, let DX be the set

{(W,V ) |W ⊆ Clp′upX, V ⊆ Clp′dnX},

ordered by (W,V ) ≺ (W ′, V ′) if W ⊆ W ′ and V ⊇ V ′. Moreover, equip it
with the topology generated by

a := {(W,V ) ∈ DX | a ∈W} a := {(W,V ) ∈ DX | (X \ a) /∈ V }
b := {(W,V ) ∈ DX | b ∈W} b := {(W,V ) ∈ DX | X \ b /∈W}

where a ranges over the clopen upsets and b over the clopen downsets of X.
If f : X→ X′ is an Esakia morphism, define Df : DX→ DX′ by

Nf(W,V ) =
(
{a′ ∈ Clp′upX′ | f−1(a′) ∈W}, {b′ ∈ Clp′dnX

′ | f−1(b) ∈ V }
)
.
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12.46. Remark. The purpose of the open sets b and b is simply to
ensure that the sets of the form a and a are clopen. Indeed, we have
DX \ a = (X \ a) and DX \ a = (X \ a).

12.47. Proposition. The assignment D from Definition 12.45 defines a
functor ES→ Pries.

Proof. First we show that DX is a Priestley space whenever X is an Esakia
space. For the Priestley separation axiom, suppose (W,V ), (W ′, V ′) ∈ DX
and (W,V ) 6≺ (W ′, V ′). Then either W 6⊆ W ′ or V 6⊇ V ′. In the first case,
there must exists a clopen upset a such that a ∈ W and a /∈ W ′, so that
a contains (W,V ) but not (W ′, V ′). It is easy to see that a is an upset,

and it is clopen by definition. In the second case, there must exist a clopen
upset a such that X \ a ∈ V ′ and X \ a /∈ V . This implies (W,V ) ∈ a while
(W ′, V ′) /∈ a. Again, it follows immediately from the definitions that a is
a clopen upset.

For compactness, we use a similar strategy as in Proposition 12.26.
Suppose we have an open cover

DX ⊆
⋃
k∈K1

ak ∪
⋃
k∈K2

bk ∪
⋃
`∈L1

a` ∪
⋃
`∈L2

b` (12.4)

where ak, a` ∈ Clp′upX and bk, b` ∈ Clp′dnX. Let W = {X \ bk | k ∈ K2}
and V = {X \ b` | ` ∈ L2}. Then (W,V ) ∈ DX and by construction (W,V ) is
in none of the bk and b`. Therefore we must either have a k′ ∈ K1 such
that (W,V ) ∈ ak′ or a `′ ∈ L1 such that (W,V ) ∈ a`′ . In the first case
we find ak′ ∈W , so that there must exists a k′′ ∈ K2 such that ak′ = X \ bk′′ .
This implies that ak′ ∪ bk′′ is a finite subcover of the cover in (12.4). The
second case can be dealt with similarly.

Since f is order-preserving and continuous, f−1 sends clopen upsets to
clopen upsets and clopen downsets to clopen downsets. This implies that D
is well defined on morphisms. Functoriality is obvious.

12.48. Theorem. We have D-CINF ∼= Dialg(ℐ,D).

Proof. The isomorphism on objects is obvious. The isomorphism on mor-
phisms follows from a routine verification similar to that in Theorem 9.30.

We will now establish a dual equivalence between D-CINF and the alge-
braic semantics of the logic IPC , which is given by Dialg(ℒ , j) (see
Example 9.59).

12.49. Definition. Define ξ : D → Pf · ℒ · Clp′up on components by
sending a state (W,V ) ∈ DX to the prime filter (viewed as homomorphism)
ξX(x) given on generators by

ξX(W,V )( a) = > iff a ∈W, ξX(W,V )( a) = > iff (X \ a) /∈ V.
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It is obvious that this is well defined and order-preserving on components.
To see that it is also continuous (hence a Priestley morphism) on components,
observe that for each Esakia space X, the topology on Pf(ℒ (Clp′upX))

is generated by sets of the form â and â, where a ∈ Clp′upX, and their

complements. So it suffices to show that ξ−1
X ( â) and ξ−1

X ( â) are clopen in
DX for all a ∈ Clp′upX. This follows from the fact that ξ−1

X ( â) = a and

ξ−1
X ( â) = a, both of which are clopen in DX by definition.

So the components of ξ are Priestley morphisms. We claim that moreover
ξ is a natural isomorphism.

12.50. Lemma. The transformation ξ from Definition 12.49 is a natural
isomorphism.

Proof. First we show that the components of ξ are isomorphisms. Let X be
an Esakia space. Since we already know that ξX is a Priestley morphism, it
suffices to show that it is a bijection and an order-embedding.

For the latter, suppose (W,V ) 6≺ (W ′, V ′). Then W 6⊆ W ′ or V 6⊇ V ′.
In the first case, we have a clopen upset a in W that is not in W ′, so that
a ∈ ξX(W,V ) while a /∈ ξX(W ′, V ′) (now viewing prime filters as sets

rather than homomorphisms). In the second case we find a clopen upset a
such that (X \ a) ∈ V ′ while (X \ a) /∈ V , which implies a ∈ ξX(W,V ) while
a /∈ ξX(W ′, V ′). In either case, we have ξX(W,V ) 6⊆ ξX(W ′, V ′).

Injectivity of ξX follows from the fact that it is an order-embedding. For
surjectivity, suppose q ∈ Pf(ℒ (Clp′upX)). Let W = {a ∈ Clp′upX | a ∈
q} and V = {(X \ a) | a /∈ q}. Then (W,V ) ∈ DX and by construction
ξX(W,V ) = q, so ξX is bijective.

Naturality follows from a routine verification.

12.51. Theorem. We have a dual equivalence

D-CINF ≡op Dialg(ℒ , j).

We immediately obtain a Hennessy-Milner theorem for the class of descrip-
tive CIN-frames. This can be extended by defining a notion of bisimulation
inspired by classical neighbourhood bisimulations [211], and reduces to a
Hennessy-Milner for finite non-descriptive CIN-frames in a similar way as
we have seen before. We leave the precise formulation of these extensions to
the reader. The instantiation of Theorem 10.13 yields:

12.52. Theorem. Let x1 and x2 be two states in two descriptive CIN-frames
M1 and M2. Then x1 and x2 are logically equivalent if and only if they are
behaviourally equivalent.

There is an obvious translation from descriptive CIN-frames to CIN-
frames; indeed, we can simply forget about the descriptive structure. This
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corresponds to the translation (u, τ), where u : Pries→ Pos is the forgetful
functor and τ : u ·D→ N ·u′ is given by

τX : u(DX)→ N(u′X) : (W,V ) 7→ (W,V ).

It is easy to see that τ is a natural transformation.
We will now show that the logic IPC is canonical with respect to

CIN-frames by showing that ρ̄ ◦ τ = iduD. To this end, let us compute what
ρ̄ looks like. Recall that its components are given by

N(u′X) pf(up(N(u′X))) pf(ℒ (up′(u′X)))

pf(ℒ (Clp′upX)) ∼= uDX

ηNu′X ρ−1
u′X

(ℒ µ′X)−1

The isomorphism on the right is given by ξ−1, so it sendsQ ∈ pf(ℒ (Clp′upX))

to
(
{a ∈ Clp′upX | a ∈ Q}, {X \ a | a ∈ Clp′upX, a /∈ Q}

)
. Let

(W,V ) ∈ N(u′X) and write (W,V ) := ρ̄X(W,V ). Then for a ∈ Clp′upX
we have

a ∈W iff a ∈ (ℒ µ′X)−1(ρ−1
u′X(ηNu′X(W,V )))

iff (ℒ µ′X)( a) ∈ ρ−1
u′X(ηNu′X(W,V ))

iff µ′X(a) ∈ ρ−1
u′X(ηNu′X(W,V ))

iff a ∈ ρ−1
u′X(ηNu′X(W,V ))

iff ρu′X( a) ∈ ηNu′X(W,V )

iff (W,V ) ∈ ρu′X( a)

iff a ∈W

Similarly (X \ a) ∈ V iff (X \ a) ∈ V for all a ∈ Clp′upX. So ρ̄X(W,V ) is
simply given by (W ∩Clp′upX, V ∩ClpdnX).

This immediately implies:

12.53. Lemma. For every Esakia space X we have ρ̄X ◦ τX = iduDX.

So IPC is canonical with respect to CIN-frames. As a consequence of
Theorems 10.35 and 10.48 we obtain the following two theorems.

12.54. Theorem. Every (ℒ , j)-dialgebra embeds into the complex algebra
of a CIN-frame.

12.55. Theorem. The logic IPC is complete with respect to the class of
CIN-frames.

Moreover, we can apply Theorem 11.23 to obtain a Goldblatt-Thomason
theorem for CIN-frames. Before stating this, we give the notion of a prime
filter extension of an intuitionistic monotone frame that one obtains from
unravelling Definition 11.16.
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12.56. Definition. The prime filter extension of a CIN-frame X = (X,≤
, N ,N ) is given by pℯX = (Xpe,⊆, Npe, Npe), where Xpe is the set of
prime filters on (X,≤), and for q ∈ Xpe we have

Npe(q) = {â ∈ PXpe | a ∈ up(X,≤) and N (a) ∈ q}
Npe(q) = {Xpe \ â ∈ PXpe | a ∈ up(X,≤) and N (a) ∈ q}

Here â = {q ∈ Xpe | a ∈ q}, N (a) = {x ∈ X | a ∈ N (x)} and N (a) =
{x ∈ X | X \ a /∈ N (x)}.

12.57. Theorem. Assume that Prop is infinite and let K be a class of
CIN-frames closed under prime filter extensions. Then K is axiomatic if
and only if it reflects prime filter extensions and is closed under coproducts,
regular subframes and epimorphic images.

12.4 Conditional intuitionistic logic

We investigate duality for conditional intuitionistic logic (from Subsec-
tion 9.3.5). This is a particularly interesting case because things do not run
as smoothly as in the previous examples. While we can define a notion of
descriptive ISF-frame which gives rise to a duality with the category HAC of
Heyting algebras with a conditional operator, they do not have an obvious
underlying ISF-frame. Intuitively, this is caused by the fact that the duality
fixes the action of the selection function s on clopen upsets, but not on any
of the other subsets of the frame. That is, we have to find a way to fill in the
action of a selection function s on sets b that are not clopen upsets. This
challenge is similar to what we encountered in Subsection 4.4.

As a consequence, we get a translation that is not natural, and we can
not prove canonicity of IPC� with respect to the class of ISF-frames. While
this precludes us from obtaining a Goldblatt-Thomason theorem we can still
obtain a representation theorem and completeness. Since we will not use
them in a Goldblatt-Thomason theorem, we leave the instantiations of the
definitions of regular subframes, epimorphic images and coproducts to the
reader.

12.58. Definition. A general ISF-frame is a tuple (X,≤, s, A) such that
(X,≤, A) is a general intuitionistic Kripke frame and s : X ×A→ Up(X,≤)
is a function such that:

• A is closed under

m� : Up(X,≤)×Up(X,≤)→ Up(X,≤)

: (a, b) 7→ {x ∈ X | s(x, a) ⊆ b}

• if x ≤ y then s(x, a) ⊇ s(y, a) for all a ∈ A.
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A general ISF-morphism from (X,≤, s, A) to (X ′,≤′, s′, A′) is a bounded
morphism f : (X,≤)→ (X ′,≤′) such that

• f−1(a′) ∈ A for all a′ ∈ A′; and

• the following diagram commutes:

A A′

PX PX ′
s

f−1

s′

f [−]

Here f [−] denotes the direct image under f .

We write G-ISFF for the category of general ISF-frames and -morphisms.

12.59. Remarks.

1. Note that, while ISF-frames are based on preordered intuitionistic
Kripke frames, we require that general ISF-frames are based on (par-
tially ordered) intuitionistic Kripke frames. That is, in a general
ISF-frame (X,≤) is a poset rather than a preorder. The reason is
that Esakia spaces and Priestley spaces, on which we base our duality,
have underlying posets.

2. On objects, general ISF-frames correspond precisely to the frames
underlying the models used to interpret conditional intuitionistic logic
in [108, Definition 3].

12.60. Definition. A general ISF-frame (X,≤, s, A) is called descriptive if

• (X,≤, A) is a descriptive intuitionistic Kripke frame; and

• for all x ∈ X and a ∈ A:

s(x, a) =
⋂
{b ∈ A | s(x, a) ⊆ b}

The category of descriptive ISF-frames and general ISF-morphisms is denoted
by D-ISFF.

Let us model descriptive ISF frames dialgebraically. As usual with modal
intuitionistic logics, this uses the inclusion ℐ : Pries→ ES.

12.61. Definition. For an Esakia space X let KupX denote the set of closed
upsets of X. Define

D�X = {h : Clp′upX→ KupX | h is a function}

ordered by g ≤ h if g(a) ⊇ h(a) for all a ∈ Clp′upX. Generate a topology on
D�X by the clopen subbase

(a, b) = {h ∈ D�X | h(a) ⊆ b}, (a, c) = {h ∈ D�X | h(a) ∩ c 6= ∅},
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where a, b range over Clp′upX and c ranges over Clp′dnX.
If f : X1 → X2 is an Esakia morphism then we define D�f by

D�f(h1) : Clp′upX2 → KupX2 : a2 7→ f [h(f−1(a2))].

12.62. Lemma. Let X be an Esakia space. Then D�X is a Priestley space.

Proof. We have to show that D�X is compact and satisfies the Priestley
separation axiom. The latter is easy: suppose h 6≤ g in D�X, then there
exists an a ∈ Clp′upX such that h(a) 6⊇ g(a). As a consequence we can find
a clopen upset b such that h(a) ⊆ b but g(a) 6⊆ b. But then h ∈ (a, b) and
g /∈ (a, b). An easy verification shows that (a, b) is upclosed in D�X,
hence the Priestley separation axiom holds.

For compactness, suppose we have a cover of D�X consisting of subbasic
opens:

D�X ⊆
⋃
k∈K

(ak, bk) ∪
⋃
`∈L

(d`, c`). (12.5)

If bk = X for some k ∈ K or c` = ∅ for some ` ∈ L then we are done,
because (ak,X) = (d`, ∅) = D�X. So suppose this is not the case.
Define h : Clp′upX→ KupX by

h(a) = X \
⋃
{c` ∈ Clp′dnX | ` ∈ L and d` = a}.

Then by construction h /∈ (d`, c`) for all ` ∈ L. So there exists some k′ ∈ K
such that h ∈ (ak′ , bk′). By definition of h this implies X ⊆ bk′ ∪

⋃
{c` |

` ∈ L and d` = ak′}. Compactness of X yields a finite subcover of X, say,
X ⊆ bk′ ∪ c`1 ∪ · · · ∪ c`n . We now claim that

(ak′ , bk′) ∪ (d`1 , c`1) ∪ · · · ∪ (d`n , c`n)

is a finite subcover of the open cover in (12.5). (Recall that d`1 = . . . = d`n =
ak′ .) Indeed, for each g ∈ D�X either g(ak′) touches one of c`1 , . . . , c`n , or it
is contained in bk′ . This proves compactness, and hence D�X is a Priestley
space.

12.63. Proposition. The assignment D� defines a functor ES→ Pries.

Proof. We have seen in Lemma 12.62 that D� is well defined on objects.
If f : X1 → X2 is an Esakia morphism then f−1 sends clopen upsets of X2

to clopen upsets of X1. The direct image f [−] sends closed sets to closed
sets because f is a continuous function between Stone spaces, and it sends
upsets to upsets because f is bounded. Therefore, if h1 ∈ D�X1, the map
Df(h1) = f [−] ◦ h1 ◦ f−1 : Clp′upX2 → KupX2 is well defined, so Df does
indeed send elements of D�X1 to elements of D�X2.

A routine verification shows that Df is also order-preserving and con-
tinuous, hence a morphism in Pries. Functoriality follows from a straight-
forward verification, using the fact that all categories under consideration
concrete.
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12.64. Theorem. D-ISFF ∼= Dialg(ℐ,D�).

Proof. This isomorphism essentially holds by design.

Our next goal is to establish a duality between HAC and D-ISFF. We do
this by giving a duality between Dialg(ℒ�, j) and Dialg(ℐ,D�). To this
end, we give a natural isomorphism ξ : D� → Pf ◦ℒ� ◦Clp′up.

12.65. Definition. Define ξ : D� → Pf ·ℒ� ·Clp′up on components X by
ξX : D�X→ Pf(ℒ�(Clp′upX)) : h 7→ ξX(h), where

ξX(h) : ℒ�(Clp′upX)→ 2 : (a� b) 7→
{
> if h(a) ⊆ b
⊥ otherwise

It can easily be shown that this is well defined, by showing that the
images of the generators of ℒ�(Clp′upX) under ξX satisfy the relations from
the definition of ℒ�.

12.66. Lemma. The assignment ξ defines a natural transformation.

Proof. We first verify that ξX is a Priestley morphism for every Esakia space
X. To see that ξX is order-preserving, suppose g ≤ h and let a, b ∈ Clp′upX.
if a� b ∈ ξX(g) then g(a) ⊆ b. By assumption h(a) ⊆ g(a), hence h(a) ⊆ b
and therefore a� b ∈ ξX(h). It follows that ξX(g) ⊆ ξX(h).

The topology on Pf(ℒ�(Clp′upX)) is generated by sets of the form
θ(a� b) and their complements, where a, b ∈ Clp′upX. Continuity then

follows from the fact that ξ−1
X (θ(a� b)) = (a, b), which is clopen in D�X.

For naturality, let f : X1 → X2 be an Esakia morphism. We have to show
that

D�X1 Pf(ℒ�(Clp′upX1))

D�X2 Pf(ℒ�(Clp′upX2))

D�f

ξX1

(ℒ�(f−1))−1

ξX2

commutes. Let h1 ∈ D�X1 and let a2 � b2 be a generator of ℒ�(Clp′upX2).
Then we have

a2 � b2 ∈ ξX2(D�f(h1)) iff D�f(h1)(a2) ⊆ b2
iff f [h1(f−1(a2))] ⊆ b2
iff h1(f−1(a2)) ⊆ b2
iff f−1(a2)� f−1(b2) ∈ ξX1(h1)

iff ℒ�(f−1)(a2 � b2) ∈ ξX1(h1)

iff a2 � b2 ∈ (ℒ�(f−1))−1(ξX1(h1))

Since ξX2(D�f(h1)) and (ℒ�(f−1))−1(ξX1(h1)) agree on generators, they
coincide.
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12.67. Lemma. The natural transformation ξ is a natural isomorphism.

Proof. We need to show that ξX is a Priestley isomorphism for every Esakia
space X. We already know that it is a Priestley morphism, so we are left to
show that it reflects the order and is a bijection.

First we prove that ξX reflects the order. Suppose g 6≤ h. Then by the
Priestley separation axiom we can find a, b ∈ Clp′upX such that g(a) ⊆ b
and h(a) 6⊆ b. Therefore a� b ∈ ξX(g) while a� b /∈ ξX(h), and hence
ξX(g) 6⊆ ξX(h). (Recall that Pf(ℒ�(Clp′upX)) is ordered by inclusion.) It
follows that for any g, h ∈ D�X, ξX(g) ⊆ ξX(h) implies g ≤ h.

Injectivity of ξX follows immediately from the fact that ξX is an embedding.
So we only have to prove surjectivity. Let Q ∈ Pf(ℒ�(Clp′upX)) be any
prime filter. Define hQ ∈ D�X by hQ(a) =

⋂
{b ∈ Clp′upX | a� b ∈ Q}.

We claim that ξX(hQ) = Q. By definition we have Q ⊆ ξX(hQ). The reverse
inclusion follows from an argument similar to that in the last paragraph of
the proof of Lemma 10.8, with the addition that it is indexed in the first
coordinate by A.

12.68. Theorem. We have HAC ≡op D-ISFF.

Proof. Combining the fact that the assignment from Definition 12.65 is a
natural isomorphism with Example 9.60 and Theorems 10.5 and 12.64. we
obtain

HAC ∼= Dialg(ℒ�, j) ≡op Dialg(ℐ,D�) ∼= D-ISFF,

as desired.

We immediately obtain a Hennessy-Milner theorem for the class of descrip-
tive ISF-frames. This can be extended by defining a notion of bisimulation
inspired by conditional bisimulations for classical conditional logic [29], and
reduces to a Hennessy-Milner for finite non-descriptive ISF-frames in a simi-
lar way as we have seen before. We leave the precise formulation of these
extensions to the reader. The instantiation of Theorem 10.13 yields:

12.69. Theorem. Let x1 and x2 be two states in two descriptive selection
function frames M1 and M2. Then x1 and x2 are logically equivalent if and
only if they are behaviourally equivalent.

Next, we investigate how to turn descriptive ISF-frames into ISF-frames.
That is, we study translations from Dialg(ℐ,D�) to Dialg(i,C). Since ISF-
frames are based on preorders, we let u : Pries → PreOrd be the obvious
forgetful functor that sends a Priestley space to its underlying ordered set,
viewed as a preorder. This clearly restricts to u′ : ES→ PreKrip.

A translation is then given by a (not necessarily natural) transformation
τ : u ·D� → C ·u′. So, if X is an Esakia space, we need to turn a (selection)
function of type s : Clp′upX → KupX into a function τX(s) : PX → PX,
where PX denotes the powerset of the set underlying X. In other words, we
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need to “fill in the gaps” in the function s. We consider one way of doing
this. In Remark 12.73 we mention some other approaches.

12.70. Definition. Define the translation (u, τ) by letting τ send s ∈ DX
to the (selection) function

τX(s) : PX→ PX : a 7→
{
s(a) if a ∈ Clp′upX
∅ otherwise

This translation is not natural. Intuitively, this is caused by the fact
that for an Esakia morphism f : X1 → X2 and an upset a2 that is not
clopen, we may have f−1(a2) ∈ Clp′upX1. This forces τX2(s)(a2) = ∅
while τX1(s)(f−1(a2)) need not be the empty set, so that we could have
τX2(s)(a2) 6= f [τX1(s)(f−1(a2))].

We can still use Theorem 10.25 to obtain a Jónsson-Tarski representation
theorem. We write ρ : ℒ� ·up′ → up ·C for the interpretation of IPC�-
formulae in ISF-frames given in Subsection 9.3.5 and ζ : ℒ� · Clp′up →
Clpup ·D� for the interpretation induced by the duality from Theorem 12.64.
(The latter is given by sending a� b to (a, b).)

12.71. Theorem. Every Heyting algebra with conditional operator embeds
in the complex algebra of some ISF-frame.

Proof. According to Theorem 10.25 it suffices to find a natural transformation
m : Clpup → up ·u that satisfies

(m1) m restricts to a natural transformation m′ : P′ → p′ ·u′;

(m2) the following commutes on components:

ℒ� ·Clp′up Clpup ·D�

ℒ� ·up′ ·u′ up ·C ·u′ up ·u ·D�

ζ

ℒ�m′ mD�

ρu′ up(τ)

(m3) The components of m′ are injective.

For m we can use the natural transformation µ : Clpup → up · u, which
takes a clopen upset and views it as an upset. We know that this restricts to
a natural transformation µ′ : Clp′up → up′ · u′ and that it is injective on
components, so we only have to verify that the diagram above commutes.

To this end, let X be an Esakia space and a, b ∈ Clp′upX. If h ∈ u(D�X)
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then we have

h ∈ τ−1
X (ρu′X(ℒ�µ′X(a� b)))

iff τX(h) ∈ ρu′X(ℒ�µ′(a� b))

iff τX(h) ∈ ρu′X(µ′X(a)� µ′X(b)) (Definition of ℒ�)

iff τX(h) ∈ ρu′X(a� b) (Definition of µ)

iff τX(h)(a) ⊆ b (Definition of ρ)

iff h(a) ⊆ b (Because a ∈ Clp′upX)

iff h ∈ {g ∈ uD�X | g(a) ⊆ b}
iff h ∈ µD�X( (a, b)) (Definitions of µ and )

iff h ∈ µD�X(ζX(a� b)) (Definition of ζ)

This implies that µD�X◦ζX and up(τX)◦ρu′X◦ℒ�µ′X coincide on generators.
Therefore they coincide on all elements, and the diagram commutes on
components.

Models based on general ISF-frames are obtained by assigning to each
proposition letter an admissible valuation (that is, an element of A). These
gives rise to notions of truth and validity as usual. Using Theorem 10.42 and
Proposition 10.44 we can prove the following theorem.

12.72. Theorem. The logic IPC� is complete with respect to the classes of

1. Descriptive ISF-frames;

2. General ISF-frames;

3. ISF-frames.

12.73. Remark. Other options of “filling in the gaps” in the definition of τ
(Definition 12.70) is by defining for all b /∈ Clp′upX,

• τX(s)(b) = b;

• τX(s)(b) = X;

• τX(s)(b) =
⋃
{a ∈ Clp′upX | s(a) ⊆ b ⊆ a}.

In presence of additional axioms, these variations may (or may not) be
natural, so that (u, τ) becomes a natural translation. Inspiration for such
additional axioms can be drawn from the vast body of literature about
conditional logic over a classical base, see e.g. [165, 180, 29, 181, 182].

12.5 Monotone subintuitionistic implication revisited

In this subsection we take a dialgebraic perspective on the extension of
positive logic with a binary modality that behaves like a weak implication, as
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discussed in Section 8. The logic is denoted by P . This yields new results,
and also serves as an example of dialgebraic theory applied to a coalgebraic
logic.

Ordered monotone frames can be viewed as coalgebras for an endofunctor
C : Pos → Pos given in Remark 8.24. The algebraic semantics of P is
given by distributive lattices with monotone implications (DLMIs), and
the category of these is isomorphic to the category Alg(J) for a functor
J : DL→ DL, see Definitions 8.6 and 8.7 and Proposition 8.8.

Furthermore, in Subsection 8.3 a notion of descriptive ordered monotone
frames is given. These are recognised as coalgebras for endofunctor D on
Pries (Definition 8.35 and Theorem 8.38) and it is shown that J and D are
dual with respect to Priestley duality in Subsection 8.3.3. Summarising, we
have the following situation (cf. Example 10.29):

Pos DL Pries
up

C
pf

Pf

≡op

J

Clpup

D

u

with interpretations ρ : J ·up→ up ·C and ζ : J ·Clpup → Clpup ·D given
by

ρ(X,≤)(a b) = {W ∈ C(X,≤) | (X \ a) ∪ b ∈W}
ζX(a b) = {W ∈ DX | (X \ a) ∪ b ∈W}

where (X,≤) is a poset and X is a Priestley space.
Let us begin by deriving a Hennessy-Milner theorem for descriptive

ordered monotone models. It follows from use Theorem 10.13 that:

12.74. Theorem. Let x1 and x2 be two states in two descriptive ordered
monotone models M1 and M2. Then x1 and x2 are logically equivalent if
and only if they are behaviourally equivalent.

Next we instantiate the definitions of a regular subframe, epimorphic
image and coproduct to the setting of ordered monotone frames. These are
similar to their counterparts for monotone intuitionistic logic from Subsec-
tion 12.2.

12.75. Definition. Let X = (X,≤, N) and X′ = (X ′,≤′, N ′) be two ordered
monotone frames. Then we say that X is a regular subframe of X′ if there
exists an ordered monotone frame morphism f : X→ X′ such that f : (X,≤
) → (X ′,≤′) is an embedding We call X is an epimorphic image of X′ if
there exists an ordered monotone frame morphism e : X′ → X such that
e : X ′ → X is surjective.
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12.76. Definition. Let {(Xk,≤k, Nk) | k ∈ K} be a collection of ordered
monotone frames. Then their coproduct is given by

∐
k∈K(Xk,≤k, Nk) =

(X,≤, N), where (X,≤) is the coproduct of the posets (Xk,≤k) and N is
given by

a ∈ N(xk) iff a ∩Xk ∈ Nk(xk)

for all a ∈ P◦(X,≤) and k ∈ K.

Towards showing that the logic P is canonical with respect to ordered
monotone frames, we compute ρ̄. Recall that this is given by

C ·u pf ·up ·C ·u pf · J ·up ·u pf · J ·Clpup ∼= u ·DηCu pfρu pfJ(µ)

Here µ is the natural transformation Pf→ pf ·u given on components by

µX : ClpupX→ up(uX) : a 7→ a.

The natural isomorphism between pf · J ·Clpup and u ·D is given by the
inverse of ξ from Definition 8.39. It is given on components by sending a
prime filter q ∈ pf(J(ClpupX)) to the set Wq ∈ u(DX) defined by

1. For a ∈ Clp◦X, a ∈Wq if q(a1 a2) = > for some a1, a2 ∈ ClpupX
with a = (X \ a1) ∪ a2;

2. For all b ∈ Ω◦X, let b ∈Wq if there exists a ∈ Clp◦X such that a ⊆ b
and a ∈Wq;

3. For any d ∈ P◦(X,≤), let d ∈ Wq if for all b ∈ Ω◦X, d ⊆ b implies
b ∈Wq.

Let X be a Priestley space, a, b ∈ ClpupX, and W ∈ C(uX). Then we
have

(X \ a) ∪ b ∈ ρ̄X(W ) iff (ℒµX)(a b) ∈ ρ−1
uX(ηCu(W ))

iff (µX(a) µX(b)) ∈ ρ−1
uX(ηCu(W ))

iff ρuX(µX(a) µX(b)) ∈ ηCu(W )

iff ρuX(a b) ∈ ηCu(W )

iff W ∈ ρuX(a b)

iff (X \ a) ∪ b ∈W

So ρ̄X(W ) is obtained by starting with the elements (X \a)∪ b that are in W ,
where a, b ∈ ClpupX, and then adding other co-convex subsets according to
the items above. In particular, this means that we have (X \ a) ∪ b ∈W iff
(X \ a) ∪ b ∈ ρ̄X(W ) for all clopen upsets a, b of X.

This leads us to use the following translation:

12.77. Definition. Define the translation τ : u ·D→ C ·u on components
by τX(W ) = W .
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Clearly, τ is a natural transformation. Moreover:

12.78. Lemma. For all Priestley spaces X, we have ρ̄X ◦ τX = iduDX.

Proof. Let W ∈ uDX. Then τX leaves W unchanged. So does ρ̄X, because
W is already determined by the sets of the form (X \a)∪ b it contains, where
a, b ∈ ClpupX and ρ̄ adds other co-convex sets in the same way as in the
definition of DX.

So the logic P is canonical with respect to ordered monotone frames. As
a corollary of Theorem 10.35 we obtain the following representation theorem
for distributive lattices with monotone implication operators.

12.79. Theorem. Every DLMI embeds into the complex algebra of an ordered
monotone frame.

Also, as a result for Theorem 10.48 and Example 10.40 we obtain:

12.80. Theorem. The logic P is complete with respect to ordered monotone
frames.

The previous two theorems should not come as a surprise, because they
also follow from the theory in Section 8. But on top of known results, we
can use canonicity of P with respect to ordered monotone frames to obtain
a new result: a Goldblatt-Thomason theorem. We first recall the notion of
prime filter extension resulting from the duality.

12.81. Definition. The prime filter extension of an ordered monotone frame
X = (X,≤, N) is the ordered monotone frame pℯX = (Xpe,⊆, Npe), where
Xpe is the set of prime filters on (X,≤) and Npe is given as follows. For
q ∈ Xpe define:

• If a1, a2 ∈ up(X,≤), then (Xpe \ â1) ∪ â2 ∈ Npe(q) if a1 a2 ∈ q;

• If b is an open co-convex subset of (Xpe,⊆), then b ∈ Npe(q) if there
exist (Xpe \ â1) ∪ â2 ∈ Npe(q) such that (Xpe \ â1) ∪ â2 ⊆ b;

• If d is any coconvex subset of (Xpe,⊆), then d ∈ Npe(q) if all open
co-convex subsets of (Xpe,⊆) containing d are in Npe(q).

Here the notion of an “open co-convex subset” is defined as in the relevant
descriptive frame.

12.82. Theorem. Assume that Prop is infinite and let K be a class of
ordered monotone frames that is closed under prime filter extensions. Then
K is axiomatic if and only if K is closed under coproducts, regular subframes
and epimorphic images, and reflects prime filter extensions.
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Conclusions of Chapter V

We introduced a generalisation of coalgebraic logic called dialgebraic logic.
Dialgebras provide convenient categorical structures to describe both geomet-
ric and algebraic semantics of a wide variety of logics that cannot be captured
with coalgebraic logic. Moreover, since dialgebras are dual to themselves
they allow us to prove dualities using dualities of functors.

We have seen how one can use the dialgebraic framework to prove general
results, such as a Hennessy-Milner theorem, a Jónsson-Tarski style repre-
sentation theorem, completeness and a Goldblatt-Thomason theorem. We
exhibited modal intuitionistic logics from the literature as dialgebraic logics,
and obtained new results for them by applying general dialgebraic results.
There are many avenues for further research of dialgebraic logics.

Combining dialgebraic logics. It is relatively easy to combine dialgebraic
logics over the same propositional base to obtain more complicated logics.
Using products and coproducts of functors, the dualities of the individual
logics then give rise to a duality for their fusion, and canonicity is preserved
under this construction. We leave working out the precise details to future
research.

More general results. It would be interesting to investigate what other
coalgebraic results carry over to the setting of dialgebras. For example, is
there a dialgebraic analogue of Schröder’s paper on expressivity for coalgebraic
logics [383]? Can we give a more general finite model construction based on
techniques from [382]? What happens if we go beyond one-step axioms, like
in [342]? Can we prove cut-elimination for dialgebraic logics along the lines
of [343]?
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VI

Case studies of dialgebraic
logics

In this chapter we investigate two classes of logics that can both be viewed as
dialgebraic logics. While the dialgebraic approach gives us some automatic
results using the theory developed in Chapter V, we further investigate the
logics and prove results about them that are not of a dialgebraic nature.

First, in Section 13, we study the extension of intuitionistic logic with
a binary strict implication, interpreted in the same way as Lewis’ strict
implication. We study a wide variety of extensions of the logic and provide,
among other results a Gödel-McKinsey-Tarski translation and corresponding
Blok-Esakia theorem, and a criterion for the finite model property and
decidability.

Second, in Section 14, we investigate modal extensions of the meet-
implication-fragment of intuitionistic logic. This is interesting because it
provides an example of a dialgebraic logic with a non-intuitionistic propo-
sitional base. We prove dualities for two modal extensions, and use the
dialgebraic perspective to obtain a Hennessy-Milner theorem, completeness,
representation theorems, and Goldblatt-Thomason theorems. We also prove
that a wide variety of normal modal intuitionistic logics are conservative
extensions of the normal modal logic investigated in this section.

13 Heyting-Lewis logic

Modern modal logic was invented by Lewis [281, 282, 286] as the theory of
strict implication J. Lewis assumed a classical propositional base and defin-
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ability of J in terms of unary modal operators1 as (ϕ→ ψ). Consequently,
while implication-like connectives are intensively studied in other areas (such
as relevance, substructural, counterfactual and conditional logics), some of
which in fact are of modal origin [300, Chapter 6], modal logic in a narrow
sense gradually came to focus mostly on unary boxes and diamonds, with
Lewis’ original strict implication J falling into disuse.

Recently, Litak and Visser [292] investigated J over an intuitionistic
rather than classical propositional base, using intuitionistic Kripke frames
with an additional binary relation to interpret strict implication. While
a -modality can be obtained from J via ϕ := > J ϕ, strict implica-
tion is not definable from . The constructive strict implication J was
first studied in the context of preservativity for theories over Heyting Arith-
metic [431, 432, 433, 224, 225]. Arrows in functional programming [222] yield
another important class of Heyting-Lewis implications via the Curry-Howard
correspondence (Subsection 13.1.2). Yet another nontrivial variant of J
arises when one generalises Artemov and Protopopescu’s [15] approach to
intuitionistic epistemic logic (Subsection 13.1.3). Even where J is reducible
to in terms of theoremhood, it can still be a more useful primitive. This
has been argued in the proof theory of guarded (co)recursion (Example 13.4;
see also [292, Section 7.2]).

While Kripke semantics has obvious benefits, it does not provide a
fully global completeness theorem for arbitrary extensions of the minimal
Heyting-Lewis system iA (Subsection 13.1), even in the limitative modal or
superintuitionistic cases. In contrast, the systems presented here are amenable
to algebraic semantics, called Heyting-Lewis algebras. These are obtained by
fusing Heyting algebras with so-called weak Heyting algebras [98] over the
shared lattice reduct (Definition 13.10). To combine advantages of algebraic
and relational semantics, one typically works with dual representations
of algebras called descriptive frames. These can sometimes be viewed as
topological spaces, analogous to Esakia spaces for intuitionistic propositional
logic. Like the algebraic semantics, they give completeness, but are often
easier to manipulate and transform, e.g. to prove the finite model property and
decidability. We provide suitable Heyting-Lewis dualities in Subsection 13.4.

Intuitionistic logics with natural Kripke semantics can often be viewed as

1Curiously, Lewis was not using as a primitive, so in fact his intuitionistically
problematic definition of ϕ J ψ was ¬ (ϕ ∧ ¬ψ). See [292, Appendix D] for an account
of problems caused by Lewis’ use of a Boolean propositional base, namely trivialization
[283, 284] of his original system [281, 282], which in turn finally lead him to propose
systems S1–S3 [286, Appendix 2] as successive “lines of retreat” [339]. Lewis considered
S4 and S5, suggested by Becker [31], too strong to provide a proper account of strict
implication [286, page 502] and appeared frustrated with later development of modal logic
[292, Section 2.1]. Yet, despite his supportive attitude towards non-classical logics, he
seems to have mentioned Brouwer only once (favourably) [285], and does not appear to
have ever referred to, or even be familiar with subsequent work of Kolmogorov, Heyting or
Glivenko [292, Section 2.2].
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fragments of classical modal logics determined by the same Kripke structures.
In particular, formulae of IPC can be identified via the Gödel-McKinsey-
Tarski translation with those formulae of modal logic S4 where every subfor-
mula is prefixed with . Extensions of S4 satisfying the Grzegorczyk axiom
Grz of conversely well-founded posets correspond to extensions of IPC: the
Blok-Esakia theorem [72, 149, 152] establishes an isomorphism between the
lattice of intermediate logics and the lattice of S4Grz-logics.

Wolter and Zakharyaschev [444, 445] extended the Gödel-McKinsey-
Tarski translation to provide a Blok-Esakia-style isomorphism between intu-
itionistic unimodal logics and classical bimodal logics. This proved a fruitful
approach, enabling the use of well-developed classical metatheory in proofs
of correspondence, completeness, canonicity, the finite model property, and
decidability results. In Subsection 13.6, we generalise their Blok-Esakia result
to the Heyting-Lewis setting.

In order to put this transfer apparatus to good use, in Section 13.7
we set out to prove the finite model property and decidability for classical
bimodal logics. In particular, we prove this for (cofinal) transitive subframe
logics. These results can then be transferred to a large class of Heyting-Lewis
logics (with an additional axiom enforcing that the relation interpreting J is
transitive). In Sections 13.5, 13.6 and 13.7, care and ingenuity is required
with Wolter and Zakharyaschev’s original techniques: some results transfer
smoothly to the more general setting, while other lemmas and theorems
require subtler proofs, like Proposition 13.64 and Lemmas 13.71 and 13.72
below. We are not aware of similar transfer results between an intuitionistic
source language involving binary modalities and a classical language involving
exclusively unary ones.

Origin of material. This section is based on joint work with Tadeusz
Litak and Dirk Pattinson, published in [205].

13.1 Syntax, axioms and examples

Define the language IPCJ by the grammar

ϕ ::= > | ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ J ϕ,

where p ranges over some fixed set of proposition letters Prop. As usual we
abbreviate ¬ϕ := ϕ→ ⊥ and ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ). Furthermore,
ϕ := > J ϕ. The unary connectives ¬ and bind strongest, next comes
J, then ∧ and ∨, and lastly →.

We define Heyting-Lewis Logic (the system iA following [292])2 as the

2Litak and Visser [292] use the name “Lewis arrow” for J, which leads to names such
as iA, or to the use of a as a subscript.
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extension of the intuitionistic propositional calculus IPC with the axioms

(Ka) ((ϕ J ψ) ∧ (ϕ J χ))→ (ϕ J (ψ ∧ χ))

(Di) ((ϕ J χ) ∧ (ψ J χ))→ ((ϕ ∨ ψ) J χ)

(Tr) ((ϕ J ψ) ∧ (ψ J χ))→ (ϕ J χ)

and the arrow necessitation rule:

(Na)
ϕ→ ψ

ϕ J ψ
.

We also call iA the (base) Heyting-Lewis logic. The system obtained by
removing (Di) from the above axiomatisation will be denoted as iA−. In
several important applications below, one needs to distinguish between the
iA−- and iA-variants. Only the latter can be given a sound and complete
Kripke-style semantics (see Subsection 13.2), and the results established in
this section generally require the presence of (Di).

A (iA-)logic is a set of IPCJ-formulae containing all of the above
axioms, and closed under (Na), uniform substitution and moduls ponens.
Given Θ,Γ ⊆ IPCJ, Θ⊕ Γ denotes the smallest logic containing Θ ∪ Γ. We
write Θ⊕{ϕ} as Θ⊕ϕ and in the special case of Θ = iA (or Θ = iA−), we
write i-ϕ (i-ϕ−).

We now review several uses of the strict implication J and how it relates
to the literature.

13.1.1 Normal modal intuitionistic logics (with box)

One easily shows [224, 225, 292] that the defined box ϕ = > J ϕ is normal :
the axiom (K ) and the rule (N ) obtained by substituting > for ϕ in (Ka)
and (Na), respectively, are derivable in iA−, just like

(ϕ→ ψ)→ (ϕ J ψ).

Thus, postulating as an axiom the opposite implication

(Box) (ϕ J ψ)→ (ϕ→ ψ)

not only makes J interdefinable with (and makes (Di) derivable even
over iA− [292, Lemma 4.4(c)]), but reduces the study of Heyting-Lewis
logics extending i-Box to the study of normal modal extensions of IPC (see
Subsection 9.3.1).

Conversely, this means that the Heyting-Lewis logic of strict implication
subsumes a large class of modal intuitionistic logics. In this rather broad
area [124, 330, 79, 392, 446, 135, 290, 248] one sometimes includes a separate

connective undefinable in i-Box, but there are often good reasons to work
in the setting of a single added to the signature of IPC, particularly
when studying the Curry-Howard-Lambek correspondence for a specific
functor/type operator. Examples of interest include:
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13.1. Example. The (monoidal) comonadic box of constructive S4 [11, 65],
obtained by extending IPC with

(T) ϕ→ ϕ

(4 ) ϕ→ ϕ

is used to control staged computation [131, 325].

13.2. Example. The strength axiom3:

(S ) ϕ→ ϕ.

yields IPC ⊕ S 4, the (inhabitation) logic of Haskell’s applicative functors
(idioms) [302], as noted in recent references [293, 370] (see Subsection 13.1.2).
It has also been proposed as a minimal system of intuitionistic epistemic
logic (see Subsection 13.1.3).

13.3. Example. Extending IPC ⊕ S with

(C4) ϕ→ ϕ

yields the Propositional Lax Logic PLL [124, 154, 189]. This is known as
the Curry-Howard correspondent of strong monads [312, 252, 40], but has
numerous other application in hardware verification [154], access control [166],
epistemic logic [15], or topos logic [189].

13.4. Example. The strong Löb axiom

(SL ) ( ϕ→ ϕ)→ ϕ

entails (S ) [309, Lemma 3.2]5 and hence is equivalent to

(SL′ ) ( ϕ→ ϕ)→ ϕ.

Furthermore, the system IPC ⊕ SL is easily seen to be equivalent to the
one obtained by extending IPC ⊕ S with the (ordinary) Löb axiom

(L ) ( ϕ→ ϕ)→ ϕ

3Strength of the functor interpreting in a categorical semantics of modal proofs [11, 65,
134, 293, 370] corresponds to the validity of (ϕ∧ ψ)→ (ϕ∧ψ), but this is derivable from
(S ) when is normal [293, Section 6]. Classically, i-S collapses to a fairly non-interesting
system [293, Remark 25].

4We are abusing the ⊕ notation for logics in IPC , replacing closure under axioms and
rules of iA with closure under axioms and rules of IPC .

5This is a “deboxed” version of well-known derivation of transitivity from the standard
Löb axiom [78, Theorem 18]. The above reference provides a categorical translation of this
derivation.
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While classically this just produces the logic Ver of the single irreflexive
state, (SL ) has been studied in the context of extensions of Heyting Arith-
metic with the completeness principle [431]. However, computer scientists
may recognise it as an axiom for the modality for guarded (co)recursion [323,
324], also known as the later operator [39, 66, 228, 244], next clock tick [265,
264] or guardedness type constructor [17]. Proof systems developed in this
context often treat (definable) J as a primitive connective [323, 1, 112]. Thus
effectively they are proof systems for i-SL ⊕Box rather than for IPC ⊕SL ;
see [292, Section 7.2] for a detailed discussion.

13.1.2 Haskell arrows (with choice)

It was shown in [292, Lemma 4.10] that, over iA−, the strength axiom (S )
is equivalent to

(Sa) (ϕ→ ψ)→ (ϕ J ψ).

From a type-theoretic perspective, the axioms of i-Sa
− correspond to in-

habitation laws of Hughes arrows [222], where an arrow is a binary type
constructor that represents computations, here given in Haskell notation:

class Arrow a where

arr :: (b -> c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b, d) (c, d)

Reading strict implication b J c as the type of arrows with domain b and
codomain c, the first function, arr stipulates that every function of type b

-> c can be interpreted as a computation from b to c, which is precisely (Sa).
The second function allows us to compose arrows, which is modally captured
by (Tr). Finally, the direct modal transliteration of first and (Ka) are
inter-derivable over IPC [292, Lemma 4.1]. This leaves the (Di) axiom that
corresponds to a frequently used extension of arrows, the so-called arrows
with choice [223]. This amounts to stipulating an extra operation

class Arrow arr => ArrowChoice arr where

(|||) :: arr a c -> arr b c ->

arr (Either a b) c

One can set up the same correspondences that are usually exhibited between
modal logic and type theory in a (strong) monad setting, e.g. give a realisabil-
ity interpretation [252] of Heyting-Lewis proofs as functions in a type theory
with a chosen notion of arrow, a propositions-as-types interpretation [40],
or a categorical semantics [11]. Related work has indeed been done for
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arrows [16, 234, 288, 289], but inasmuch as we are aware, so far avoiding
explicit mention of logic (or (Di)/Choice).6

13.5. Example (Arrow-collapsing Choice). Clearly, the trivial example
of arrows, i.e. function spaces, are arrows with choice. The above-mentioned
applicative functors are another limiting case: they correspond to arrows
with delay [289, Definition 5.1], an operation which simply makes (the type
corresponding to) (Box) inhabited [289]. Finally, monads are equivalent to
higher-order arrows [289, Section 6] or arrows with apply [223, Section 5.2],
where the apply operation inhabits a type corresponding to one of Lewis’
original axioms [286],[292, Remark 7.3]:

(Appa) (ϕ ∧ (ϕ J ψ)) J ψ.

The logic PLAA := i-Sa ⊕ Appa allows for a decomposition of ϕ J ψ as
ϕ→ ψ [289] [292, Lemma 4.17(f)]. This also entails derivability of (Di) [292,
Lemma 4.17(g)], which in the Haskell context was already noted in Hughes’
original paper [223, Section 5.2].7

13.6. Example (Nontrivial Choice). An example that does not trivialise
J is provided by Kleisli arrows: given a monad M , we define the type of
Kleisli arrows over types a and b as arrows in the Kleisli category given by
M , that is, A a b = a→M b. Just like with function spaces, this allows us
to define f ||| g = [f, g] as the co-pair. For co-Kleisli arrows, i.e. defining
A a b = M a→ b, we need to additionally require that the monad M comes
equipped with a distributive law over coproducts, viz. M(a+ b)→Ma+Mb.
Finally, list processors are presented as arrows with choice in [223], where for
the choice operation |||, the interleaving pattern in the output is modelled
on the interleaving of the input.

13.7. Example (Arrows without Choice). An example of arrows that do
not come equipped with choice are automata that transform elements of type
a to elements of type b that satisfy the isomorphism A a b ∼= a→ b× (A a b).
Another non-example are functions on infinite streams: given two functions
Stream a → Stream b and Stream b → Stream c, there is no generic way to
construct a function Stream (a+ b)→ Stream c.

6To the best of our knowledge, the only explicit (if brief) discussion of the Curry-Howard
connection between Haskell arrows and i-Sa

− is found in Litak and Visser [292, Section 7.1].
7The logical perspective seems to cast a light on the controversy whether arrows are

“stronger” than applicative functors [302, 289]. Putting aside the general question of whether
one takes as a measure of strength the capability to inhabit more types or rather to allow
more distinctions, in the presence of J, the situation is not as clear-cut as in the unary
case, where (monadic) PLL simply extends (applicative) IPC ⊕ S . Defining arrows
over the latter set of axioms via delay yields i-Sa

− ⊕ Box, whereas inhabiting apply with
Appa yields PLAA. These are two incomparable systems.
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13.1.3 Intuitionistic epistemic logic of entailment

From an (intuitionistic) epistemic logical point of view, Heyting-Lewis logic
can be used to reason about entailment, interpreting “ϕ J ψ” as “the agent
knows that ϕ entails ψ”. This allows us to not only reason about the
knowledge of an agent, but also about their deductive abilities. We recover
statements about an agent’s knowledge via ψ = > J ψ.

This idea leads to a generalisation of Artemov and Protopopescu’s intu-
itionistic epistemic logic IEL [15]. They argue that two important principles
of intuitionistic epistemic logic are coreflection (ϕ→ ϕ) and intuitionistic
reflection ( ϕ→ ¬¬ϕ). We briefly discuss their generalisations to the setting
of entailments.

An intuitionistic implication holds only if there exists a proof for it. As
a consequence of this proof, our Heyting-Lewis agent [15, Section 2.1] knows
the implication:

intuitionistic implication ⇒ knowledge of implication

Syntactically, this simply means validity of the strength axiom (Sa) (or
equivalently (S )), i.e. coreflection ϕ→ ϕ [15].

Conversely, known implications cannot be false. Therefore one cannot
intuitionistically falsify any implication that is known. This gives rise to the
following generalisation of intuitionistic reflection ( ϕ→ ¬¬ϕ)

(IR) (ϕ J ψ)→ ¬¬(ϕ→ ψ).

One could say that knowledge of the entailment of ψ from ϕ prevents
one from proving that ¬ψ given ϕ, i.e.

(IR′) (ϕ J ψ)→ (ϕ→ ¬¬ψ)

Since IPC ` ¬¬(ϕ → ψ) ↔ (ϕ → ¬¬ψ), both axioms are equivalent.
Substituting ϕ = > shows that (both versions of) the axiom reduce to
intuitionistic reflection.

13.8. Definition. The intuitionistic epistemic logic of entailment is given
by

IELE = iA⊕ Sa ⊕ IR.

There is no natural way to (Box)-collapse IELE to intuitionistic logic with
a knowledge operator . Knowledge of an entailment ϕ J ψ does not imply
the existence of an intuitionistic proof, or knowledge thereof.

Besides, as a consequence of the strength axiom we have (ϕ J ψ) →
(ϕ → ψ) (see [292, Lemma 4.10(b)]). Its converse, however, need not
be true. While ϕ may imply knowledge of ψ, there is no reason it should
entail intuitionistic truth of ψ. Thus we do not wish to have the Hughes
law collapsing arrows in the monadic setting (Section 13.1.2), i.e. we do not
stipulate
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(Hug) (ϕ→ ψ)→ (ϕ J ψ).

We will see in Proposition 13.20 below that (Box), (Hug) and the converse
of (IR) are not derivable from IELE. Nevertheless, knowledge of entailment
and intuitionistic implication are not entirely unrelated. Generalising [15,
Theorem 3.5(3)], we find:

13.9. Proposition. In IELE we have

¬(ϕ J ψ)↔ ¬(ϕ→ ψ).

Proof. The direction from left to right follows from (Sa). It follows from (IR)
that ¬¬¬(ϕ → ψ) → ¬(ϕ J ψ) and since ¬(ϕ → ψ) → ¬¬¬(ϕ → ψ) this
proves the converse.

The basic definitions of the logic IELE give rise to many questions. Apart
from its mathematical and philosophical aspects, or the question of a full
axiomatisation capturing all justifiable principles, we note that Artemov and
Protopopescu highlight the Brouwer-Heyting-Kolmogorov motivation under-
lying the original IEL [15]. Here, one could relate it to type-theoretic calculi
developed in the functional programming setting (cf. Subsection 13.1.2). It
would also be of interest to compare IELE with other approaches to intu-
itionistic epistemic logics [443, 357, 276]. We leave the detailed investigation
of IELE for future research.

13.2 Semantics

The logics introduced above correspond to varieties of Heyting algebras with
binary operators. Such algebras give the algebraic semantics of iA, and
we call them Heyting-Lewis algebras. After defining these, we recall the
relational semantics of iA and prove some basic properties.

13.10. Definition. A Heyting-Lewis algebra or HL-algebra is a tuple of the
form

A := (A,>,⊥,∧,∨,→,J),

where (A,>,⊥,∧,∨,→) is a Heyting algebra and (A,>,⊥,∧,∨,J) is a so-
called weak Heyting algebra [98], i.e. J : A × A → A is a binary operator
that satisfies:

(C1) (a J b) ∧ (a J c) = a J (b ∧ c)
(C2) (a J c) ∧ (b J c) = (a ∨ b) J c
(C3) (a J b) ∧ (b J c) ≤ a J c
(C4) a J a = >
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When no confusion is likely we will write (A,J) and understand A to be
(the set underlying) a Heyting algebra.

An HL-algebra morphism from (A,J) to (A′,J′) is a Heyting homomor-
phism h : A→ A′ that additionally satisfies h(a J b) = h(a) J′ h(b) for all
a, b ∈ A. We write HLA for the category of HL-algebras and HL-algebra
morphisms.

The collection of IPCJ-formulae modulo provable equivalence yields
an HL-algebra (the Lindenbaum-Tarski algebra), see [294, Section 3.1]. In
fact, completeness of iA and its extensions can be shown by standard
techniques for algebraizable logics [73, 162, 358, 160]. This is not only true
for theoremhood, but also for theories induced by the global consequence
relation. As this is routine, we skip the details.

For future reference, we state the following lemma.

13.11. Lemma. Let A = (A,J) be a Heyting-Lewis algebra and a, b, c ∈ A.
Then we have

(C5) a J b ≤ (a ∧ c) J (b ∧ c)

(C6) a J b ≤ (a ∨ c) J (b ∨ c)

Proof. The proof is analogous to that of Lemma 8.9. Antitonicity and
monotonicity (i.e. (I1) and (I3)) follow from (C2) and (C1), respectively.
The absorption axioms (I2) and (I4) follow from combining (C4) with (C2)
and (C1), respectively.

We recall the relational semantics for IPCJ [226, Section 3.4.2], [292,
Definition 3.3]. These are intuitionistic Kripke frames (i.e. posets) with an
additional binary relation that is used to interpret the strict implication
operator J.

13.12. Definition. A strict implication frame, or J-frame for short, is a
tuple (X,≤,@) consisting of a poset (X,≤) and a binary relation @ on X
that satisfies for all x, y, z ∈ X,

(J-p) if x ≤ y @ z then x @ z.

A J-morphism from (X,≤,@) to (X ′,≤′,@′) is a function f : X → X ′ that
is bounded with respect to both relations. That is, for R ∈ {≤,@} and all
x, y ∈ X and z′ ∈ X ′:

(P1) If xRy then f(x)R′f(y);

(P2) If f(x)R′z′ then ∃z ∈ X s.t. xRz and f(z) = z′.

We write J -Frm for the category of J-frames and -morphisms.
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For a poset (X,≤), recall that Up(X,≤) = {a ⊆ X | if x ∈ a and x ≤
y then y ∈ a} denotes the collection of upsets of X. Recall moreover that
up′(X,≤) is the collection of upsets of (X,≤) viewed as Heyting algebra,
where top, bottom, conjunction and disjunction are given byX, ∅, intersection
and union, respectively. Implication is defined by

a→ b = {x ∈ X | if x ≤ y and y ∈ a then y ∈ b}.

(This is denoted by ⇒ in Subsection 1.4. We denote it by → here to
highlight its similarity to J.) In fact, this gives rise to a contravariant
functor up′ : iKrip→ ES, see Subsection 1.4. Likewise, J-frames give rise to
HL-algebras:

13.13. Lemma. Every J-frame X = (X,≤,@) gives rise to an HL-algebra
X+ = (up′(X,≤),J), where J is defined by

a J b = {x ∈ X | if x @ y and y ∈ a then y ∈ b}.

Proof. If a and b are upsets, then by (J-p) so is a J b, so J is well defined. To
prove that (up′(X,≤),J) is a HL-algebra we need to show that it satisfies (C1)
to (C4) from Definition 13.10. Each of these follows from a straightforward
verification.

The algebra X+ is called the complex algebra of X.

13.14. Proposition. The assignment (·)+ extends to a contravariant functor
(·)+ : J -Frm→ HLA by setting f+ = f−1 for every J-frame morphism f .

Proof. We have already seen that (·)+ is well defined on objects. If f :
(X1,≤1,@1)→ (X2,≤2,@2) is a J-frame morphism, then in particular it is
a bounded morphism from (X1,≤1) to (X2,≤2) and hence f−1 : up′(X2,≤2

) → up′(X1,≤1) is a Heyting homomorphism. Boundedness of f with
respect to @ entails that f−1(a2 J b2) = f−1(a2) J f−1(b2) for all a2, b2 ∈
up′(X2,≤2). Functoriality is straightforward.

Thus we can choose upsets of (X,≤) as the interpretants of a J-frame
(X,≤,@) and define a J-model as follows.

13.15. Definition. A valuation for a J-frame (X,≤,@) is a function V :
Prop → Up(X,≤) that assigns to each proposition letter p an upset of
(X,≤). A strict implication model or J-model is a tuple (X, V ) of a J-frame
X = (X,≤,@) and a valuation V for X.

The set of states of a model M = (X, V ) satisfying an IPCJ-formula ϕ
is called the truth set of ϕ. It is denoted by JϕKM and defined recursively by
JpKM = V (p), J>KM = X, J⊥KM = ∅, and

Jϕ ∧ ψKM = JϕKM ∩ JψKM Jϕ→ ψKM = JϕKM → JψKM

Jϕ ∨ ψKM = JϕKM ∪ JψKM Jϕ J ψKM = JϕKM J JψKM
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If x ∈ JϕKM we say that x satisfies ϕ, and write M, x  ϕ. A model M
satisfies ϕ if JϕKM = X, notation: M  ϕ. A frame X is said to satisfy ϕ if
every model based on it satisfies ϕ, in which case we write X  ϕ. If Γ is a
set of IPCJ-formulae then we write X  Γ if X  ϕ for all ϕ ∈ Γ.

The class of J-models can be extended to a category with the following
notion of morphism.

13.16. Definition. A J-model morphism from (X1, V1) to (X2, V2) is a J-
frame morphism f : X1 → X2 that satisfies V1 = f−1 ◦ V2. We write J -Mod
for the category of J-models and their morphisms.

A routine induction on the structure of ϕ shows that morphisms preserve
truth. Alternatively, this follows from the dialgebraic perspective presented
in Section 13.4 together with Proposition 9.90.

13.17. Proposition. Let f : M1 →M2 be a J-model morphism. Then for
all x1 ∈ X1 and ϕ ∈ IPCJ we have

M1, x1  ϕ iff M2, f(x1)  ϕ.

13.18. Corollary. Let f : X1 → X2 be a surjective J-frame morphism. Then
X1  ϕ implies X2  ϕ.

It is known (see e.g. [292, Theorem 6.4(a)] and references therein) that
J-frames form a sound and complete semantics for iA. We now prove corre-
spondence results for the axioms of IELE and use this to give a sound and
complete semantics for IELE. As an example application, we substantiate
the claim that IELE does not satisfy (Box), (Hug), and the converse of (IR).

13.19. Proposition. Let X = (X,≤,@) be a J-frame.

1. X satisfies (Sa) iff x @ y implies x ≤ y for all x, y ∈ X.

2. X satisfies (IR) iff for all x ∈ X there exists y ∈ X such that x ≤ y
and x @ y.

Proof. Item 1 follows from Lemma 4.10 and Theorem 6.4(c) in [292].
For the second item, suppose there exists some x ∈ X such that no

@-successor of x is also a ≤-successor. Then we can set V (p) = ↑≤x and
V (q) = ∅, and an easy verification shows that x  p J q while x 6 p→ ¬¬q.
Conversely, let X be such that every x ∈ X has a @-successor that is also a
≤-successor. Suppose x  ϕ J ψ. We aim to prove that x satisfies ϕ→ ¬¬ψ.
So let y be such that x ≤ y and y  ϕ. Then in order to prove that y  ¬¬ψ,
we need to show that y ≤ z implies z 6 ψ → ⊥. By assumption there exists
w ∈ X such that z @ w and z ≤ w. Since x ≤ z and x  ϕ J ψ we must
have z  ϕ J ψ. Similarly, as y ≤ w and y  ϕ we find w  ϕ, and because
z @ w this means w  ψ. Therefore z 6 ψ → ⊥. This proves that y  ¬¬ψ
and hence x  (ϕ→ ¬¬ψ), as desired.
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Figure 13.1: The frame from Proposition 13.20.
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In presence of the strength axiom, validity of (IR) is guaranteed by the
requirement that every x ∈ X has a @-successor. Therefore a J-frame
(X,≤,@) is a frame for IELE if and only if x @ y implies x ≤ y and every
state has a @-successor. We note that these are the same frames as used for
the intuitionistic epistemic logic IEL, see [15, Definition 4.2].

13.20. Proposition. The axioms (Box), (Hug), and the converse of (IR)
are not derivable from IELE.

Proof. Consider the frame X = (X,≤,@) where X = {w, x, y, z}, @ =
{(w, x), (x, y), (y, y), (z, z)}, and ≤ is given by the reflexive and transitive
closure of w ≤ x ≤ y ≤ z, see Figure 13.1. This is a frame for IELE because
the relation @ is contained in ≤, and every state has a @-successor. It can
easily be verified that this does not satisfy the frame conditions corresponding
to (Box) and (Hug) given in [292, Figure 6.2], so that X 6 Box and X 6 Hug.
It follows that (Box) and (Hug) are not derivable in IELE.

Finally, we show that over X, (ϕ → ¬¬ψ) does not imply (ϕ J ψ).
Consider the valuation given by V (p) = X and V (q) = {z}. Then by
construction x 6 p J q. On the other hand, it follows from z  q that t 6 ¬q
for all states t ∈ X, so that t  ¬¬q for all t ∈ X. Therefore x  p→ ¬¬q,
and hence x itself witnesses x 6 (p→ ¬¬q)→ (p J q).

13.3 General and descriptive frames

Next we define general J-frames. These will be used to obtain a duality
result for HLA (Theorem 13.44). More importantly, we will make extensive
use of general J-frames in Subsections 13.5 and 13.6 below, where we embed
IPCJ into bimodal classical logic.

13.21. Definition. A general J-frame is a tuple (X,≤,@, P ) such that
(X,≤,@) is a J-frame and P ⊆ Up(X,≤) is a collection of upsets contain-
ing X and ∅, and closed under ∩,∪,→ and J. It is called descriptive if
additionally it is
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• Compact: For every A ⊆ P and B ⊆ {X \ a | a ∈ P}, if A∪B has the
finite intersection property then

⋂
(A ∪B) 6= ∅;

• ≤-Refined: For all x, y ∈ X, if x 6≤ y then there exists an a ∈ P such
that x ∈ a and y /∈ a;

• @-Refined: For all x, y ∈ X, if x 6@ y then there exist a, b ∈ P such
that x ∈ a J b and y ∈ a and y /∈ b.

If G = (X,≤,@, P ) is a geneneral J-frame, we write κG for the underlying
J-frame (X,≤,@).

Observe that the reduct (X,≤, P ) of a general J-frame G = (X,≤,@, P )
is a general intuitionistic Kripke frame (Definition 1.35). Therefore the set
P of admissible upsets forms a sub-Heyting algebra of up′(X,≤). Moreover,
if G is descriptive then (X,≤, P ) is a descriptive intuitionistic Kripke frame
(Definition 1.35). Therefore we may alternatively define a descriptive J-frame
as a tuple (X,≤,@, P ) such that (i) (X,≤, P ) is a descriptive intuitionistic
Kripke frame, (ii) P is closed under J, and (iii) @-refinedness is satisfied.

Since P is closed under J, we can view (P,J) as a sub-algebra of (κG)+

(see Lemma 13.13). In particular this implies that (P,J) is an HL-algebra,
and we denote it by G∗ = (P,J).

We now define morphisms between general J-frames.

13.22. Definition. A general J-frame morphism between (X1,≤1,@1, P1)
and (X2,≤2,@2, P2) is a J-frame morphism f : (X1,≤1,@1)→ (X2,≤2,@2)
such that f−1(a2) ∈ P1 for all a2 ∈ P2. Let G-Frm be the category of general
J-frames and morphisms and D-Frm its full subcategory of descriptive J-
frames.

It is well known that descriptive intuitionistic Kripke frames can be
viewed as topological spaces with an extra relation, called Esakia spaces
(see Subsection 1.4). As descriptive J-frames are based on descriptive
intuitionistic Kripke frames, this adapts accordingly.

13.23. Definition. Define a strict implication space to be a tuple X = (X,≤
,@, τ) such that (X,≤, τ) is an Esakia space and @ is a binary relation on
X satisfying:

(S1) x ≤ y @ z implies x @ z for all x, y, z ∈ X;

(S2) ↓@a = {x ∈ X | x @ y for some y ∈ a} is clopen in (X, τ) for
every clopen a ⊆ X;

(S3) ↑@x = {y ∈ X | x @ y} is closed in (X, τ) for all x ∈ X.

These constitute the category SIS, whose morphisms are continuous mor-
phisms that are bounded with respect to both relations.

13.24. Theorem. We have D-Frm ∼= SIS.
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Proof. Let (X,≤,@, P ) be a descriptive J-frame and write τP for the topo-
logy on X generated by taking the sets in P and their complements as a
subbase. Since (X,≤, P ) is a descriptive intuitionistic Kripke frame we know
that (X,≤, τP ) is an Esakia space. Furthermore, (S1) follows from the fact
that (X,≤,@) is a J-frame and (S3) follows from @-refinedness. For (S2),
let a be a clopen subset of X. Then a =

⋃n
i=1 bi ∩ −ci, where bi, ci ∈ P and

−ci = X \ ci, and we have

↓@a =
⋃
↓@(bi ∩ −ci)

=
⋃
−(bi J ci)

which is in −P = {X \ a | a ∈ P}.
Conversely, for a strict implication space (X,≤,@, τ) let P be the col-

lection of clopen upsets of (X, τ). Then (X,≤, P ) is a descriptive intuition-
istic Kripke frame, (X,≤,@) is a J-frame because of (S1), @-refinedness
follows from (S3), and closure of P under J follows from the fact that
a J b = −(↓@(a ∩ −b)) is in P as a consequence of (S2).

Clearly these two transformations define a bijection on objects. The
isomorphism on morphisms follows from a straightforward verification.

If f : G1 → G2 is a general J-frame morphisms, then we define f∗ :=
f−1 : G∗2 → G∗1. This assignment is well defined by the definition of a general
J-frame morphism, and it is an HL-algebra morphism as a consequence of
Proposition 13.14. We have:

13.25. Proposition. The assignment (·)∗ : G-Frm → HLA defines a con-
travariant functor.

A general J-frame G = (X,≤,@, P ) can be turned into a general J-model
by endowing it with an admissible valuation, that is, a map V : Prop→ P .
The interpretation of IPCJ-formulae in (G, V ) is defined as in the underlying
J-model (κG, V ). We write G  ϕ if ϕ is satisfied in every general J-model
based on G. If Γ is a set of IPCJ-formulae then we define G  Γ as expected.
Similar to Corollary 13.18 one can prove:

13.26. Proposition. Let f : G1 → G2 be a surjective general frame mor-
phism. Then G1  ϕ implies G2  ϕ, for all ϕ ∈ IPCJ.

Since valuations for G are in particular valuations for the underlying
J-frame κG, validity of a formula ϕ in κG implies validity of ϕ in G. The
converse, however, need not be true. If the converse holds for the class of
descriptive J-frames, then we call ϕ canonical. Similarly, for logics:

13.27. Definition. A logic Γ is called canonical if G  Γ implies κG  Γ for
all descriptive J-frames G.
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This notion of canonicity is sometimes called d-persistence, as is the case
in [444, 445].

13.28. Example. An example of a canonical iA-logic is iA⊕Sa. To see this,
note that by Proposition 13.19(1) it suffices to prove that for every descriptive
frame G = (X,≤,@, P ) satisfying (Sa) we have: if x @ y then x ≤ y for all
x, y ∈ X. This, in turn, follows from an application of J-refinedness.

In Section 13.6 below we will see how canonicity for iA-logics follows
from canonicity of classical bimodal logics.

13.4 Dialgebra, duality and Goldblatt-Thomason theorem

The logic iA can be viewed as a dialgebraic logic. Indeed, it is the extension
of IPC with a binary modality, i.e. we can take Λ = {♥} with ar(♥) = 2,
that satisfies the congruence rule and the following axioms:

1. ♥(p, q) ∧ ♥(p, r)↔ ♥(p, q ∧ r)
2. ♥(p, r) ∧ ♥(q, r)↔ ♥(p ∨ q, r)
3. ♥(p, q) ∧ ♥(q, r)→ ♥(p, r)

4. ♥(p, p)↔ >

It then follows from the definitions that iA coincides with IPC(Λ,Ax),
where Ax consists of the four axioms above.

Henceforth we write ϕ J ψ instead of ♥(ϕ,ψ), and ϕ J ψ for ♥(ϕ,ψ).
The procedure from Definition 9.54 then gives rise to the following functor.

13.29. Definition. The functor ℒJ : HA→ DL sends a Heyting algebra A to
the free distributive lattice generated by {a J b | a, b ∈ A}modulo the axioms

above, where p, q, r are replaced by elements in A and ♥(a, b) is read as a J b.
If h : A1 → A2 is a Heyting homomorphism, then ℒJh : ℒJA1 → ℒJA2 is
defined on generators by ℒJh(a J b) = h(a) J h(b).

13.30. Proposition. HLA ∼= Dialg(ℒJ, j).

Proof. This follows from a routine verification resembling the proof of Theo-
rem 9.11.

Next we model J-frames as dialgebras for the inclusion i : iKrip→ Pos
and the functor Ps. The subscript s stands for strict implication. An
interesting feature of this functor is that it completely disregards the partial
order of the intuitionistic Kripke frame it acts on.

13.31. Definition. The functor Ps : iKrip → Pos is defined on objects
by Ps(X,≤) := (PX,⊇), and on a morphism f : (X1,≤1) → (X2,≤2) by
Psf : Ps(X1,≤1)→ Ps(X2,≤2) : a 7→ f [a].
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13.32. Theorem. Let i : iKrip → Pos be the inclusion functor. Then
J -Frm ∼= Dialg(i,Ps).

Proof. On objects, this follows from identifying the relation v of a J-frame
with the map γv that sends a state to its set of successors. Monotonicity of
γv then precisely coincides with truth of condition (J-p). The isomorphism
on morphisms is similar to that of between -frames and (i,Pup)-dialgebras
given in Subsection 9.1.

The operator J can now be viewed as a binary modality for Ps. Its
interpretation is given by the predicate lifting λJ : Up · i×Up · i→ Up ·Ps
defined via

λJ(X,≤)(a, b) = {c ∈ Ps(X,≤) | c ∩ a ⊆ b}.

We leave the verification that λJ is natural to the reader. If X = (X,≤,v)
is a J-frame, (X,≤, γv) its corresponding dialgebra and V a valuation, then
for each state x we have (X, V ), x  ϕ J ψ iff γv(x) ∩ (JϕK(X,V )) ⊆ JψK(X,V ).
Using this observation one can show that the interpretation of IPCJ-formulae
given by the predicate lifting λJ corresponds with the usual interpretation
of J in J-frames.

Let us instantiate the notions of regular subrames, bounded morphic
images and coproducts to the setting of J-frames.

13.33. Definition. Let X1 = (X1,≤1,v1) and X2 = (X2,≤2,v2) be two
J-frames.

1. X1 is called a generated subframe of X2 if

• X1 ⊆ X2;

• If x ∈ X1 and x ≤2 y or x v2 y then y ∈ X1;

• If x, y ∈ X1 then x ≤1 y iff x ≤2 y and x v1 y iff x v2 y.

2. X1 is called a regular subframe of X2 if there exists an J-morphism
f : X1 → X2 such that f : (X1,≤1)→ (X2,≤2) is an embedding.

3. X1 is called a J-morphic image of X2 if there exists a surjective
J-morphism X2 → X1.

Observe that the difference between generated subframes and regular
subframes is that generated subframes need to be based on subsets of a
given frame, while regular subframes of a frame X are precisely the J-frames
isomorphic to a generated subframe of X. Since closure of a class K of J-
frames under J-morphic images implies that it is closed under isomorphisms,
we have:

13.34. Lemma. Suppose a class K of J-frames is closed under J-morphic
images. Then it is closed under regular subframes if and only if it is closed
under generated subframes.
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The notion of a coproduct of frames (Lemma 11.9) in our setting yields
usual notion of a disjoint union of (intuitionistic) Kripke frames:

13.35. Definition. The coproduct or disjoint union of a K-indexed set
{Xk = (Xk,≤k,vk) | k ∈ K} of J-frames is the frame

∐
Xk = (X,≤,v)

where (X,≤) is the coproduct of the posets (Xk,≤k) and v is given by x v y
if there exists a k ∈ K such that x, y ∈ Xk and x vk y.

13.36. Proposition. Let K ⊆ J -Frm be a class of J-frames. If K is
axiomatic (i.e. it is the class of frames validating a set Φ of formulae) then
it is closed under generated subframes, regular subframes, J-morphic images,
and disjoint unions.

Proof. This is an application of Corollary 11.15.

Next, we show how to view descriptive J-frames as dialgebras. We use
this to derive a duality between the categories of descriptive J-frames and
HL-algebras.

13.37. Definition. Define the functor Vs : ES→ Pries on objects by sending
an Esakia space X = (X,≤, τ) to the Stone space V (X, τ), ordered by ⊇.
That is, we take the Vietoris hyperspace (Definition 3.12) of the Stone space
underlying X and order it by reverse inclusion. If f : X1 → X2 is an Esakia
morphism then we let Vsf = f [−].

It is not difficult to see that VsX is a Priestley space: we already know
that it is compact because the Vietoris functor preserves compactness, and
if c 6⊇ c′ then we can find a clopen set a containing c but not c′, so that
a is an upclosed clopen set containing c but not c′. If f : X1 → X2 is an

Esakia morphism then we know from the fact that Vsf is defined as Vf that
Vsf : VsX1 → VsX2 is continuous. It follows immediately from the fact that
we order the resulting Priestley spaces by reverse inclusion that Vsf is also
order-preserving. So Vs does indeed define a functor. We can alternatively
characterise the topology on VsX as follows.

13.38. Lemma. Let X be an Esakia space. Then the topology on VsX is
generated by

(a, b) = {c ∈ VsX | c ∩ a ⊆ b},
(a, d) = {c ∈ VsX | (c ∩ a) ∩ d 6= ∅},

(13.1)

where a, b range over ClpupX and d ranges over ClpdnX.

Proof. The given sets are clopen because (a, b) = ((X \ a) ∪ b) and
(a, d) = (a ∩ d), both of which are clopen in VsX. For the converse

it suffices to show that a is clopen for any clopen a in X. (This suffices
because it then follows that sets of the form a = VsX \ (X \ a) are clopen
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as well, and sets of the form a, a (with a clopen) form a subbase for the
topology on VsX.) Since the clopen upsets and their complements form a
subbase for the topology on X we can we write a =

⋂n
k=1(dk ∪ bk), where

bk ∈ ClpupX and dk ∈ ClpdnX. Then we have

a =
n⋂
k=1

(dk ∪ bk) =
n⋂
k=1

(−dk, bk)

which is clopen in the topology generated by the sets in (13.1) because the
complement of (−dk, bk) is (−dk,−bk).

Letting ℐ : ES→ Pries be the inclusion functor as usual, we can describe
descriptive J-frames dialgebraically.

13.39. Theorem. D-Frm ∼= Dialg(ℐ,Vs).

Proof. Using the identification of D-Frm as SIS from Theorem 13.24, this
follows from a verification similar to the proof of Theorem 9.21.

Our next goal is to prove the duality between descriptive J-frames and
HL-algebras. While this also follows from Esakia duality combined with [98,
Theorem 4.15], we give a new proof using a duality of functors. Using the
dialgebraic perspective, it suffices to show that the functor sℒJ and Vs are
dual. We do so buy defining a natural isomorphism ξ : Vs → Pf ·ℒJ ·Clp′up.

13.40. Definition. For an Esakia space X, define

ξX : VsX→ Pf(ℒJ(Clp′upX))

by sending c ∈ VsX to the prime filter ξX(c) (viewed as a distributive lattice
homomorphism into 2) defined on generators by

ξX(c) : ℒJ(Clp′upX)→ 2 : (a J b) 7→
{
> if c ∩ a ⊆ b
⊥ otherwise

We write ξ = (ξX)X∈ES for the transformation Vs → Pf ·ℒJ ·Clp′up.

13.41. Lemma. The assignment ξ from Definition 13.40 defines a natural
transformation.

Proof. First we prove that ξX is a Priestley morphism for every Esakia space
X. It is routine to verify that it is well defined (by checking that the images of
the generators of ℒJ(Clp′upX) under ξX(c) satisfy the relations (C1) to (C4)
from Definition 13.10). To see that it is order-preserving, recall that Vs is
ordered by reverse inclusion and suppose c ⊇ c′. Then a J b ∈ ξX(c) implies

c ∩ a ⊆ b, which implies c′ ∩ a ⊆ b so that a J b ∈ ξX(c′). It follows that
ξX(c) ⊆ ξX(c′).



344 Case studies of dialgebraic logics

The topology on Pf(ℒJ(Clp′upX)) is generated by sets of the form

θ(a J b) and their complements, where a, b ∈ Clp′upX. We have

ξ−1
X (θ(a J b)) = {c ∈ VsX | a J b ∈ ξX(c)}

= {c ∈ VsX | c ∩ a ⊆ b} = (a, b)

which is clopen in VsX. So ξX is continuous, hence a Priestley morphism.
Next we show naturality of ξ. Let f : X1 → X2 be an Esakia morphism.

We need to prove that

VsX1 Pf(ℒJ(Clp′upX1))

VsX2 Pf(ℒJ(Clp′upX2))

ξX1

f [−] (ℒJ(f−1))−1

ξX2

commutes. It suffices to show that for all c1 ∈ VsX1 and a2, b2 ∈ Clp′upX2

we have a2 J b2 ∈ ξX2(f [c1]) if and only if a2 J b2 ∈ (ℒJ(f−1))−1(ξX1(c1)).
So let us prove this.

a2 J b2 ∈ ξX2(f [c1]) iff f [c1] ∩ a2 ⊆ b2
iff c1 ∩ f−1(a2) ⊆ f−1(b2)

iff f−1(a2) J f−1(b2) ∈ ξX1(c1)

iff (ℒJ(f−1))(a2 J b2) ∈ ξX1(c1)

iff a2 J b2 ∈ (ℒJ(f−1))−1(ξX1(c1))

Before proving that ξ is a natural isomorphism, we prove an auxiliary
lemma. Recall that we sometimes denote the complement of a clopen set a
by −a instead of X \ a.

13.42. Lemma. Let X be an Esakia space and a, a1, . . . , an, b, b1, . . . , bn ∈
Clp′upX for some n ≥ 1. If (−a1 ∪ b1) ∩ · · · ∩ (−an ∪ bn) ⊆ −a ∪ b then

(a1 J b1) ∧ · · · ∧ (an J bn) ≤ (a J b).

Proof. The proof proceeds by induction on n, where the base case is n = 1.
The proof for the base case is the same as the proof of Lemma 8.42, where we
replace (I5) with (C5), (I3) with (C1) (which implies monotonicity), (I6) with
(C6) and (I1) with (C2) (which implies antitonicity in the first argument).

For the induction step, assume n ≥ 2. Assume

(−a1 ∪ b1) ∩ · · · ∩ (−an ∪ bn) ⊆ −a ∪ b. (13.2)

We claim that we may assume that b1 ∩ · · · ∩ bn ⊆ b. If not, then we can set
b′ = b∪ (b1 ∩ · · · ∩ bn) and we clearly have (b1 ∩ · · · ∩ bn) ⊆ b′. Moreover, as a
consequence of (13.2) we have b1∩· · ·∩ bn ⊆ −a∪ b, so that −a∪ b = −a∪ b′.
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It then follows from the induction hypothesis we have a J b = a J b′. So b′

can safely replace the role of b.
It also follows from (13.2) that

(−a2 ∪ b2) ∩ · · · ∩ (−an ∪ bn) ⊆ −a ∪ b ∪ −(−a1 ∪ b1)

= −a ∪ b ∪ (a1 ∩ −b1) ⊆ −a ∪ b ∪ a1

The induction hypothesis then proves that (a2 J b2)∧ · · · ∧ (an J bn) ≤ a J
(b ∪ a1), and hence (a1 J b1) ∧ · · · ∧ (an J bn) ≤ a J (b ∪ a1). Similarly we

find (a1 J b1) ∧ · · · ∧ (an J bn) ≤ a J (b ∪ ak) for all k ∈ {1, . . . , n}, and
hence

(a1 J b1) ∧ · · · ∧ (an J bn) ≤ (a J (b ∪ a1)) ∧ · · · ∧ (a J (b ∪ an))

= a J (b ∪ (a1 ∩ · · · ∩ an))
(13.3)

Set a′ := a1 ∩ · · · ∩ an. We find:

(a1 J b1)∧ · · · ∧ (an J bn)

≤ (a′ J b1) ∧ · · · ∧ (a′ J bn) (Antitonicity, from (C2))

= a′ J (b1 ∩ · · · ∩ bn) (Apply (C1))

≤ a′ J b (Monotonicity, from (C1))

≤ b ∪ a′ J b (Apply (C6) with c = b)

Combining this with (13.3), using the transitivity form (C3) yields

(a1 J b1) ∧ · · · ∧ (an J bn) ≤ (a J (b ∪ a′)) ∧ ((b ∪ a′) J b) ≤ a J b

as desired.

13.43. Lemma. The assignment ξ from Definition 13.40 defines a natural
isomorphism.

Proof. We have to show that the components of ξ are isomorphisms in
Pries. That is, for each Esakia space X the map ξX is a homeomorphism that
preserves and reflects the order. Since a bijective continuous function between
Stone spaces is automatically a homeomorphism, it suffices to show that ξX
is a bijection that preserves and reflects the order. We have already seen
that it preserves the order. To see that it reflects it, suppose c 6⊇ c′ in VsX.
Then there exist clopen upsets a, b such that c ∈ (a, b) and c′ /∈ (a, b). By
definition this implies a J b ∈ ξX(c) and a J b /∈ ξX(c′), so ξX(c) 6⊆ ξX(c′).

So we are left to show bijectivity. Injectivity follows from the argument
for reflection of the order above, as c 6= c′ implies either c 6⊇ c′ or c′ 6⊇ c.

For surjectivity, suppose Q ∈ Pf(ℒJ(Clp′upX)). Define cQ ∈ VsX by

cQ =
⋂
{−a ∪ b | a J b ∈ Q}.
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In order to prove that ξX(cQ) = Q it suffices to show that for all clopen
upsets a, b ∈ Clp′upX, we have a J b ∈ ξX(cQ) iff a J b ∈ Q (because the

sets a J b generate ℒJ(Clp′upX)). The direction from right to left holds by

construction of cQ: if a J b ∈ Q then cQ ∩ a ⊆ b so that a J b ∈ ξX(cQ).

Conversely, suppose a J b ∈ ξX(cQ). Then cQ∩a ⊆ b. Using a straightforward
compactness argument we can find a finite number a1, . . . , an, b1, . . . , bn ∈
Clp′upX such that a1 J b1, . . . , an J bn ∈ Q and (−a1 ∪ b1) ∩ · · · ∩ (−an ∪
bn) ∩ a ⊆ b. This implies (−a1 ∪ b1) ∩ · · · ∩ (−an ∪ bn) ⊆ −a ∪ b. So we can
invoke Lemma 13.42 to find (a1 J b1) ∧ · · · ∧ (an J bn) ≤ a J b. Since Q is

a filter we deduce that a J b ∈ Q.

13.44. Theorem. We have a dual equivalence HLA ≡op D-Frm.

Proof. As a consequence of Lemma 13.43 the functors ℒJ and Vs are dual. So
it follows from Theorem 10.5 that Dialg(ℒJ, j) ≡op Dialg(ℐ,Vs). Combining
this with Proposition 13.30 and Theorem 13.39 we obtain

HLA ∼= Dialg(ℒJ, j) ≡op Dialg(ℐ,Vs) ∼= D-Frm

as desired.

Concretely, the isomorphism sends a descriptive J-frame D to its HL-
algebra of admissible subsets, denoted by D∗. Conversely, let A = (A,J) be
a HL-algebra. Then its dual A∗ is given by (pfA,⊆,v, Â), where

Â = {â | a ∈ A}, â = {p ∈ pfA | a ∈ p}

and v is given by

p v q iff ∀a, b ∈ A(if a J b ∈ p and a ∈ q then b ∈ q).

It follows that:

13.45. Theorem. Every iA-logic is characterised by a class of descriptive
J-frames.

Furthermore, we can obtain completeness of iA with respect to J-frames.
For this, we need to show that every descriptive J-frame has an underlying
J-frame. While this clearly follows from the definitions, we use the methods
from Section 10 to achieve completeness, as this also entails a Goldblatt-
Thomason theorem.

Let ρ : ℒJ ·up′ → up ·Ps be the natural transformation induced by λJ.
That is, it is defined on a component (X,≤) ∈ iKrip via

ρ : ℒJ(up′(X,≤))→ up(Ps(X,≤)) : a J b 7→ {c ∈ Ps | c ∩ a ⊆ b}
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Recall that u denotes the forgetful functor Pries→ Pos, and u′ : ES→ iKrip
is its restriction. It follows from a computation similar to Example 10.34
that ρ̄ : Ps ·u′ → u ·Vs is given by

ρ̄X(d) =
⋂
{−a ∪ b | a, b ∈ Clp′upX and d ∩ a ⊆ b}

Note that d∩a ⊆ b if and only if d ⊆ −a∪b. Furthermore, since the topology
on X is generated by clopen upsets and clopen downsets, an arbitrary closed
subset of X can be written as the intersection of sets of the form −a ∪ b,
where a, b ∈ Clp′upX. Therefore ρ̄X simply sends a subset d of u′X to its
closure in X, viewed as an element of uVsX.

With this in mind, we define the translation τ as follows.

13.46. Definition. Define τ : u · Vs → Ps · u′ by τX(c) = c. That is, we
send a closed set c, conceived of as an element of VsX, to the set c viewed as
a subset of u′X, i.e. as an element of Ps(u′X).

It is clear that τ is natural. Furthermore, working out the definition of
τ̄u : Dialg(ℐ,Vs)→ Dialg(i,Ps) shows that it simply sends (the dialgebraic
rendering of) a descriptive frame D = (X,≤,v, A) to the (i,Ps)-dialgebra
corresponding to κD = (X,≤,v).

13.47. Lemma. For every Esakia space X, we have ρ̄X ◦ τX = iduVsX.

Proof. By design of τ .

13.48. Theorem. Let ϕ ∈ IPCJ. Then J -Frm  ϕ implies iA ` ϕ.

Proof. This follows from the dialgebraic perspective, Lemma 13.47 and
Theorem 10.48.

Since we obtained completeness by means of a half-inverse of ρ̄, we
can apply the results from Subsection 10.3 and Section 11 to obtain a
representation theorem and a Goldblatt-Thomason theorem. First, note that
we get a notion of prime filter extension of a J-frame X. This is defined as
the J-frame underlying the descriptive dual of the complex algebra of X. If
we work this out, we get the following definition:

13.49. Definition. Let X = (X,≤,v) be a J-frame. The prime filter
extension of X is pℯX = (Xpe,⊆, Rpe), where Xpe is the set of prime filters
on (X,≤) and Rpe is defined by

pRpeq iff ∀a, b ∈ up′(X,≤)(if a J b ∈ p and a ∈ q then b ∈ q).

We obtain the following representation theorem.

13.50. Theorem. Every Heyting-Lewis algebra can be embedded into the
complex algebra of a J-frame.
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Proof. This follows from the dialgebraic theory developed in Subsection 10.3,
Lemma 13.47 and Theorem 10.35.

We complete this section with the Goldblatt-Thomason theorem for
Heyting-Lewis logic. In order to prove this, we need to assume that we have
access to an infinite set of proposition letters.

13.51. Theorem. Suppose Prop is an infinite set of proposition letters. Let
K ⊆ J -Frm be a set of J-frames that is closed under prime filter extensions.
Then K is axiomatic if and only if it reflects prime filter extensions and is
closed under generated subframes, J-morphic images and disjoint unions.

Proof. This is an instance of Theorem 11.23. Note that, in presence of closure
under J-morphic images, closure under generated subframes is equivalent to
closure under regular subframes.

13.5 The Gödel-McKinsey-Tarski translation

The Gödel-McKinsey-Tarski translation embeds intuitionistic logic into the
modal classical logic S4 by prefixing every subformula of an intuitionistic
formula with [183, 304]. This was extended to the class of all intermediate
logics by Dummett and Lemmon [143]. The structure of the lattice of
intermediate logics was later investigated by Maksimova and Rybakov [298],
Blok [72] and Esakia [149, 152]. Most notably, this led to what is now known
as the Blok-Esakia theorem, which classifies all modal companions of an
intermediate logic and, as a corollary, establishes an isomorphism between
the lattice of intermediate logics and the lattice of S4-logics that satisfy the
Grzegorczyk axiom. Fischer Servi and Shehtman further generalised it to
embed intuitionistic logic with a normal unary modality into the bimodal
classical logic S4 ⊗K [158, 389]. This was then exploited by Wolter and
Zakharyaschev [445, 444] to transfer results on completeness, decidability,
the finite model property, and tabularity between modal intuitionistic logic
and bimodal classical logic.

In this section we generalise the Gödel-McKinsey-Tarski translation to
an embedding t of IPCJ into a bimodal classical language. We briefly recall
some facts, fix notation for bimodal classical logic and define our syntactic
translation. Thereafter we define translations from general J-frames to
general S4K-frames and vice versa, and examine their properties.

This all sets us up for the analogue of the Blok-Esakia theorem for
iA-logics in Section 13.6.

13.52. Definition. We denote the fusion of S4 (with modality i) and
K (with modality m) by S4K. The subscript i indicates that i arises
from embedding intuitionistic logic into S4. The box with subscript m is an
additional modality used for the translation of J.
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13.53. Definition. An S4K-frame is a tuple (X,Ri, Rm) consisting of a set
X, and a pre-order Ri and a binary relation Rm on X. A p-morphism from
(X,Ri, Rm) to (X ′, R′i, R

′
m) is a function f : X → X ′ that is bounded with

respect to both relations. An S4K-frame (X,Ri, Rm) is called a bimodal
Heyting-Lewis frame or S4BHL-frame if it satisfies

Ri ◦Rm ⊆ Rm (13.4)

We write S4K and S4BHL for the categories of S4K-frames and S4BHL-
frames, respectively, and p-morphisms.

Observe that every J-frame can be conceived of as an S4BHL-frame.
However, the latter are still slightly more general than J-frames because
Ri is only required to be a pre-order, rather than a partial order. An easy
verification shows that satisfaction of (13.4) is equivalent to validity of

(BHL) mϕ→ i mϕ

Furthermore, standard Sahlqvist-style results entail that the normal
bimodal logic S4BHL obtained by extending S4K with (BHL) is in fact
(strongly) complete with respect to S4BHL frames.

We now recall the definition of general S4K-frames, for a textbook
reference see e.g. [70, Section 5] or [100, Section 8.1].

13.54. Definition. A general S4K-frame is a tuple (X,Ri, Rm, P ) that
consists of an S4K-frame (X,Ri, Rm) and a Boolean subalgebra P ⊆ ℘X of
the powerset Boolean algebra of X, such that P is closed under

[i] : PX → PX : a 7→ {x ∈ X | xRiy implies y ∈ a},
[m] : PX → PX : a 7→ {x ∈ X | xRmy implies y ∈ a}.

A general S4K-frame morphism f : (X,Ri, Rm, P ) → (X ′, R′i, R
′
m, P

′) is
a p-morphism between the underlying S4K-frame such that f−1(a′) ∈ P
whenever a′ ∈ P ′. We write G-S4K for the category of general S4K-frames
and morphisms.

General S4BHL-frames, descriptive S4K-frames, and descriptive S4BHL-
frames are defined as usual (see e.g. [70, Definitions 5.59 and 5.65]), and
their categories are denoted by G-S4BHL, D-S4K and D-S4BHL, respectively.

Finally, we write Grzi and Grzm for the Grzegorczyk axiom

(Grz) ( (p→ p)→ p)→ p

written with i or m in place of . This axiom plays an important rôle in
the original Blok-Esakia theorem, and also appears in our adaptation of it.

Now we are ready to define the Gödel-McKinsey-Tarski (GMT) translation
of IPCJ-formulae into Li,m.
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13.55. Definition. Let Li,m be the language of classical bimodal logic with
modalities i and m. Define the translation t of IPCJ into Li,m recursively
by

t(p) = ip t(>) = > t(⊥) = ⊥
t(ϕ ∧ ψ) = i(t(ϕ) ∧ t(ψ))

t(ϕ ∨ ψ) = i(t(ϕ) ∨ t(ψ))

t(ϕ→ ψ) = i(t(ϕ)→ t(ψ))

t(ϕ J ψ) = i m(t(ϕ)→ t(ψ))

Note that the translation of ϕ = > J ϕ is given by t( ϕ) = i m(t(>)→
t(ϕ)), which is S4K-equivalent to i mt(ϕ), so t extends the translation
used by Wolter and Zakharyaschev in [445]. Furthermore, observe that over
S4BHL, the J clause can be replaced by m(t(ϕ)→ t(ψ)), a fact that we
will use tacitly in what follows.

Next, we define functors σ̂ : G-Frm → G-S4K and ρ̂ : G-S4K → G-Frm.
We prove that the composition ρ̂σ̂ is naturally isomorphic to the identity,
and that both σ̂ and ρ̂ preserve descriptiveness. The functors ρ̂ and σ̂ are
based on the maps ρ and σ that translate between general intuitionistic
Kripke frames and general S4-frames [100, Sections 3.9 and 8.3]. We add
a hat to distinguish them from the maps ρ and σ that translate between
iA-logics and S4K-logics defined in Section 13.6.

A similar construction was carried out in [444, 445], and we point out
the differences when we encounter them. We have already seen that every
J-frame can be conceived of as an S4K-frame. This extends to general
frames:

13.56. Definition. Given a general J-frame G = (X,≤,@, P ), let σ̂G be
the general S4K-frame

σ̂G = (X,≤,@, σ̂P ),

where σ̂P is the Boolean closure of P in PX (the powerset of X). For a
general J-frame morphism f , let σ̂f = f .

13.57. Lemma. If G = (X,≤,@, P ) is a general J-frame, then σ̂G is a
general S4BHL-frame. Moreover, for any a ∈ σ̂P we have [m]a ∈ P .

Proof. We need to show that σ̂P is closed under [i] and [m]. The former
follows from [100, Lemmas 8.32 and 8.33]. For the latter (and the “moreover”
part), first deconstruct a ∈ σ̂P as

a = (−b1 ∪ c1) ∩ · · · ∩ (−bn ∪ cn)

where bi’s and ci’s are elements of the original P and −bi = X \ bi. Then

[m]a = [m](−b1 ∪ c1) ∩ · · · ∩ [m](−bn ∪ cn).
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For each i, [m](−bi ∪ ci) is just bi J ci ∈ P . The conclusion then follows
from the fact P is closed under J and ∩.

A straightforward verification shows that σ̂f : σ̂G → σ̂G′ is a general
S4BHL-frame morphism, whenever f : G → G′ is a general J-frame
morphism, and that σ̂ is functorial, so that:

13.58. Proposition. The assignment σ̂ from Definition 13.56 defines a
functor σ̂ : G-Frm→ G-S4BHL, and hence also from G-Frm to G-S4K.

Now let us define a functor in the converse direction. For a general
S4K-frame F = (X,Ri, Rm, P ), let R∗m = Ri ◦ Rm. (This differs from [445,
Section 2], where (Box) is enforced by setting R∗m = Ri ◦ Rm ◦ Ri.) Then
F∗ = (X,Ri, R

∗
m, P ) is a general S4BHL-frame. The only thing separating

(X,Ri, R
∗
m) from a J-frame is the fact that (X,Ri) is allowed to be a pre-order,

rather than a poset. To resolve this, we quotient out cycles in X:

Let F = (X,Ri, Rm, P ) be a general S4BHL-frame. The relation ∼ on
X, given by x ∼ y if xRiy and yRix is an equivalence relation on X, whose
equivalence classes are called (Ri-)clusters. Let bXc be the set of clusters of
(X,Ri), and write bxc for the cluster containing x ∈ X. Then Ri defines a
partial order on bXc, which we denote by bRic. Furthermore, define bRmc
by

bxcbRmcbyc iff xRmy
′ for some y′ ∼ y.

Since x ∼ x′ implies xRix
′ and Ri ◦Rm = Rm this does not depend on the

choice of representative of bxc.
For a set a ⊆ X let bac = {bxc | x ∈ a}, and define

bP c = {bac ⊆ bXc |
⋃
bac ∈ P}.

Then an easy verification shows that

bFc = (bXc, bRic, bRmc, bP c)

is a general S4BHL-frame. On passing, note that bFc is a general frame
morphic image of F whenever F satisfies (BHL). This observation will be
used in the proof of the Blok-Esakia theorem below.

13.59. Lemma. If F is a general S4BHL-frame then the assignment x 7→
bxc defines a general frame morphism F→ bFc.

Proof. This follows immediately from the construction of bFc.

Finally, we construct a general J-frame. Let

ρ̂P := {[i]bac | bac ∈ bP c}.
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It follows from [100, Section 8.3] that ρ̂P is closed under ∩,∪ and →. More-
over, ρ̂P is closed under J because

[i]a J [i]b = [m]((X \ [i]a) ∪ [i]b) = [i] [m] ((X \ [i]a) ∪ [i]b) ∈ ρ̂P.

Therefore we may define:

13.60. Definition. For a general S4K-frame F = (X,Ri, Rm, P ) define
ρ̂F ∈ G-Frm by

ρ̂F = (bXc, bRic, bR∗mc, ρ̂P ).

For a morphism f : F → F′ in G-S4K define ρ̂f : ρ̂F → ρ̂F′ by ρ̂f(bxc) =
bf(x)c.

13.61. Proposition. The assignment ρ̂ : G-S4K→ G-Frm is a functor.

Proof. We have already seen that ρ̂ is well defined on objects. To see that
the same goes for morphisms, let f : (X,Ri, Rm, P ) → (X ′, R′i, R

′
m, P

′) be
a morphism in G-S4K and observe that the fact that f is order-preserving
proves that x ∼ x′ implies f(x) ∼ f(x′), so that the definition of ρ̂f does
not depend on the choice of representative of bxc. Boundedness of ρ̂f with
respect to both relations is an immediate consequence of the fact that f is a
p-morphism. Furthermore, to see that ρ̂f is a general frame morphism, we
need to prove that (ρ̂f)−1([i]ba′c) ∈ ρ̂P for all a′ ∈ P ′. This follows from the
fact that (ρ̂f)−1([i]ba′c) = [i]bf−1(a′)c.

Functoriality of ρ̂ is straightforward.

13.62. Remark. We can also view ρ̂ and σ̂ as acting on non-general frames
by viewing a J-frame as a general J-frame where every upset is admissible,
and similar for S4K-frames. This observation will be used in the proof of
Theorem 13.83.

Not surprisingly, applying first σ̂ and then ρ̂ to a general J-frame yields
an isomorphic frame. In fact, we can prove that the composition ρ̂σ̂ is
naturally isomorphic to the identity functor on G-Frm. We will use this fact
to prove facts about modal companions of iA-logics in Theorem 13.68 and
Theorem 13.80 (the analogue of the Blok-Esakia theorem).

13.63. Proposition. We have a natural isomorphism ρ̂σ̂ ∼= idG-Frm.

Proof. Let G = (X,≤,@, P ) be a general J-frame. By definition of ρ and
σ we have ρ̂σ̂G = (X,≤,@, ρ̂σ̂P ), so for the isomorphism on objects we
only have to show that P = ρ̂σ̂P . Since the definition of ρ̂σ̂P is as in
[100, Section 8.3], this follows from [100, Theorem 8.34]. Naturality of the
isomorphism follows from the fact that ρ̂σ̂f = f .

As in [100, Theorem 8.53], we can prove that σ̂ and ρ̂ preserve descriptive-
ness. This also extends [445, Proposition 7], but requires a more complicated
proof.
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13.64. Proposition. ρ̂ and σ̂ preserve descriptiveness.

Proof. Suppose G = (X,≤,@, P ) is a descriptive J-frame. Then the fact
that it is differentiated and compact proves that σ̂G is differentiated and
compact. Tightness follows from the fact that G is a descriptive J-frame.

Conversely, suppose F = (X,Ri, Rm, P ) is a descriptive S4K-frame.
Then (bXc, bRic, ρ̂P ) is a descriptive intuitionistic Kripke frame by [100,
Theorem 8.53]. So we only have to show that

bxcbR∗mcbyc iff for all [i] bac, [i]bbc ∈ ρ̂P,
if bxc ∈ [i]bac J [i]bbc
and byc ∈ [i]bac
then byc ∈ [i]bbc

(13.5)

The direction from left to right follows immediately from the definition of J,
so we focus on the converse.

Suppose ¬(bxcbR∗mcbyc). Then ¬(xR∗my
′) for all y′ ∼ y. We construct

a, b ∈ P that are up-closed under Ri such that y ∈ a and y /∈ b and
R∗m[x] ∩ a ⊆ b. (Here R∗m[x] = {z ∈ X | xR∗mz}.) Then, since a and b are up-
closed under Ri, we have

⋃
bac = a and

⋃
bbc = b, so that [i]bac, [i]bbc ∈ ρ̂P .

Moreover, by construction [i]bac and [i]bbc are such that bxc ∈ [i]bac J [i]bbc
and byc ∈ [i]bac, while byc /∈ [i]bbc. Therefore, they witness the right-to-left
direction in (13.5).

We view F = (X,Ri, Rm, P ) as a Stone space (X, τP ) with point-closed
relations Ri and Rm (that is, Ri[x] = {y ∈ X | xRiy} is closed in (X, τP )
for all x ∈ X, and similar for Rm[x], see also [55, Section 2]). This allows
us to use topological notions in the construction of a and b. Write ↑mx to
abbreviate ↑Rm

x := {y ∈ X | xRmy}, and similarly define ↓m, ↑i and ↓i.
So suppose ¬(xR∗my

′) for all y′ ∼ y. Then ↑mx = {z ∈ X | xRmz} and
↓iy = {z ∈ X | zRiy} are closed, and hence their intersection C = ↑mx∩↓iy is
closed in (X, τP ). Furthermore, by assumption C does not contain any y′ ∼ y.
Therefore none of the elements in C lies above y in the Ri-ordering. We claim
that we can find a clopen Ri-upset a containing y and disjoint from ↑mx∩↓iy.
To see this, note that since ↑iy is closed we have ↑iy =

⋂
{a ∈ P | ↑iy ⊆ a}.

Therefore

↑iy = [i](↑iy) = [i]
(⋂
{a ∈ P | ↑iy ⊆ a}

)
=
⋂{

[i] a ∈ P | ↑iy ⊆ a
}
.

A compactness argument using compactness of C and the fact that C and
↑iy are disjoint now yields a clopen set a := [i]a1 ∩ · · · ∩ [i]an ∈ P (hence
up-closed under Ri) containing ↑iy and disjoint from C.

Similarly, using the fact that ↑mx ∩ a is closed and does not contain y,
we can find a clopen Ri-upset b containing ↑mx ∩ a such that y /∈ b. Then
we have y ∈ [i]a = a, y /∈ [i]b = b and ↑mx ∩ a ⊆ b, as desired.
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13.6 Modal companions and the Blok-Esakia theorem

This section is split into three parts. First, we investigate preservation of
truth under the translations ρ̂ and σ̂, and modal companions. Second, we
prove an auxiliary lemma which states that every S4K-logic is characterised
by a general S4K-frame (X,Ri, Rm, P ) such that Ri is a partial order. Lastly,
we prove the Blok-Esakia theorem and some of its corollaries.

Recall that t : IPCJ → Li,m denotes the extension of the Gödel-McKinsey-
Tarski translation of IPCJ into classical bimodal logic.

13.6.1 Modal companions

The translation t and functor ρ̂ : G-S4K→ G-Frm are related as follows.

13.65. Lemma. Let F ∈ G-S4K and ϕ ∈ IPCJ. Then

F  t(ϕ) iff ρ̂F  ϕ.

Proof. The proof of the lemma follows from the following two claims. Before
each of these we introduce the relevant notion of the translation of a valuation.

Let F = (X,Ri, Rm, P ) be a general S4K-frame. If V : Prop → P
is a valuation for it, then we define the valuation ρ̂V : Prop → ρ̂P for
ρ̂F = (bXc, bRic, bR∗mc, ρ̂P ) by

ρ̂V (p) := b[i]V (p)c = [i]
(⋃
b[i]V (p)c

)
.

(The second equality follows from the fact that [i]V (p) is an Ri-upset.)

13.65.1. Claim. Let F = (X,Ri, Rm, P ) be a general S4K-frame and V a
valuation for F. Then we have

(F, V ), x  t(ϕ) iff (ρ̂F, ρ̂V ), bxc  ϕ

for all x ∈ X and ϕ ∈ IPCJ.

Proof of claim. By induction on the structure of ϕ. The cases > and ⊥ are
obvious.

ϕ = p ∈ Prop. We have

(F, V ), x  t(p) = ip iff Ri[x] ⊆ V (p)

iff x ∈ [i]V (p)

iff bxc ∈ b[i]V (p)c = ρ̂V (p)

iff (ρ̂F, ρ̂V ), bxc  p
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The right-to-left direction from the third “iff” follows from the fact that
x ∼ x′ implies x′ ∈ [i]V (p).

ϕ = ϕ1 ∧ ϕ2. We have

(F, V ), x  t(ϕ1 ∧ ϕ2) = i(t(ϕ1) ∧ t(ϕ2))

iff xRiy implies y  t(ϕ1) and y  t(ϕ2)

iff bxcbRicbyc implies byc  ϕ1 and byc  ϕ2

iff bxcbRicbyc implies byc  ϕ1 ∧ ϕ2

iff (ρ̂F, ρ̂V ), bxc  ϕ1 ∧ ϕ2

The second “iff” follows from the induction hypothesis and the definition
of b·c.
ϕ = ϕ1 ∨ ϕ2. Similar to the previous case.

ϕ = ϕ1 → ϕ2. Compute

(F, V ), x  t(ϕ1 → ϕ2) = i(t(ϕ1)→ t(ϕ2))

iff xRiy and y  t(ϕ1) imply y  t(ϕ2)

iff bxcbRicbyc and byc  ϕ1 imply byc  ϕ2

iff (ρ̂F, ρ̂V ), bxc  ϕ1 → ϕ2

ϕ = ϕ1 J ϕ2. Assume (F, V ), x  t(ϕ1 J ϕ2). Compute

(F, V ), x  t(ϕ1 J ϕ2) = i m(t(ϕ1)→ t(ϕ2))

iff xRiy implies y  m(t(ϕ1)→ t(ϕ2))

iff x(Ri ◦Rm)z implies z  t(ϕ1)→ t(ϕ2)

iff x(Ri ◦Rm)z and z  t(ϕ1) imply z  t(ϕ2)

iff xR∗mz and z  t(ϕ1) imply z  t(ϕ2)

Now suppose bxcbR∗mcbzc and bzc  ϕ1. Then there exists z′ ∈ X such that
z ∼ z′ and xR∗mz

′. Since bzc  ϕ1 by the induction hypothesis we have z′ 
t(ϕ1), so by the derivation above z′  t(ϕ2) and therefore bzc = bz′c  ϕ2.
So bxc  ϕ1 J ϕ2.

Conversely, suppose bxc  ϕ1 J ϕ2. Then xR∗mz implies bxcbR∗mcbzc and
the desired result follows from the induction hypothesis.

Let F = (X,Ri, Rm, P ) be a general S4K-frame. Suppose W : Prop→ ρ̂P
is a valuation for ρ̂F. Then since W (p) ∈ ρ̂P it must be of the form [i]bac
for some a such that

⋃
bac ∈ P . We pick such an a as W ′(p).

13.65.2. Claim. Let F = (X,Ri, Rm, P ) be a general S4K-frame and W a
valuation for ρ̂F.Then we have

(F,W ′), x  t(ϕ) iff (ρ̂F,W ), bxc  ϕ

for all x ∈ X and ϕ ∈ IPCJ.
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Proof of claim. By induction on the structure of ϕ. The cases > and ⊥ are
obvious.

ϕ = p ∈ Prop. If (F,W ′), x  t(p) = ip then xRiy implies y ∈ W ′(p). By
definition of b·c we have xRiy iff bxcbRicbyc and by definition of W ′(p) we
have y ∈ W ′(p) iff byc ∈ bW ′(p)c. Therefore bxc ∈ [i]bW ′(p)c = W (p), so
that (ρ̂F,W ), bxc  p.

Conversely, suppose (ρ̂F,W ), bxc  p. Then bxc ∈ [i]bW ′(p)c, so bxcbRicbyc
implies byc ∈ bW ′(p)c. Again as a consequence of the definitions this gives
xRiy implies y  p, so that (F,W ′), x  ip = t(p).

All other cases are the same as in Claim 13.65.1.

This concludes proof of lemma.

Lemma 13.65 extends Lemma 8.28 in [100], and is the “J-analogue” of
[445, Lemma 5]. It gives rise to the following (standard) notion of modal
companions.

13.66. Definition. Let Γ be an extension of iA and Θ an extension of S4K.
If for all ϕ ∈ IPCJ we have

ϕ ∈ Γ iff t(ϕ) ∈ Θ

then we say that Γ is embedded in Θ, and Θ is an S4K-companion or modal
companion of Γ.

Analogously to [100, Theorem 9.56], it follows from Lemma 13.65 that
for every S4K-logic Θ, the iA-logic

ρΘ = {ϕ ∈ IPCJ | t(ϕ) ∈ Θ}

is such that Θ is an S4K-companion of ρΘ. Furthermore, it follows from
Lemma 13.65 that:

13.67. Proposition. If an S4K-logic Θ is characterised by a class C of
general S4K-frames, then ρΘ is characterised by the class ρ̂C = {ρ̂F | F ∈ C}
of general J-frames.

The proof of the following theorem resembles to proof of [445, Theorem 9],
using Lemma 13.65 and Proposition 13.63.

13.68. Theorem. Each iA-logic Λ = iA⊕Γ is embeddable by t in any logic
Θ in the interval

[(S4⊗K4)⊕ t(Γ), (Grzi ⊗K4)⊕ t(Γ)⊕ BHL].

We have seen how S4K-logics give rise to iA-logics. In the converse
direction, guided by Theorem 13.68, we define:
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13.69. Definition. For an iA-logic Λ = iA⊕ Γ, let

τΛ = (S4⊗ K)⊕ t(Γ)⊕ BHL

σΛ = (Grzi ⊗ K)⊕ t(Γ)⊕ BHL

We now work our way towards an analogue of the Blok-Esakia theorem.
Recall that the Blok-Esakia theorem states that an S4-logic Θ is a modal
companion of an intuitionistic logic Λ if and only if τΛ ⊆ Θ ⊆ σΛ. We prove
that, with our extended definitions of τ and σ, this statement still holds.

First, we prove counterparts of Lemmas 25 and 26 from [444]. The
proof of the latter lemma takes up Subsection 13.6.2. The former relies on
Lemma 24 from [444], which we repeat here for the reader’s convenience.

13.70. Lemma. Suppose M = (G, V ) is a model based on a partially ordered
general (S4)-frame G = (X,R, P ) for Grz and Γ is a finite set of formulae
closed under subformulae. Then there is a model M′ = (σ̂ρ̂G, V ′) based on
the frame σ̂ρ̂G = (X,R, σ̂ρ̂P ) such that for every ϕ ∈ Γ,

V ( ϕ) = V ′( ϕ).

Here σ̂ and ρ̂ denote the translations σ and ρ between general intuitionistic
Kripke frames and general S4-frames.

Proof. See [444, Lemma 24].

Next, we formulate an adaptation of [444, Lemma 25] to our setting where
the assumption that the frame satisfies (Mix) is weakened to satisfaction
of (BHL). The difference with the proof in [444] is that we add a proposition
letter that mimics ψ for each subformula ψ of a given formula ϕ, on top of
the proposition letters already added in the original proof. This allows us to
obtain the same result with a weaker assumption.

13.71. Lemma. Let G = (X,Ri, Rm, P ) be an S4BHL-frame such that Ri

is a partial order and G  Grzi. Then for all ϕ ∈ Li,m we have

G  ϕ iff σ̂ρ̂G  ϕ. (13.6)

Proof. Within this proof we will denote the truth set of a formula ϕ in a
model M with valuation V by V (ϕ), rather than JϕKM. This will make it
easier to distinguish the several different valuations based on a single frame.

Since G is an S4BHL-frame we have σ̂ρ̂G = (X,Ri, Rm, σ̂ρ̂P ), i.e. the
relations Ri and Rm remain unchanged. The left-to-right implication in
(13.6) follows from the fact that σ̂ρ̂P ⊆ P .

Conversely, suppose G = (X,Ri, Rm, P ) refutes a formula ϕ. Then there
exists a valuation V : Prop → P such that M = (G, V ) refutes ϕ. Using
Lemma 13.70, we will construct a valuation W ′ for σ̂ρ̂G such that (σ̂ρ̂G,W ′)
refutes ϕ.
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For each subformula ψ of ϕ we fix a new proposition letter qψ. Now for
ψ ∈ Subf(ϕ) we define ψq recursively via

>q = >
⊥q = >
pq = p for p ∈ Prop

(χ1 ? χ2)q = χq1 ? χ
q
2 for ? ∈ {∧,∨,→}

( iχ)q = iχ
q

( mχ)q = iq
χ

Let Γ̂ = {ψq | ψ ∈ Subf(ϕ)} ∪ {qψ | ψ ∈ Subf(ϕ)}. Observe that Γ̂ is closed
under subformulae. Define a valuation W of the extended language by

W (p) = V (p) for p ∈ Subf(ϕ)

W (qψ) = V ( mψ) for ψ ∈ Subf(ϕ)

Then for ψ ∈ Subf(ϕ) we have

V ( mψ) = W ( mψ) = W (qψ) (13.7)

and
V (ψ) = W (ψ) = W (ψq). (13.8)

By Lemma 13.70 there exists a valuation W ′ for σ̂ρ̂G such that

W ′( iψ) = W ( iψ) (13.9)

for all ψ ∈ Γ̂. One can now prove that

W ′(ψq) = W ′(ψ) (13.10)

for all ψ ∈ Subf(ϕ), by induction on the structure of ψ. The only non-trivial
case is for ψ ∈ Subf(ϕ). Then we have

W ′(( mψ)q) = W ′( iq
ψ) (Definition of (·)q)

= W ( iq
ψ) (By (13.9))

= W (( mψ)q) (Definition of (·)q)
= W ( mψ) (By (13.8))

= W ( i mψ) (By BHL)

= W ( i mψ
q) (Using (13.8))

= W ′( i mψ
q) (By (13.9))

= W ′( i mψ) (Induction hypothesis)

= W ′( mψ) (By BHL)
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This proves the claim in (13.10).
Since every S4-model N satisfies N  ϕ iff N  iϕ, it suffices to prove

that W ′( iϕ) = V ( iϕ). We have

W ′( iϕ) = W ′(( i)ϕ
q) (By (13.10))

= W ′( iϕ
q) (Def. of (·)q)

= W ( iϕ
q) (By (13.9))

= V ( iϕ) (By (13.8))

so that (σ̂ρ̂G,W ′) refutes iϕ (hence ϕ), as desired.

13.6.2 On characterising S4K-logics

This subsection is devoted to proving the following lemma. It will be used in
the proof of the Blok-Esakia theorem (Theorem 13.80) below.

13.72. Lemma. Every S4K-logic is characterised by a general S4K-frame
(X,Ri, Rm, P ) such that Ri is a partial order.

Towards a proof of Lemma 13.72, we define the unravelling urX of a
general S4K-frame X and prove some properties. We will use a combination
of unravelling techniques from Theorems 2.19 and 3.18 of [100].

Let X = (X,Ri, Rm) be an S4K-frame and x ∈ X. We denote the unrav-
elling of a pointed frame (X, x) by urX = (Xx, Rxi , R

x
m). For a construction,

see [70, Proposition 2.15]. Here the elements of Xx are finite paths over
Ri∪Rm starting at x. Recall that we have a bounded morphism fx : Xx → X
given by sending (x, x1, . . . , xn) ∈ Xx to xn ∈ X.

13.73. Definition. For an S4K-frame X = (X,Ri, Rm) and x ∈ X with
unravelling urX = (Xx, Rxi , R

x
m), define R

x
i to be the reflexive and transitive

closure of Rxi and define urX := (Xx, R
x
i , R

x
m). We call urX the partial

unravelling of X.

Concretely, we have (x, y1, . . . , yn)R
x
i (x, y′1, . . . , y

′
m) if either

• m = n and yi = y′i for 1 ≤ i ≤ n; or

• m > n and yi = y′i for 1 ≤ i ≤ n and y′jRiy
′
j+1 for all n ≤ j < m.

We call it the partial unravelling because it turns the pre-order Rxi into a
partial order R

x
i .

13.74. Lemma. Let (X, x) = ((X,Ri, Rm), x) be a pointed S4K-frame with
partial unravelling ur(X, x) = (Xx, R

x
i , R

x
m). Then R

x
i is a partial order.

Proof. We know that R
x
i is reflexive and transitive by construction. Now

suppose (x, y1, . . . , yn)R
x
i (x, y1, . . . , ym) and (x, y1, . . . , ym)R

x
i (x, y1, . . . , yn).

Then we must have n = m and by definition of R
x
i we find (x, y1, . . . , yn) =

(x, y1, . . . , ym). So R
x
i is also antisymmetric.
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Since Ri is assumed to be a reflexive and transitive, we have:

13.75. Lemma. The function fx : Xx → X is a bounded morphism from
urX to X.

Proof. We only need to verify that the additional relations that arise from
reflexivity and transitivity do not compromise monotonicity of f . This follows
from reflexivity and transitivity of Ri.

Next we define the partial unravelling of a non-pointed frame.

13.76. Definition. Define the partial unravelling urX of a (non-pointed)
frame X = (X,Ri, Rm) to be the coproduct (= disjoint union)

urX =
∐
x∈X

ur(X, x).

Write urX = (X+, R
+
i , R

+
m). Then X+ is the disjoint union of the Xx, and

R
+
i and R+

m are simply the unions of the relations R
x
i and R

x
M , respectively.

By the property of a coproduct, there exists a bounded morphism f =∐
fx : urX→ X. Moreover, f is onto because for each x ∈ X the length-one

sequence (x) is in Xx, and fx(x) = x ∈ X. Besides, Lemma 13.74 implies:

13.77. Lemma. If Ri is a pre-order on X, then R
+
i is a partial order on

X+.

The map f : X+ → X gives rise to a Boolean algebra homomorphism
f−1 : PX → PX+. We claim that this moreover satisfies

f−1([i]a) = [i]f−1(a) and f−1([m]a) = [m]f−1(a)

for all a ⊆ X.

13.78. Lemma. Let X = (X,Ri, Rm) be an S4K-frame with partial unravel-

ling urX = (X+, R
+
i , R

+
m). Write (℘X, [i], [m]) and (℘X+, [i]+, [m]+) for the

complex algebras of X and urX, respectively. Then f−1 : ℘X → ℘X+ defines
a complex algebra homomorphism between them.

Proof. We know that f−1 is a Boolean algebra homomorphism, so we only
need

f−1([i]a) = [i]+f−1(a) (13.11)

and
f−1([m]a) = [m]+f−1(a). (13.12)

We start with the first equation. Suppose (x, y1, . . . , yn) ∈ f−1([i]a).

Then yn ∈ [i]a. If (x, y1, . . . , yn)R
+
i (x, y′1, . . . , y

′
m) then by definition of R

+
i

and reflexivity and transitivity of Ri we have ynRiy
′
m. Therefore y′m ∈ a,



Heyting-Lewis logic 361

hence f(x, y′1, . . . , y
′
m) ∈ a so that (x, y′1, . . . , y

′
m) ∈ f−1(a). This proves that

(x, y1, . . . , yn) ∈ [i]+f−1(a).
Conversely, suppose (x, y1, . . . , yn) ∈ [i]+f−1(a). In order to prove that

(x, y1, . . . , yn) ∈ f−1([i]a), we need to show that f(x, y1, . . . , yn) = yn ∈ [i]a.

Let y′ ∈ X be such that ynRiy
′. Then (x, y1, . . . , yn)R

+
i (x, y1, . . . , yn, y

′), so
by assumption (x, y1, . . . , yn, y

′) ∈ f−1(a) and hence y′ = f(x, y1, . . . , yn, y
′) ∈

a.
The proof for [m] is similar.

Now let us define the general unravelling of a general S4K-frame.

13.79. Definition. Let G = (X,Ri, Rm, A) be a general S4K-frame. Denote

by (X+, R
+
i , R

+
m) the partial unravelling of (X,Ri, Rm) and let f be the

corresponding bounded morphism defined above. Then we define the general
unravelling of G to be the tuple

G+ = (X+, R
+
i , R

+
m, A

+),

where A+ = {f−1(a) ⊆ X+ | a ∈ A}.

It follows from Lemma 13.78 that the collection A+ does indeed define a
complex algebra structure on (X+, R

+
i , R

+
m).

Since f is onto f−1 is injective. Now view f−1 as a function A → A+.
Then by definition of A+ it is onto, so that f−1 is a bijection. Moreover,
it follows from Lemma 13.78 that it is a complex algebra homomorphism.
Since bijective homomorphisms in a variety of algebras are isomorphisms, it
follows that X∗ ∼= (urX)∗. We are now ready to prove Lemma 13.72.

Proof of Lemma 13.72. Let G be the descriptive frame which determines Λ.
Then the partial unravelling urG witnesses the claim.

13.6.3 The Blok-Esakia theorem

The following is an analogue of the Blok-Esakia theorem.

13.80. Blok-Esakia theorem. An S4K-logic Θ containing (BHL) is an
S4K-companion of an iA-logic Λ if and only if τΛ ⊆ Θ ⊆ σΛ.

Proof. The direction from right to left follows from Theorem 13.68. For the
converse it suffices to show that Θ ⊆ σΛ.

Following the structure of the proof of [444, Theorem 27], we first establish

{(ρ̂F)∗ | F  Θ} = {G∗ | G  Λ}. (13.13)

(Recall that F∗ denotes the dual Heyting-Lewis algebra of F, see Subsec-
tion 13.3.)
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By Proposition 13.67, Λ is characterised by the class C = {(ρ̂F)∗ | F  Θ},
so the left hand side of (13.13) is contained in the right hand side. In order
to prove equality, by Birkhoff’s variety theorem it suffices to prove that C is a
variety, i.e. it is closed under direct products, subalgebras and homomorphic
images. The first follows from the fact that

∏
i∈I(ρ̂Fi)

∗ = (ρ̂(
∐
i∈I Fi))

∗ and
Fi  Θ for all i ∈ I implies

∐
Fi  Θ.

Next, suppose that A is a subalgebra of (ρ̂F)∗ ∈ C, where we have
F = (X,Ri, Rm, P ). Since F is assumed to validate (BHL), it follows from
Lemma 13.59 that we have a surjective general frame morphism F → bFc,
so that bFc  Θ. Write A for the carrier of A. Then the general J-frame
A := (bXc, bRic, bRmc, A) is a homomorphic image of ρ̂F and by construction
σ̂A = (bXc, bRic, bRmc, σ̂A) is a homomorphic image of bFc, so σ̂A  Θ.
By construction of A and Proposition 13.63 we then have A = (ρ̂σ̂A)∗.
Therefore A ∈ C.

To prove that C is closed under homomorphic images, suppose that
F = (X,Ri, Rm, P ) is an S4BHL-frame for Θ and h a homomorphism from
(ρ̂F)∗ onto H∗, where H is some general J-frame. Since (σ̂ρ̂F)∗ is a subalgebra
of F∗ we have (σ̂ρ̂F)∗  Θ. As a consequence of Proposition 13.63 we have
(ρ̂σ̂H)∗ = H∗, so it is sufficient to construct a homomorphism g from (σ̂ρ̂F)∗

onto (σ̂H)∗, because this implies σ̂H  Θ.

Every set a ∈ σ̂ρ̂P can be represented as

a = (−b1 ∪ c1) ∩ · · · ∩ (−bn ∪ cn),

where bi, ci ∈ ρ̂P . Define g : (σ̂ρ̂F)∗ → (σ̂H)∗ via

g(a) = (−h(b1) ∪ h(c1)) ∩ · · · ∩ (−h(bn) ∪ h(cn)).

Then g(a) ∈ (σ̂H)∗, and if a ∈ ρ̂P then g(a) = h(a). It was shown in [298,
Lemma 3.3] that g is a surjection that preserves Boolean operations and i.
Let us show that it preserves m as well. Write a as above. Since g and m

preserve finite meets we have

g( ma) = g
(

m

n⋂
i=1

(−bi ∪ ci)
)

=

n⋂
i=1

g
(

m(−bi ∪ ci)
)
.

Furthermore, m(−bi ∪ ci) = bi J ci ∈ ρ̂P for all bi, ci ∈ ρ̂P , and h preserves
elements in ρ̂P , so that

g( m(−bi ∪ ci)) = g(bi J ci) = h(bi J ci)

= h(bi) J h(ci) = g(bi) J g(ci)

= m(−g(bi) ∪ g(ci)).
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Consequently, we obtain

g( ma) =

n⋂
i=1

g
(

m(−bi ∪ ci)
)

=

n⋂
i=1

m

(
−g(bi) ∪ g(ci)

)
= m

n⋂
i=1

(
−g(bi) ∪ g(ci)

)
= mg(a)

So (13.13) holds.

To prove that Θ ⊆ σΛ, it suffices to show that a characteristic frame
F = (X,Ri, Rm, P ) for σΛ is also a frame for Θ. By Lemma 13.72 we
may assume that Ri is a partial order. Since ρ̂F  Λ, it follows from
Equation (13.13) that there exists a F′ for Θ such that ρ̂F ' ρ̂F′ and so
σ̂ρ̂F ' σ̂ρ̂F′. Since σ̂ρ̂F′  Θ this implies σ̂ρ̂F  Θ and it follows from
Lemma 13.71 that F  Θ.

As a corollary of Theorem 13.80, we obtain:

13.81. Corollary.

1. Let Λ be an iA-logic. Then τΛ and σΛ are the smallest and greatest
modal companions of Λ, respectively.

2. The map σ is an isomorphism from the lattice of iA-logics to the
lattice of (S4BHL⊕ Grzi)-logics.

We can prove the following analogue of Proposition 13.67, which charac-
terises a logic of the form σΛ.

13.82. Proposition. If an iA-logic Λ is characterised by a class C of general
J-frames, then the logic σΛ is characterised by σ̂C = {σ̂G | G ∈ C}.

Proof. The proof is analogous to [444, Proposition 29], using Lemma 13.65
and Proposition 13.63 and Theorem 13.80.

Finally, let us summarise how the developed theory allows us to transfer
results between iA-logics and S4K-logics.

13.83. Theorem.

1. The map ρ preserves decidability, Kripke completeness and the finite
model property.

2. The map ρ preserves canonicity of S4BHL-logics.

3. The map τ preserves canonicity.

4. The map σ preserves the finite model property.
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Proof. The first and fourth item follow from the definition of ρ, Proposi-
tions 13.67 and 13.82, and the fact that ρ̂G and σ̂F are finite whenever G
and F are.

For the second, suppose Θ is an S4BHL-logic, i.e. an S4K-logic contain-
ing (BHL). If G is a descriptive frame for ρΘ, then by Proposition 13.64 and
Theorem 13.80 ρ̂G is a descriptive frame for σρΘ. Since Θ is canonical we
have κσ̂G  Θ, where κσ̂G denotes the (non-general) S4K-frame underlying
σ̂G. Therefore ρ̂κσ̂G  ρΘ. Inspection of the definitions of ρ̂ and σ̂ shows
that ρ̂κσ̂G = κG, which completes the proof.

Third, if F is a descriptive frame for τΛ, then by Propositions 13.64
and 13.67 and Theorem 13.80 ρ̂F is a descriptive frame for ρτΛ = Λ. It
then follows from Lemma 13.65 and the observation that κρ̂F = ρ̂κF that
κF  τΛ.

13.84. Examples.

1. A modal companion of (Box) is given by the extension of S4K with

i m ip → mp. This axiom is canonical and elementary via the
SQEMA algorithm [115, 179] (or the usual Sahlqvist argument), which
also yields strong completeness.

2. The translation of

(P) (ϕ J ψ)→ (ϕ J ψ)

is S4BHL-equivalent to m( ip→ iq)→ m m( ip→ iq). Here
we need to be somewhat creative. Namely, we observe that by the
results of this section, if τΛ is canonical, then Λ is strongly complete
with respect to τΛ-frames, which are in addition partial orders. Next,
one observes that over partial orders, the following rule is admissible:
from ϕ( ip → iq), derive ϕ(r), where p and q are fresh for ϕ(r).
The above translation can be verified to be canonical via the SQEMA
algorithm [115, 179]. In this way, we finally arrive at Rm-transitivity
as its (canonical) counterpart (see also [294, §10]).

3. The translation of (IR) reads

i( i m( ip→ iq)→ i( ip→ i i iq)),

where i is short for ¬ i¬. As a consequence of Theorem 13.68 the
logic τIELE = S4K⊕ t(S )⊕ t(IR) is a modal companion of IELE.

13.7 A criterion for FMP and decidability

Clause 1 of Theorem 13.83 allows transfer of decidability and the finite model
property from a bimodal classical logic to its J-counterpart. Recall that
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for a finitely axiomatizable logic, the finite model property is a sufficient
criterion of decidability. Still, in order to use this theorem for a J-logic,
we need a bimodal counterpart which enjoys these properties. Wolter and
Zakharyaschev [445] proposed a broad criterion based on techniques for
unimodal (cofinal) subframe logics. We begin by generalizing their criterion
to S4BHL-logics. This essentially relies on transitivity of both relations:
not only Ri, but also Rm. Logically, the latter corresponds to validity of

(4m) mp→ m mp

That is, we will be concerned with (S4⊗K4)-logics.
In the presence of the (Mix)-axiom, i.e.

(Mix) mp→ i m ip

the original criterion, from [445, Theorem 17], reads:

13.85. Theorem. Let Θ be a canonical subframe extension of S4K contain-
ing (Mix). If S4⊕ Γ ⊆ Li (where Li is the language of classical modal logic)
is an Ri-subframe logic, then Θ⊕ Γ has the finite model property.

The goal of this section is to prove similar theorems that do not re-
quire (Mix). First, recall that the subframe of F = (X,Ri, Rm, P ) generated
by Y ⊆ X is the frame F�Y = (Y,Ri�Y , Rm�Y , P�Y ), where Ri�Y and Rm�Y

are the restrictions of Ri and Rm to Y , and P�Y = {a ∩ Y | a ∈ P}. It is
called Rm-cofinal if for all y ∈ Y , yRmz implies that there exists y′ ∈ Y
such that zRmy

′. An S4K-logic Θ is called a (Rm-cofinal) subframe logic
if the collection of frames validating Θ is closed under forming (Rm-cofinal)
subframes.

Besides, we make heavy use of the notions of Ri- and Rm-maximality
with respect to an equivalence relation generated by a formula ϕ.

13.86. Definition. Let M = (F, V ) be a model based on a general S4K-
frame F = (X,Ri, Rm, P ). If x ∈ X then we write ↑ix = {y ∈ X | xRiy} for
the upward closure of x and Ci(x) = {y ∈ X | x ≤ y ≤ x} for the Ri-cluster
of x. The state x is called Ri-final, and C(x) is called an Ri-final Ri-cluster,
if ↑ix = Ci(x). We similarly define (Rm-final) Rm-clusters.

Let ϕ ∈ Li,m. We call x, y ∈ X ϕ-equivalent in M, and write x ∼ϕ y, if
x  ψ iff y  ψ for all ψ ∈ Subf(ϕ). A state x is called Ri-maximal in M
(relative to ∼ϕ) if for any x 6= y ∈ X such that xRiy we have x 6∼ϕ y. We
similarly define Rm-maximality.

If M is based on a descriptive frame, then for every state x ∈M there
exists an Ri-maximal state y such that x ∼ϕ y and either x = y or xRiy [445,
Lemma 14]. If Rm is transitive then the same holds for Rm.

The purpose of ϕ-equivalence is showcased in the following lemma, that
will prove useful in the subsequent theorem.
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13.87. Lemma. Let M = (F, V ) be a model based on an S4K-frame F =
(X,Ri, Rm, P ), and let ϕ ∈ Li,m. Suppose Y ⊆ X is such that for R ∈
{Ri, Rm}: if y ∈ Y and yRx (where x ∈ X), then there exists y′ ∈ Y such
that yRy′ and x ∼ϕ y′. Then for all y ∈ Y and ψ ∈ Subf(ϕ) we have

M�Y , y  ψ iff M, y  ψ.

Proof. By induction on the structure of ψ. If ψ = p,> or ⊥ then the
statement is obvious, as is the case for ϕ = ψ1 ∧ ψ2 and ψ = ψ1 ∨ ψ2.

If ψ = iψ1 and M, y  iψ1, then clearly M�Y , y  iψ1, since every
(Ri�Y )-successor of y is also an Ri-successor of y in M. Conversely, if M, y 6

iψ1, then there is an Ri-successor z such that M, z 6 ψ1. By assumption
there exists z′ ∈ Y such that yRiz

′ and z ∼ϕ z′. Consequently M, z′ 6 ψ1,
so by the induction hypothesis M�Y , z

′ 6 ψ1 and hence M�Y , y 6 iψ1.
The case ψ = mψ1 is analogous.

Next, we prove an analogue of Theorem 13.85 for subframe logics.

13.88. Theorem. Suppose Θ is a canonical extension of S4⊗K4 containing
(BHL) that is closed under forming subframes. Then:

1. Θ has the finite model property.

2. If moreover Θ contains the classical strength axiom

(Sc) ip→ mp.

then for any subframe logic Γ ⊆ Lm, the logic Θ ⊕ Γ has the finite
model property.

Proof. Let F = (X,Ri, Rm, P ) be a descriptive frame for Θ refuting an Li,m-
formula ϕ under valuation V . We will construct a finite subframe of F that
validates Θ and refutes ϕ. We use an adaptation of the proofs of Theorems 17
and 21 from [445].

We begin by constructing an inductive sequence {Xi}i∈ω of subsets of X.

Base step. By [445, Lemma 14] we can pick a Ri-maximal state x0 where ϕ
is refuted. Let X0 = {x0}.

Odd inductive step. Suppose n is even. For each x′ ∈ Xn pick an Ri-maximal
witness for each ϕ-equivalence class above x′ in the Ri-order, and denote
the set of such witnesses by Wx′ . (We can find such witnesses by [445,
Lemma 14].) Let

Xn+1 = Xn ∪
⋃

x′∈Xn

Wx′ .

The sets Wx′ are finite because there are only finitely many ϕ-equivalence
classes. Note also that in the presence of the strength axiom (Sa), Ri-maximal
successors are also Rm-maximal ones.
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Even inductive step. Suppose n is odd. For each x′ ∈ Xn, using [445,
Lemma 14] pick an Rm-maximal witness for each ϕ-equivalence class, and de-
note the set of such witnesses by Wx′ . Again, define Xn+1 = Xn∪

⋃
x′∈XnWx′ .

The set Xω. Define

Xω :=
⋃
n∈ω

Xn.

Before turning this into a model, we argue that it is a finite subset of X.
Our more general setting compared to [445] makes this more complicated,
but not impossible.

For each x ∈ Xω, denote by n(x) the smallest integer n ∈ ω such that
x ∈ Xn. Define relations R′i and R′m on Xω by

xR′iy if xRiy and n(y) is odd and y ∈ Xn(y)−1

xR′my if xRmy and n(y) is even and y ∈ Xn(y)−1

Then xR′iy implies that y is Ri-maximal relative to ∼ϕ, and similar for
R′m. Clearly the structure (Xω, R

′
i ∪ R′m), viewed as a graph, is connected.

Therefore we can invoke König’s Lemma to obtain an infinite sequence.
If this sequence contains an infinite number of R′m transitions then there

exists an infinite subsequence of the form

x0R
′
mx1R

′
mx2R

′
mx3 · · ·

By construction each of the xi is Rm-maximal. But then transitivity of Rm

implies that each of the xi belong to a different ∼ϕ-equivalence class. A
contradiction, since there are only finitely many such classes.

If the sequence obtained from König’s Lemma has a finite number of
R′m-transitions, then there must be an infinite subsequence of the form
x0R

′
ix1R

′
ix2R

′
ix3 · · · and a similar argument as above yields a contradiction.

Thus no infinite sequence can exist, and therefore Xω must be finite.
We could not simply invoke König’s lemma to Xω ordered by (restrictions

of) Ri and Rm (like in [445]), because this could potentially yield an infinite
chain whose states are not all Ri-maximal or Rm-maximal.

Finite submodel of F. Define the frame F′ to be the subframe of κF generated
by Xω, and M′ as the model (F′, V ′), where V ′(p) = V (p)∩ (X0∪Xω). Then
by Lemma 13.87 we have

M, y  ψ iff M′, y  ψ

for all y ∈ Xω and ψ ∈ Subf(ϕ). Therefore F′ refutes ϕ. Since Θ is a
canonical subframe logic and, F′ is a subframe of κF, we also have F′  Θ.
This proves item 1.

Proof of item 2. Assume the above construction started with a descriptive
frame G for Θ⊕ Γ that refutes ϕ. We have already seen that the resulting
frame F′ refutes ϕ and validates Θ, so it remains to show that F′  Γ.
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The assumption of strength, together with the construction of Xω, implies
that each state y ∈ Xω is Rm-maximal. Therefore, since Rm is transitive, it
follows from [445, Lem. 15] that G′  Γ.

Next, we adapt Theorem 13.88 to accommodate for Rm-cofinal subframe
logics.

13.89. Theorem. Suppose Θ is a canonical extension of S4⊗K4 containing
(BHL) that is closed under forming Rm-cofinal subframes. Then:

1. Θ has the finite model property.

2. If Θ contains the strength axiom (Sa), then for any Rm-cofinal sub-
frame logic Γ ⊆ Lm, the logic Θ⊕ Γ has the finite model property.

Proof of Theorem 13.89. Let F = (X,Ri, Rm, P ) be a descriptive frame for
Θ that refutes ϕ. Let V be a valuations such that (F, V ) 6 ϕ. In order to
prove the theorem, we modify the proof of Theorem 13.88. First, we modify
the construction to obtain an Rm-cofinal subframe. Second, we quotient out
this new subframe to make it finite.

Let {Cj | j ∈ J} be the set of all Rm-final Rm-clusters. Since F is
descriptive, every state x has an Rm successor in an Rm-final Rm-cluster
[100, Theorem 10.36]. Therefore, to achieve Rm-cofinality, it suffices to add
to Xω a state from each Cj . In order to still be able to use Lemma 13.87 we
add a (finite) set Fj of states satisfying the precondition from Lemma 13.87
for each j ∈ J .

Constructing Fj. Let Cj be a Rm-final Rm-cluster. Let F ′j be a minimal
subset of Cj such that for each x ∈ Cj there is an Rm-maximal y ∈ Fj,0 such
that x ∼ϕ y. (We can find such Rm-maximal states using [445, Lemma 14].)
Since Cj is a cluster and there are only finitely many ∼ϕ-equivalence classes
the set F ′j is finite.

Now suppose Fj,k has been defined. We give Fj,k+1. For each y ∈ Fj,k
let Yy be a minimal set of maximal Ri-states Ri-above y, such that for every
z with yRiz there exists a z′ ∈ Yy such that z ∼ϕ z′. Define

Fj,k+1 =
⋃

y∈Fj,k

Yy.

We claim that this process is finite. If z ∈ Fj,k is introduced in an earlier
step, then Yz (used in the construction of Fj,k+1) is empty by minimality. If
z was introduced in the construction of Fj,k as an element of some Yy, where
y ∈ Fj,k−1, then by construction and Ri-maximality of the states in Fj,k−1

there are at most c− k different ∼ϕ-equivalence classes that z can see. (Here
c denotes the number of ∼ϕ-equivalence classes.) Therefore |Yz| ≤ c − k.
This proves that the recursion terminates after c steps.
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Therefore, the set

Fj =
⋃

0≤k≤c
Fj,k

is finite. In fact, each of the Fj is bounded by cc+1. Moreover, we claim that
it satisfies the precondition from Lemma 13.87. Clearly, if y ∈ Fj and yRiz,
then by construction there exists a z′ ∈ Fj such that z ∼ϕ z′. If y ∈ Fj and
yRmz, then by (J-p) we have z ∈ Cj . By construction there exists a z′ ∈ Cj
such that z ∼ϕ z′ and by transitivity of Rm this implies yRmz

′.

An Rm-cofinal subframe. Let Xω be constructed as in the proof of Theo-

rem 13.88. Then by construction the subframe F† of F generated by

Xω = Xω ∪
⋃
{Fj | j ∈ J}

is Rm-cofinal. Let V † be the induced valuation and set M† = (F†, V †). Then
since Θ is closed under Rm-cofinal subframes we have F  Θ, and as a
consequence of Lemma 13.87 we have M† 6 ϕ, so that F† 6 ϕ.

Making M† finite. We use a trick similar to [445, Theorem 21]. For each

j ∈ J , let F+
j = (Cj ∩Xω)∪Fj . Since the Fj and Xω are uniformly bounded

by cc+1 + |Xω|, the sets F+
j are also uniformly bounded. Hence there are only

finitely many non-isomorphic submodels of M† generated by F+
j . Identifying

isomorphic such submodels yields a finite quotient of M† that witnesses the
claim.

Item 2. The second item is proved in a similar way as the second item of
Theorem 13.88.

13.90. Corollary. Let Λ be a J-logic extending i-P.

1. If its S4BHL-counterparts include a canonical logic preserved by
forming (cofinal) subframes, Λ has the finite model property.

2. Furthermore, if Λ extends i-Sa and its S4BHL-counterparts include
a logic obtained by extending a canonical (cofinal) subframe logic with
a collection of Lm-axioms preserved by Rm-subframes, Λ has the finite
model property.

In either case, Λ is decidable whenever it is finitely axiomatizable.

13.91. Examples.

1. The above theorems cover i-P and i-Sa themselves. As we have seen,
their natural S4BHL counterparts are complete with respect to
frames definable by universal first-order conditions, hence they are
not only canonical, but also preserved under subframes.
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2. It appears more challenging to use the second clause of the above
corollary, as the GMT translation always includes some i modalities.
However, transformations similar to those used in Example 13.84 can
handle, e.g. a syntactic variant of the strong Löb axiom

(((p J q) ∧ p) J q)→ (p J q).

After the GMT translation, one application of the trick from Exam-
ple 13.84.2 (plus some trivial book-keeping) yields Löb for m. This
is an Rm-subframe axiom.

3. Simlarly, when one considers PLAA, its Appa axiom over i-Sa trans-
lates to

m(( ip ∧ m( ip→ iq))→ iq).

The usual currying trick yields

m( m( ip→ iq)→ ( ip→ iq)),

which in one application of the trick from Example 13.84.2 produces

m( mr → r)

and this is an Rm-subframe axiom.

14 Modal meet-implication logic

In the field of mathematical logic, one does not only study logical formalisms,
but also the relationships between them. The main reason for this is that
one can often transfer results from one logic to the other, like complexity or
completeness results.

Two formalisms may differ because they have a different set of connectives.
For example, classical propositional logic contains connectives that are not
expressible in positive logic. Nonetheless, the two logics are closely related:
classical propositional logic is a conservative extension of positive logic. That
is, a positive propositional formula is valid in positive logic if and only if
it is classically valid, when viewed as a formula of classical propositional
logic. Similarly intuitionistic logic is a conservative extension of its (>,∧,→)-
fragment (called MI, see Subsection 2.2) and of its positive fragment. Even
if two logical formalisms use the same language, they can still have different
axioms or rules. An example of this phenomenon can be found in the
multitude of different modal extensions of intuitionistic logic [82, 159, 79,
447, 349, 445].
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Another interesting instance is the comparison of positive modal logic
and classical modal logic. This traces back to Dunn [144], whose paper
on positive modal logic was motivated by finding an axiomatisation for the
positive fragment of normal modal logic. As a consequence, the logic he found
automatically has classical normal modal logic as a conservative extension.
The monotone modal logic analogue hereof has been studied in Section 7.

In analogy to this, we investigate the relation between modal extensions
of intuitionistic logic and modal extensions of MI. On first sight this may
seem like a daunting task, considering the wide variety of modal intuitionistic
logics mentioned above. However, it turns out that the extension MI of
MI with a meet-preserving unary modality is a common denominator of
many of them, thus making the task at hand much more manageable. More
precisely, we prove that the modal extensions of intuitionistic logic given
by Božić and Došen [79], Plotkin and Sterling [349], Fisher Servi [159], and
Wolter and Zakharyashev [445] are all conservative extensions of MI .

In order to establish this, we carry out a semantic study of MI . We
enrich the language of MI with a box-like modal operator that preserves
finite meets to obtain MI . This modal operator is interpreted via its own
accessibility relation in what we call -frames. Based on this, we define
descriptive -frames for MI . These give rise to a duality for MI which
piggy-backs on the duality for implicative semilattices given in Subsection 2.4.

We make use of the dialgebraic perspective, introduced in Chapter V.
As such, this section serves as an example of a dialgebraic logic that is
not based on intuitionistic logic. Another interesting aspect is that the
notion of “prime filter extension” here is replaced by “filter extension.” To
be sure, dialgebraically nothing changes, but in this particular instance
the rôle of what we called prime filter extension in Section 11 is fulfilled
by filters. We instantiate the general results from Chapter V to obtain
completeness, a representation theorem, a Hennessy-Milner theorem and a
Goldblatt-Thomason theorem. As a consequence of the completeness theorem
for MI , we derive that many well-known modal intuitionistic logics share
a common fragment of top, meet, implication and box.

We complete this section by sketching the extension MIM of MI with a
monotone modal operator M. As a consequence of the dialgebraic approach,
we get completeness, a notion of filter extensions, a representation theorem
and a Goldblatt-Thomason theorem. Furthermore, with minimal additional
effort one can see that intuitionistic logic with a geometric modality, see
e.g. Section 9.3.3 or [187, Section 6], is a conservative extension of MIM.

Structure of the section In Subsection 14.1 we study a normal modal
extension of MI. We provide frame semantics by means of -frames, and
prove soundness. In Subsection 14.2 we take a dialgebraic perspective. We
show that both the algebraic semantics as well as the category of -frames
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can be modelled dialgebraically. We instantiate the dialgebraic definitions of
a regular subframe, bounded morphic image and coproduct to the setting
of -frames. Next, we define descriptive -frames, show how to view these
dialgebraically, and give a duality by means of a duality of functors in
Subsection 14.3. We then use this in Subsection 14.4 to obtain completeness,
a Hennessy-Milner theorem, a representation theorem and a Goldblatt-
Thomason theorem.

In Subsection 14.5 we step away from the dialgebraic perspective and
investigate the relation between the normal extension of MI and several
well-known modal intuitionistic logics. We observe that each of these modal
intuitionistic logics is a conservative extension of MI . Lastly, in Subsec-
tion 14.6 we briefly study the extension of MI with a monotone modality.

Origin of the material. This section is based on joint work with Dirk
Pattinson, which resulted in a paper that is accepted for publication [202].
There are a few minor differences between the paper and this section:

• We define I-frames as distributive semilattices, rather than implicative
semilattices. This does not interfere with any of the result from [202],
but helps pave the way for the Goldblatt-Thomason theorem.

• The proof of the natural isomorphism between ℐ and V (Lemma 14.21)
is simplified.

• In this section we prove Hennessy-Milner theorems with respect to
Kripke bisimulation, instead of behavioural equivalence (Theorem 14.27
and Corollary 14.28).

• In this section we additionally prove a representation theorem and a
Goldblatt-Thomason theorem (Theorems 14.30 and 14.31), both of
which are absent in the corresponding paper.

14.1 A normal modal extension

We introduce the language and logic that lie at the heart of this section, and
define its algebraic semantics. Subsequently, we give frame semantics in the
form of I-frames (from Definition 2.35) with an additional relation. We turn
such frames into a category by defining an appropriate notion of morphism,
which we show to be truth-preserving. Furthermore, we prove that these
relational structures provide a sound semantics for MI .

Recall that MI denotes the join- and bottom-free fragment of the language
IPC of intuitionistic logic.

14.1. Definition. Let MI be the extension of MI with a unary modal
operator. That is, MI is given by the grammar

ϕ ::= > | p | ϕ ∧ ϕ | ϕ→ ϕ | ϕ



Modal meet-implication logic 373

where p ranges over some arbitrary but fixed set Prop of proposition letters.
We abbreviate ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ).

The logic MI is defined as the extension of MI with the axioms for

(p ∧ q)↔ p ∧ q and > ↔ >, (14.1)

uniform substitution, and the congruence rule

p↔ q

p↔ q
.

We write MI ` ϕ if ϕ ∈MI .

The algebras corresponding to MI are given by implicative semilattices
with operators.

14.2. Definition. An implicative semilattice with operator (ISLO) is a
pair (A, ) consisting of an implicative semilattice A and a meet-preserving
function : A→ A. A homomorphism between ISLOs (A, ) and (A′, ′)
is an implicative semilattice homomorphism h : A → A′ that additionally
satisfies h ◦ = ′ ◦ h.

Let ISL denote the category of ISLOs and their morphisms.

We now define frame semantics for MI , called -frames.

14.3. Definition. A -frame is a tuple (X,≤, R) where (X,≤) is an I-frame
and R is a binary relation on X satisfying:

(B1) >Rx iff x = >, and xR> for all x;

(B2) If xRy ≤ z then xRz;

(B3) If xRy and x′Ry′ then (x ∧ x′)R(y ∧ y′);
(B4) If (x ∧ x′)Rz then there are y, y′ ∈ X such that xRy and x′Ry′

and y ∧ y′ = z.

A -model is a -frame together with a valuation V : Prop → filA that
assigns a filter to each proposition letter. The interpretation of a formula ϕ
in a -model M = (X,≤, R, V ) is given recursively by

M, x  > iff always

M, x  p iff x ∈ V (p)

M, x  ϕ ∧ ψ iff M, x  ϕ and M, x  ψ

M, x  ϕ→ ψ iff ∀y ∈ X, if x ≤ y and M, y  ϕ then M, y  ψ

M, x  ϕ iff ∀y ∈ X,xRy implies M, y  ϕ

(The first four clauses correspond to the interpretation of MI-formulae in
I-frames from Definition 2.36.) As usual, we write M  ϕ if all states in M
satisfy ϕ. If X is a -frame then we write X  ϕ if M  ϕ for every -model
based on X.
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14.4. Definition. A -frame morphism from (X,≤, R) to (X ′,≤′, R′) is an
I-frame morphism f : (X,≤) → (X ′,≤′) between the underlying I-frames
such that f : (X,R) → (X ′, R′) is a bounded morphism, i.e. xRy implies
f(x)R′f(y) and for all x ∈ X and y′ ∈ X ′, if f(x)R′y′ then there exists
y ∈ X such that xRy and f(y) = y′. A -model morphism is a -frame
morphism that is also an I-model morphism between the underlying I-models.

We denote the category of -frames and -frame morphisms by IFrm .

An easy induction on the structure of a formula shows that:

14.5. Proposition. If f : M→M′ is a -model morphism, x is a state in
M and ϕ ∈MI , then

M, x  ϕ iff M′, f(x)  ϕ.

14.6. Proposition (Soundness). If MI ` ϕ then IFrm  ϕ.

Proof. We need to prove that every frame satisfies (ϕ∧ψ)↔ ϕ∧ ψ and
> ↔ >. Both follow immediately from the definitions.

14.2 Dialgebraic perspective

We take a dialgebraic perspective on the logic MI and its interpretation
in -frames. First we note how ISLOs arise from the axioms for MI via
the procedure from Definition 9.54, taking into account that we can use
axioms instead of axiom pairs (see Remark 9.51). Second, we show how
to view -frames as dialgebras, and how to obtain the interpretation from
Definition 14.3 via a predicate lifting. Lastly, we use this connection to
instantiate the notions of regular subframe, epimorphic image and coproduct
to the class of -frames.

Our basic setup consists of the dual adjunction between the category
of semilattices and itself, where we view one of them as the category of
M-frames, and its restriction to implicative semilattices:

MFrm SL

IFrm ISL

fil

fil

fil′
i

fil→

j

Let Λ be the modal similarity type consisting of one unary modal operator
(that we identify with ). Together with the one-step axioms from (14.1),
Definition 9.54 gives rise to the following functor, which we denote by K
rather than ℒΛ,Ax.
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14.7. Definition. Let K : ISL→ SL be the functor that sends an implicative
meet-semilattice A to the free meet-semilattice generated by { a | a ∈ A}
modulo > = > and a ∧ b = (a ∧ b), and a homomorphism h : A→ A′

to Kh : KA→ KA′ generated by Kh( a) = h(a).

14.8. Proposition. We have ISL ∼= Dialg(K, j).

We leave the obvious proof of this proposition to the reader. Observe that
K is naturally isomorphic to j, so Dialg(K, j) ∼= Dialg(j, j). We shall exploit
this fact in Section 14.3 to obtain a duality between ISLOs and descriptive

-frames.

Modelling -frames as dialgebras requires a bit more work. Crucially,
this uses the inclusion functor i : IFrm → MFrm and the covariant filter
functor G : IFrm → MFrm. This functor acts the same on objects as the
functor fil, but differs in its action on morphisms. (Think of the co- and
contravariant powerset functors in coalgebraic logic over a classical base,
see Section 3.) We define this functor and prove that it is well defined.
Subsequently, in Theorem 14.11 we show that the category of -frames is
isomorphic to Dialg(i,G).

14.9. Definition. Let (X,≤) be an I-frame. Define G(X,≤) to be the
collection of filters of (X,≤) ordered by reverse inclusion. This is a meet-
semilattice with top element {>} and meet defined by

a b := 〈a, b〉 = {x ∧ y | x ∈ a, y ∈ b}.

For an I-frame morphism f : (X,≤)→ (X ′,≤′) define

Gf : G(X,≤)→ G(X ′,≤′) : a 7→ f [a] := {f(x) | x ∈ a}.

Note that a b was shown to be a filter in Subsection 2.3. In fact, it is
the smallest filter containing both a and b, so alternatively we can define
a b =

⋂
{c ∈ fil(X,≤) | a ∪ b ⊆ c}. Thus G(X,≤) has binary meets and a

top element. Hence G is well defined on objects. We show that the same is
true for morphisms.

14.10. Lemma. If f is an IFrm-morphism from (X,≤) to (X ′,≤′), then Gf
is an MFrm-morphism.

Proof. Denote by > and ∧ the semilattice operations of (X,≤), and by >′,∧′
the ones from (X ′,≤′). Let a ∈ G(X,≤). Since f is bounded the set f [a]
is up-closed in (X ′,≤′). Moreover, it contains >′ and is closed under ∧′
because f preserves > and meets. So f [a] ∈ G(X ′,≤′). One easily sees that
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Gf({>}) = {>′}. Furthermore, for a, b ∈ G(X,≤) we have

Gf(a) ′ Gf(b) = {x′ ∧′ y′ | x′ ∈ f [a] and y′ ∈ f [b]}
= {f(x) ∧′ f(y) | x ∈ a and y ∈ b}
= {f(x ∧ y) | x ∈ a and y ∈ b}
= {f(z) | z ∈ a b}
= Gf(a b).

So Gf preserves the top element and binary meets, hence all finite meets.
Therefore it is a morphism in MFrm.

A straightforward verification shows that G is indeed a functor. We
proceed to the main theorem of this section.

14.11. Theorem. Let i : IFrm → MFrm be the obvious inclusion functor.
Then IFrm ∼= Dialg(i,G).

Proof. We split the proof into three claims. The first two describe the isomor-
phism on objects, and the last one proves the isomorphism for morphisms.

14.11.1. Claim. Let (X,≤, R) be a -frame and define

γR : i(X,≤)→ G(X,≤) : x 7→ R[x].

Then (X,≤, γR) is a (i,G)-dialgebra.

Proof of claim. For all x ∈ X the set γR(x) is a filter by definition of R.
We verify that γR preserves meets and top. By (B1) we have γR(>) = {>},
which is the top element in G(X,≤). It follows immediately from (B3) and
(B4) that γR(x) γR(y) = γR(x ∧ y).

14.11.2. Claim. Let (X,≤) be an I-frame and (X,≤, γ) an (i,G)-dialgebra.
Define Rγ by xRγy iff y ∈ γ(x). Then (X,≤, Rγ) is a -frame.

Proof of claim. We need to verify that Rγ satisfies the four items from
Definition 14.3. Since γ(>) = {>} the first part of (B1) holds. By definition
γ(x) is a filter in (X,≤), hence up-closed; this proves the second part of (B1)
and (B2) are true. Items (B3) and (B4) follow from the fact that γ preserves
meets.

It is straightforward to see that Claims 14.11.1 and 14.11.2 establish an
isomorphism on objects. We complete the proof of the theorem by showing
that the -frame morphisms between two -frames are precisely the (i,G)-
dialgebra morphisms between the corresponding dialgebras. Let (X,≤, R)
and (X ′,≤′, R′) be two -frames and let (X,≤, γ) and (X ′,≤′, γ′) be their
rendering as (i,G)-dialgebras.
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14.11.3. Claim. An I-frame morphism f : (X,≤)→ (X ′,≤′) is a -frame
morphism from (X,≤, R) to (X ′,≤′, R′) if and only if it is an (i,G)-dialgebra
morphism from (X,≤, γ) to (X ′,≤′, γ′).

Proof of claim. Suppose f is a -frame morphism. In order to prove that it
is also a dialgebra morphism we need to show that

i(X,≤) i(X ′,≤′)

G(X,≤) G(X ′,≤′)

if

γ γ′

Gf

commutes. To see this, let x ∈ X and y′ ∈ Y ′. Then

y′ ∈ γ′(if(x)) iff f(x)R′y′

iff ∃y ∈ X s.t. xRy and f(y) = y′

iff ∃y ∈ X s.t. y ∈ γ(x) and f(y) = y′

iff y′ ∈ Gf(γ(x)).

Conversely, suppose f is a dialgebra morphism. Then f is order-preserving
with respect to R and R′ because xRy implies y ∈ γ(x) hence f(y) ∈
Gf(γ(x)) = γ′(if(x)) so f(x)R′f(y). For boundedness, suppose f(x)R′y′,
then y′ ∈ γ′(if(x)) = Gf(γ(x)), and this implies f(y) = y′ for some y ∈ γ(x),
i.e. for some y with xRy.

Combining these three claims proves the theorem.

Clearly this entails that -models correspond to (i,G)-models. The
interpretation of the modal operator in (i,G)-dialgebras can be given via
the following predicate lifting (see Definition 9.82), whose definition should
not come as a surprise (cf. Examples 3.45 and 9.84).

14.12. Definition. Define λ : U · fil · i→ U · fil ·G by

λ(X,≤) : U(fil(i(X,≤)))→ U(fil(G(X,≤))) : a 7→ {b ∈ G(X,≤) | b ⊆ a}.

Here fil the contravariant functor MFrm→ SL and U denotes the forgetful
functor SL→ Set.

It is easy to verify that this is natural. We need to show that

U(fil(i(X1,≤1))) U(fil(G(X1,≤1)))

U(fil(i(X2,≤2))) U(fil(G(X2,≤2)))

λ
(X1,≤1)

λ
(X2,≤2)

f−1 (Gf)−1
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commutes. Let a2 ∈ fil(i(X2,≤2)) and b1 ∈ G(X1,≤1), then

b1 ∈ λ(X1,≤1)(f
−1(a2)) iff b1 ⊆ f−1(a2)

iff f [b1] ⊆ a2

iff Gf(b1) ∈ λ(X2,≤2)(a2)

iff b1 ∈ (Gf)−1(λ(X2,≤2)(a2))

To see that it gives the desired interpretation, suppose M = (X,≤, R, V )
is a -model and M′ = (X,≤, γR, V ) the corresponding (i,G)-model. The
action of all connectives except for is interpreted in the underlying I-frame,
so these are the same in M and M′. For , we have

M, x  ϕ iff R[x] ⊆ JϕKM

iff γR(x) ⊆ JϕKM
′

iff γR(x) ∈ λ(X,≤)(JϕKM
′
)

iff M′, x  ϕ

Next, we work out the notions of regular subframe, bounded morphic
images and coproducts of -frames that arise from the dialgebraic definitions
in Subsection 11.1. We start with the easy ones, making use of the facts that
epimorphisms in SL are simply surjective homomorphisms [250] and regular
monomorphims are injective homomorphisms (see Proposition 2.2).

14.13. Definition. Let X1 and X2 be -frames.

1. X1 is called a regular subframe of X2 if there exists an injective -frame
morphism f : X1 → X2.

2. X1 is called an epimorphic image of X2 if there exists a surjective
-frame morphism f : X2 → X1.

It may seem like the notion of a regular subframe here is more relaxed
than for intuitionistic logic, since we do not require f to be an embedding.
Note, however, that since f is a semilattice homomorphism, injectivity
automatically implies that it is an embedding.

We can give an alternative description of regular subframes by means
of generated subframes, the definition of which lies closer to the usual no-
tion of a generated subframe of a Kripke frame in normal modal logic [70,
Definition 2.5].

14.14. Definition. Let X1 = (X1,≤1, R1) and X2 = (X2,≤2, R2) be two
-frames, and write >1, ∧1 and >2, ∧2 for the corresponding semilattice

operators. We say that X1 is a generated subframe of X2 if

1. (X1,>1,∧1) is a sub-semilattice of (X2,>2,∧2);



Modal meet-implication logic 379

2. R1 = R2 ∩ (X2 ×X2);

3. If x ∈ X1 and xR2y then y ∈ X1.

An easy verification shows that X1 is a generated subframe of X2 if and
only if (X1,>1,∧1) is a sub-semilattice of (X2,>2,∧2) and the inclusion mor-
phism i : X1 → X2 is a -morphism. As a consequence we can characterise
regular subframes of a -frame X as those -frames that are isomorphic to
some generated subframe of X.

We have the following preservation results.

14.15. Proposition. Let X1 and X2 be a -frame, ϕ ∈MI , and suppose
X2  ϕ.

1. If X1 is a generated subframe of X2, then X1  ϕ.

2. If X1 is an epimorphic image of X2 then X1  ϕ.

Proof. Follows from Proposition 11.8.

More interesting is the notion of coproduct, because the set underlying
the coproduct of a family of -frames is no longer given by the disjoint
union. Indeed, the fact that we work with frames based on (distributive)
semilattices forces us to freely add finite meets of elements from different

-frames to the coproduct.

Recall from Subsection 2.3 that the coproduct of a collection of I-frames
{(Xk,≤k) | k ∈ K} can viewed as the set of functions x : K →

⋃
k∈K Xk

satisfying

• x(k) ∈ Xk for each k ∈ K; and

• x(k) 6= >k for only finitely many k ∈ K, where >k denotes the top
element of the semilattice (Xk,≤k).

The top element is given by the map K →
⋃
k∈K that maps each k ∈ K to >k,

and meets are taken pointwise. As a consequence, if x, y ∈
∐
k∈K(Xk,≤k)

then we have x ≤ y if and only if x(k) ≤k y(k) for all k ∈ K.

14.16. Definition. Let {Xk = (Xk,≤k, Rk) | k ∈ K} be a K-indexed set of
-frames. Their coproduct is given by

∐
k Xk = (X,≤, R), where (X,≤) is

the coproduct of the I-frames (Xk,≤k) and R is defined by

xRy iff x(k)Rky(k) for all k ∈ K,

where x, y ∈ (X,≤).

It is easy to verify that (X,≤, R) defined above is indeed a -frame.
It can be shown that it is the coproduct in IFrm . We do not prove this
explicitly, because it also follows from the dialgebraic perspective.
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14.17. Proposition. Let {Xk = (Xk,≤k, Rk) | k ∈ K} be a set of (i,T )-
dialgebras, ϕ ∈ MI , and suppose that Xk  ϕ for all k ∈ K. Then
(
∐
k Xk)  ϕ.

Proof. This is an application of Proposition 11.14.

14.3 Descriptive frames and duality

Towards a duality for ISLOs we now define descriptive -frames. We then
show that these are dialgebras for the functors ℐ,V : ISpace → MSpace,
where ℐ is the inclusion functor and V is a variation of the Vietoris functor.
Subsequently, we prove that V is naturally isomorphic to ℐ, and as a
consequence we obtain a duality between descriptive -frames and implicative
meet-semilattices with normal operators as follows:

Dialg(ℐ,V ) ∼= Dialg(ℐ,ℐ) ≡op Dialg(j, j) ∼= Dialg(N, j).

This duality piggy-backs on HMS duality between semilattices and M-spaces,
and its restriction to a duality between implicative semilattices and I-spaces
from Section 2. We use the duality derived here in Subsection 14.4 to to
obtain completeness, a Hennessy-Milner theorem and a Goldblatt-Thomason
theorem, as a consequence of general dialgebraic theory.

14.18. Definition. A general -frame is a tuple (X,≤, R,A) such that
(X,≤, R) is a -frame, (X,≤, A) is a general I-frame, and A is closed under

R : fil(X,≤)→ fil(X,≤) : p 7→ {x ∈ X | R[x] ⊆ p}.

It is called descriptive if moreover (X,≤, A) is a descriptive I-frame and
R[x] =

⋂
{a ∈ A | R[x] ⊆ a} for all x ∈ X.

A general -frame morphism between general -frames is a function
which is simultaneously a -frame morphism between the underlying -
frames, and a general I-frame morphism between the underlying general
I-frames. The collection of descriptive -frames and general -frame mor-
phisms forms a category, that we denote by D-IFrm .

As stated the category D-IFrm can be described as a category of dialge-
bras. We now define the relevant functor for doing so.

14.19. Definition. Let X = (X,≤, τ) be an I-space. Define VX to be the
collection of closed filters of X ordered by reverse inclusion and topologised
by the subbase

a = {c ∈ VX | c ⊆ a}, b = {c ∈ VX | c ∩ b 6= ∅},

where a ranges over the clopen filters of X and b over the clopen prime
downsets of X. (That is, b ranges over complements of clopen filters.) For
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an I-space morphism f : X→ X′ define Vf = f [−], i.e. Vf sends a closed
filter c to the direct image f [c] of c under f .

Note that VX is again a semilattice. The top element of is given by {>}.
If c1, c2 are closed filters of X then by Lemma 2.15 there are x1, x2 ∈ X such
that c1 = ↑x1 and c2 = ↑x2, so that their conjunction can be given by

c c′ = ↑(x1 ∧ x2).

Alternative we can define c1 c2 as 〈c1, c2〉 := {y1 ∧ y2 | y1 ∈ c1, y2 ∈ c2} or
as
⋂
{a ∈ Clp′fX | c ∪ c

′ ⊆ a}, because each of these yields the same filter.

We prove that the category of descriptive -frames is isomorphic to that
of (ℐ,V )-dialgebras.

14.20. Theorem. We have ISpace ∼= Dialg(ℐ,V ).

Proof. We first establish the isomorphism on objects.

14.20.1. Claim. For a descriptive -frame (X,≤, R,A), let X be the I-space
(X,≤, τA) (where τA is the topology on X generated by A ∪ −A) and define

γR : ℐX→ VX : x 7→ R[x].

Then (X, γR) is a (ℐ,V )-dialgebra.

Proof of claim. We need to show that γR is an M-space morphism from ℐX
to VX. It is well defined since the fact that (X,≤, R,A) is descriptive implies
that γR(x) = R[x] is a closed filter for each x. Besides, γR preserves the top
element because γR(>) = R[>] = {>} and the latter is the top element in
VX. To see that it preserves binary meets we can compute

γR(x) γR(y) = R[x] R[y]

= {z ∧ w | z ∈ R[x], w ∈ R[y]} = R[x ∧ y] = γR(x ∧ y)

Here the third equality follows from (B3) and (B4) of Definition 14.3. Finally,
γR is continuous because the topology on VX is generated by subsets of the
form a, where a ∈ A, and their complements, and γ−1

R ( a) = R(a) ∈ A
for all a ∈ A.

14.20.2. Claim. Let (X, γ) be a (ℐ,V )-dialgebra. Let (X,≤, A) be the
descriptive I-frame corresponding to X and define the relation Rγ on X by
xRγy iff y ∈ γ(x). Then (X,≤, Rγ , A) is a descriptive -frame.

Proof of claim. This is indeed a -frame because for every clopen filter
a ∈ A we have R(a) = γ−1( a) ∈ ClpfX = A. It is descriptive because
Rγ [x] = γ(x) is the intersection of clopen filters by Lemma 2.15.
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It is easy to see that the two assignments define an isomorphism on
objects: we already know the correspondence for the underlying I-spaces
(descriptive I-frames), and on top of this we have xRy iff y ∈ γR(x) iff xRγRy,
and y ∈ γ(x) iff xRγy iff y ∈ γRγx.

The verification of the isomorphism on morphisms is routine.

Next, we prove that V is naturally isomorphic to the inclusion functor
ℐ : ISpace→ MSpace.

14.21. Lemma. The functors ℐ and V are naturally isomorphic.

Proof. We first prove the isomorphism on components. Let X be an I-space.
In order to prove that ℐX is isomorphic to VX it suffices to construct a
bijective I-space morphism εX : ℐX → VX. Indeed, the fact that it is a
bijective semilattice homomorphism then implies that both εX as well as its
inverse are I-frame morphisms, and the fact that it is a bijective continuous
function between Stone spaces implies that it is a homeomorphism.

Define
εX : ℐX→ VX : x 7→ ↑x

This is well defined because ↑x is a filter for each x, which is closed by
Lemma 2.15. It is clearly injective, and it is surjective because every closed
filter of X is of the form ↑x for some x ∈ X. To see that it is a semilattice
homomorphism, compute εX(>) = ↑> = {>}, and

εX(x ∧ y) = ↑(x ∧ y) = ↑x ↑y = εX(x) εX(y).

For continuity, note that ε−1
X ( a) = {x ∈ X | ↑x ⊆ a} = {x ∈ X | x ∈ a} = a

and similarly ε−1
X ( b) = b for all clopen filters a and clopen prime downsets

b of X.
Next, we verify that ε : ℐ → V is a natural transformation. Let f : X1 →

X2 be an I-space morphism. We need to show that

ℐX1 VX1

ℐX2 VX2

εX1

ℐf Vf
εX2

commutes. That is, we need to show that for each x1 ∈ X1 we have ↑(f(x1)) =
f [↑x1]. This follows immediately from the fact that f is an I-frame morphism.

The proof of the following theorem was sketched at the start of this
section.

14.22. Theorem. We have a dual equivalence of categories

ISpace ≡op ISL .
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Figure 14.1: Overview of functors.

MFrm SL MSpace

IFrm ISL ISpace

fil

fil

ℱil

≡op

Clpf

fil′

iG

fil→

ℱil′

≡op

j K

Clp′f

ℐ V

Proof. According to Theorem 14.20 we have ISpace ∼= Dialg(ℐ,V ). In
Lemma 14.21 we proved that V is naturally isomorphic to ℐ, so Dialg(ℐ,V )
is equivalent to Dialg(ℐ,ℐ). The dual nature of dialgebras, together with
the facts that ℐ and j are inclusion functors, implies that Dialg(ℐ,ℐ) is dual
to Dialg(j, j). Since j is naturally isomorphic to K the latter is equivalent to
Dialg(K, j), which in turn is isomorphic to ISL by Proposition 14.8.

As a corollary we obtain completeness for MI . We do not state this
as a theorem yet, because we will also derive it dialgebraically in the next
subsection

14.4 Hennessy-Milner and Goldblatt-Thomason

Consider the overview of functors given in Figure 14.1. In this setting, the
functor u is the obvious forgetful functor MSpace → MFrm which forgets
the topology, and u′ : ISpace→ IFrm its restriction.

We verify that our categories and functors satisfy all conditions from
Setup 11.1 (except for the existence of a translation τ , which we shall define
below). Since these subsume those from Setup 10.27 we can freely make
use of all the dialgebraic development from Sections 10 and 11. We follow
Setup 11.1 item-by-item.

• It was shown in Subsection 2.3 that IFrm has coproducts and i preserves
them.

• The functors fil : MFrm → SL and fil : SL → MFrm form a dual ad-
junction (Proposition 2.5) and they restrict to functors fil′ : IFrm→ ISL
and fil→ : ISL→ IFrm (Subsection 2.4). Moreover, it follows from the
fact that for each implicative semilattice A we have A ∼= Clp′f(ℱil

′A)

and Clp′f(ℱil
′A) is a sub-implicative semilattice of fil′(fil→A) that

the unit from the dual adjunction between MFrm and SL restricts to a
natural transformation θ′ : idISL → fil′ · fil→.
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• Both regular monos and monos in SL are simply injective semilattice
homomorphism, and these are easily seen to be sent to epis by fil.

• The functors ℱil and Clpf establish a dual equivalence (Subsection 2.1)
which restricts as desired (Subsection 2.4).

• There is an obvious forgetful functor u : MSpace → MFrm which
simply forgets the topology, and restricts to u′ : ISpace→ IFrm. It is
easy to see that u is naturally isomorphic to fil ·Clpf, because filters
of ClpfX correspond precisely with elements of X.

We will now define a translation τ : u ·V → D ·u′ and apply the general
theorems from Sections 10 and 11 to obtain completeness, a representation
theorem, a Hennessy-Milner theorem and a Goldblatt-Thomason theorem.
We make use of the fact that every closed filter of an I-space X is in particular
a filter of its underlying I-frame u′X.

14.23. Definition. Define the translation τ : u ·V → G ·u′ by

τX : u(VX)→ G(u′X) : c 7→ c.

It is easy to see that this is natural. Our next step is to show that
ρ̄X ◦ τX = iduVX for every I-space X.

Define the natural transformation µ as the composition

µ : Clpf fil · fil ·Clpf fil ·u
θClpf ∼=

This is given concretely by µX : ClpfX → fil(uX) : a 7→ a. Furthermore,
note that we have an isomorphism fil ·K ·Clp′f → uV given on components
by

fil(K(Clp′fX))→ uVX : Q 7→
⋂
{a ∈ Clp′fX | a ∈ Q}.

The transformation ρ̄ is then defined as

G ·u′ fil · fil ·G ·u′ fil ·K · fil′ ·u′

fil ·K ·Clp′f u ·V

ηGu′ ρ−1
u′

(Kµ′)−1 ∼=

While this looks complicated at first, again it turns out to be quite a
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simple mapping. For an I-space X and a filter b ∈ G(u′X) we have

ρ̄X(b) =
⋂
{a ∈ Clp′fX | a ∈ (Kµ′X)−1(ρ−1

u′X(ηPupu′X(b)))}

=
⋂
{a ∈ Clp′fX | µ′X(a) ∈ ρ−1

u′X(ηGu′X(b))}

=
⋂
{a ∈ Clp′fX | a ∈ ρ−1

u′X(ηGu′X(b))}

=
⋂
{a ∈ Clp′fX | ρ( a) ∈ ηPupu′X(b)}

=
⋂
{a ∈ Clp′fX | b ∈ ρ( a)}

=
⋂
{a ∈ Clp′fX | b ⊆ a}

So we simply take b ∈ G(u′X) and send it to the smallest closed filter
containing it, viewed as an element of u(VX).

14.24. Lemma. For each I-space X we have ρ̄X ◦ τX = iduVX.

Proof. For each closed filter c ∈ uVX we have ρ̄X(τX(c)) = ρ̄X(c) = c.

14.25. Theorem. The logic MI is complete with respect to the class of
-frames.

Proof. This is an application of Theorem 10.48.

Next, we use Theorem 10.13 to derive a Hennessy-Milner theorem for
descriptive -models. With minimal additional effort, we can include the
standard notion of a Kripke bisimulation into this result. We first recall the
definition of a Kripke bisimulation.

14.26. Definition. Let M1 = (X1,≤1, R1, V1) and M2 = (X2,≤2, R2, V2)
be two -models. A Kripke bisimulation between M1 and M2 is a relation
B ⊆ X1 ×X2 such that for all (x1, x2) ∈ B:

1. x1 ∈ V (p) if and only if x2 ∈ V2(p), for all p ∈ Prop;

2. If x1 ≤1 y1 then ∃y2 ∈ X2 such that (y1, y2) ∈ B and x2 ≤2 y2;

3. If x2 ≤2 y2 then ∃y1 ∈ X1 such that (y1, y2) ∈ B and x1 ≤1 y1;

4. If x1R1y1 then ∃y2 ∈ X2 such that (y1, y2) ∈ B and x2R2y2;

5. If x2R2y2 then ∃y1 ∈ X1 such that (y1, y2) ∈ B and x1R1y1.

Two states x1 ∈ X1 and x2 ∈ X2 are called Kripke bisimilar if there exists a
Kripke bisimulation linking them.

A Kripke bisimulation between two descriptive -models is defined as a
Kripke bisimulation between the underlying (non-descriptive) -models.

14.27. Theorem. Let x1 and x2 be two states in two descriptive -models
M1 and M2. Then the following are equivalent:
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1. x1 and x2 are logically equivalent;

2. x1 and x2 are Kripke bisimilar;

3. x1 and x2 they are behaviourally equivalent.

Proof. Analogous to the proof of Theorem 10.15.

If M = (X,≤, R, V ) is a finite -model, then augmenting it with the
set of all filters of (X,≤) turns it into a descriptive -model. Using this,
we obtain the following Hennessy-Milner result for finite -models from
Theorem 14.27.

14.28. Corollary. Let x1 and x2 be two states in two finite -models M1

and M2. Then x1 and x2 are logically equivalent if and only if they are
Kripke bisimilar.

As a consequence of the duality we also get a notion of filter extension.
We called this a prime filter extension in Section 11.2, but in the current
setting it makes more sense to call it the filter extension, because such an
extension of a -frame (X,≤, R) is based on the I-frame fil→(fil′(X,≤)).
It is defined as the dual of the complex algebra of (X,≤, R), but forgetting
about the topology, and it is closely aligned to the ultrafilter extensions used
in normal modal logic over a classical base [100, Section 10.2] and prime
filter extensions from Example 11.17. Concretely:

14.29. Definition. Let X = (X,≤, R) be a -frame. The filter extension
of X is given by (Xfe,⊆, Rfe), where Xfe = fil→(fil′(X,≤)) and Rfe is
defined by

pRfeq iff ∀a ∈ fil′(X,≤), R(a) ∈ p implies a ∈ q,

where R(a) = {x ∈ X | R[x] ⊆ a}.

As a consequence of Theorem 10.35 we obtain the following representation
theorem.

14.30. Theorem. Every ISLO can be embedded in the complex algebra of a
-frame.

Instantiating Theorem 11.23 we obtain a Goldblatt-Thomason theorem
for -frames.

14.31. Theorem. Suppose that the set Prop of proposition letters is infinite,
and let K ⊆ IFrm be a class of -frames that is closed under taking filter
extensions. Then K is axiomatic if and only if it is closed under regular
subframes, bounded morphic images and coproducts, and it reflects filter
extensions.
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14.5 Relation to modal intuitionistic logics

There are many variations of modal intuitionistic logic, and usually the
-modality satisfies the axioms > = > and p ∧ q = (p ∧ q). Therefore,

the various semantics of these versions of modal intuitionistic logic all provide
sound semantics for MI . In this section we show that in fact MI is
complete with respect to many of these semantics. This then implies that
MI axiomatises the (>,∧,→, )-fragment of the modal intuitionistic logics
under consideration.

Our strategy for achieving this is simple: we show that -frames and
-models are special cases of the semantics corresponding to various types of
modal intuitionistic logic. Then, letting K denote such a class of frames for
modal intuitionistic logic, we argue that K  ϕ implies IFrm  ϕ, which we
know implies MI ` ϕ.

We make frequent use of the following proposition.

14.32. Proposition. Let (X,≤, R) be a -frame. Then we have

R = (≤ ◦R ◦ ≤) and (≥ ◦R) ⊆ (R ◦ ≥).

Proof. We first prove the left equality. The inclusion from left to right follows
from reflexivity of ≤. Furthermore, it follows from (B2) that R = (R ◦ ≤),
so it suffices to show that (≤ ◦R) ⊆ R. In a diagram:

y z

x

≤

R

R

If x ≤ y then x ∧ y = x. Also, by (B1) we have xR>. It then follows from
(B3) that (x ∧ y)R(z ∧ >), i.e. xRz.

The inclusion on the right follows from (B4): if xRz and x ≤ x′ then
(x ∧ x′)Rz so according to (B4) we can find a states y, y′ such that xRy and
x′Ry′ and y ∧ y′ = z. The latter implies z ≤ y′, so y′ witnesses the desired
inclusion.

We now consider various flavours of modal intuitionistic logic.

The logics HK and HK by Božić and Došen

In [79] the authors consider the logic HK (denoted by HK in [79]), which
is an extension of intuitionistic logic with axiomatised by > = > and
p ∧ q = (p ∧ q).

The interpreting structures are H -frames (from Definition 9.14 or [79,
Definition 2], and found under a different name in [357, Definition 3.1]). A
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H -frame is a tuple (X,≤, R) consisting of a pre-order (X,≤) and a relation
R on X satisfying (≤ ◦R) ⊆ (R ◦ ≤). It is called condensed if (R ◦ ≤) = R
and strictly condensed if (≤ ◦R ◦ ≤) = R. They become H -models if one
attaches to it a valuation that interprets each proposition letter as an upset
in (X,≤). The box-modality is interpreted as usual, i.e. a state x satisfies
ϕ if all its R-successors satisfy ϕ.

It follows from Proposition 14.32 and the fact that a valuation for a
-frame sends a proposition letter to a filter, which in particular is an upset,

that every -model is also a strictly condensed H -model. Therefore MI
is sound and complete with respect to the class of ((strictly) condensed)
H -frames and MI characterises the (>,∧,→, )-fragment of HK . As
a consequence we have:

14.33. Theorem. The logic HK is a conservative extension of MI .

Furthermore, in §11 the authors also introduce the system HK (de-
noted by HK in [79]) for the language IPC . A semantics is given
by the collection of so-called H -frames (models). These are strictly
condensed H -frames (models) that additionally satisfy

(≥ ◦R) ⊆ (R ◦ ≥).

Again, by Proposition 14.32, every -model is a H -model and MI
axiomatises the (>,∧,→, )-fragment of HK . Therefore:

14.34. Theorem. The logic HK is a conservative extension of MI .

The logic IK by Plotkin and Stirling

In [349] the authors define an intuitionistic modal frame as a tuple (X,≤, R)
consisting of a poset (X,≤) and a relation R satisfying

(≥ ◦R) ⊆ (R ◦ ≥) and (R ◦ ≤) ⊆ (≤ ◦R).

These can be turned into models in the usual way. While the diamond is
interpreted as usual (i.e. a state satisfies ϕ if is has an R-successor satisfying
ϕ), persistence of is achieved by defining

x  ϕ iff x(≤ ◦R)y implies y  ϕ.

If a frame satisfies (≤◦R) ⊆ R then reflexivity of ≤ implies that (≤◦R) = R.
In such cases, the interpretation of reduces to the usual one, i.e.

x  ϕ iff xRy implies y  ϕ.

This interpretation coincides with the one given by Fisher Servi in [159].
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It follows from Proposition 14.32 again that -frames are intuitionistic
modal frames. Moreover, the fact that every -frame satisfies R = (≤◦R◦≤)
implies (≤ ◦R) ⊆ R so in case of -frames our interpretation of coincides
with the one used in [349]. Therefore we have completeness of MI with
respect to intuitionistic modal frames. Again, soundness follows from the
axiomatisation of the system IK presented in [349], where it is called IK. So
MI axiomatises the (>,∧,→, )-fragment of IK.

14.35. Theorem. The logic IK is a conservative extension of MI .

The logic IntK by Wolter and Zakharyaschev

Finally, we consider WZ -frames, used in [445, Section 2]. These are also
discussed in Section 9, where we called them -frames; we call them WZ -
frames here to distinguish them from the -frames defined in this section.
(The same frames have also been used in [447] and [254].) Recall that
WZ -frames are posets (X,≤) with an additional relation R satisfying
R = (≤ ◦R ◦ ≤). They are used in [445] as a semantics for the logic IntK
(called IPC in Chapter V, see Subsection 9.1). Interpretants of formulae
are upsets in (X,≤), and models are obtained by adding to a frame a
valuation that sends each proposition letter to an up-closed subset of the
frame. The axiomatisation of IntK proves the axioms ϕ∧ ψ = (ϕ∧ψ)
and > = >. It can be proven similarly as above that MI is sound
and complete with respect to the class of WZ -frames, and that MI
axiomatises the (>,∧,→, )-fragment of IntK .

14.36. Theorem. The logic IntK is a conservative extension of MI .

14.6 A monotone modal extension

In this final subsection we discuss the extension of MI with a monotone
modal operator, that we denote by M. We present this dialgebraically, and
leave explicit descriptions of the logical axioms, frame semantics (a variation
of neighbourhood semantics) and descriptive frames to the reader.

So let Λ = {M} and

Ax := {M(p ∧ q)→ Mp}.

We denote the resulting language and logic by MIM and MIM. Then the
procedure from Subsection 9.4 yields the following algebraic semantics.

14.37. Definition. For an implicative semilattice A, define ℳA to be the
free semilattice generated by { a | a ∈ A} modulo (a ∧ b) ≤ a. If
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h : A → A′ is an implicative semilattice homomorphism, then we define
ℳh : ℳA→ℳA′ on generators by ℳh( a) = h(a).

Writing j : ISL→ SL for the inclusion functor, the algebraic semantics of
MIM is given by Dialg(ℳ, j).

Concretely, (ℳ, j)-dialgebras are simply implicative semilattices with a
monotone operator. The frame semantics of MIM is given by an adaptation
of (intuitionistic) monotone frames, see e.g. Subsection 3.3.2, Section 7, or
Subsection 9.3.3.

14.38. Definition. Let (X,≤) be an I-frame. Define

ℋ(X,≤) = {W ⊆ fil(X,≤) | if a ∈W and a ⊆ b ∈ fil(X,≤) then b ∈W}.

If we order ℋ(X,≤) by inclusion then it forms a semilattice with intersection
as meet and the whole of fil(X,≤) as top element. For an I-frame morphism
h : (X,≤)→ (X ′,≤′), define ℋh : ℋ(X,≤)→ ℋ(X ′,≤′) by ℋh(W ) = {a′ ∈
fil(X ′,≤′) | h−1(a′) ∈W}.

Intuitively, (i,ℋ)-dialgebras are I-frames with an additional map that
assigns to each world x an up-closed collection of neighbourhoods, and the
neighbourhoods are filters of (X,≤). We now define an interpretation of
MIM in (i,ℋ)-dialgebras, where i : IFrm → MFrm is the inclusion functor.
We do so by giving a predicate lifting λM.

14.39. Definition. The predicate lifting λM : U · fil · i→ U · fil ·ℋ is given
on components by

λM(X,≤)(a) = {W ∈ ℋ(X,≤) | a ∈W}.

It is obvious that λM(X,≤)(a) is a filter for all I-frames (X,≤) and filters

a. (It is nonempty because the collection of all filters is in it, it is up-closed
because a ∈W ⊆W ′ implies a ∈W ′, and it is closed under meets because
meets are given by intersection and a ∈W and a ∈W ′ implies a ∈W ∩W ′.)

14.40. Proposition. The assignment λM is a natural transformation.

Proof. Let f : (X,≤)→ (X ′,≤′) be an I-frame morphism. We need to show
that

U · fil · i(X,≤) U · fil ·ℋ(X,≤)

U · fil · i(X ′,≤′) U · fil ·ℋ(X ′,≤′)

λM
(X,≤)

λM
(X′,≤′)

U·fil·if U·fil·ℋf
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commutes. To see this, let p′ be a filter of (X ′,≤′) and W ∈ ℋ(X,≤) and
compute

W ∈ U · fil ·ℋf(λM(X′,≤′)(p
′)) iff ℋf(W ) ∈ λM(X′,≤′)(p

′)

iff p′ ∈ ℋf(W )

iff f−1(p′) ∈W
iff W ∈ λM(X,≤)(U · fil · if(p′))

This proves that the diagram commutes.

The resulting natural transformation ρ is given by

ρ(X,≤) : ℳ(fil′(X,≤))→ fil(ℋ(X,≤)) : a 7→ {W ∈ ℋ(X,≤) | a ∈W}.

14.41. Proposition. The assignment ρ is well defined, hence a natural
transformation.

Proof. Let (X,≤) be an I-frame and a, b filters in it. We have a ∧ b ≤ a so
for all W ∈ ℋ(X,≤), a ∧ b ∈W implies a ∈W . Therefore

ρ(X,≤)( (a ∧ b)) = {W ∈ ℋ(X,≤) | a ∧ b ∈W}
⊆ {W ∈ ℋ(X,≤) | a ∈W}
= ρ(X,≤)( a)

So ρ is well defined and the dialgebraic logic MIM is sound with respect to
(i,ℋ)-dialgebras.

Next, we give a duality for MIM. We base this on HMS duality between
semilattices and M-spaces, and its restriction to implicative semilattices and
I-spaces. We begin by defining a functor D : ISpace → MSpace, drawing
inspiration from similar dualities for monotone modal logic over various
propositional bases, see Definition 3.39, Subsection 7.5, or Subsection 12.2.

14.42. Definition. For an I-space X, let DX be the collection of sets
W ⊆ ℱil′X such that:

• If c is a closed filter of X, then c ∈ W if and only if a ∈ W for every
clopen filter of X containing c;

• If p is any filter, then p ∈W if and only if there exists a closed filter c
such that c ⊆ p and c ∈W .

Define the conjunction of elements in DX as intersection, and the top element
as ℱil′X, the collection of all filters of X. Endow DX with the topology
generated by

a = {W ∈ DX | a ∈W}, b = {W ∈ DX | X \ b /∈W}
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where a ranges over the clopen filters of X and b ranges over clopen prime
downsets (i.e. over {X \ a | a ∈ Clp′fX}).

If f : X1 → X2 is an I-space morphism, then we define Df : DX1 → DX2

by

Df(W ) = {p ∈ ℱil′X | f−1(p) ∈W}.

14.43. Lemma. If X is an I-space then DX is an M-space.

Proof. It is clear that DX becomes a meet-semilattices with conjunction ∩
and top element ℱil′X, provided ∩ is well defined.

So suppose W,W ′ ∈ DX. We verify that W ∩W ′ is in DX again. If c is
a closed filter and c ∈W ∩W ′, then c ∈W and c ∈W ′, so all clopen filters
containing c are also in both W and W ′, hence in W ∩W ′. Conversely, if all
clopen filters containing c are in W ∩W ′, then they are al both in W and
in W ′, so that c ∈ W and c ∈ W ′ hence c ∈ W ∩W ′. If p is any filter and
p ∈ W ∩W ′, then p ∈ W and p ∈ W ′, so there exist closed filters c and c′

contained in p such that c ∈W and c′ ∈W ′. It follows from the fact that
defines meets on VX (see Subsection 14.3) that c c′ is a closed filter again,
and by definition c, c′ ⊆ c c′ ⊆ p, so c c′ ∈W ∩W ′ is a closed filter below
p. Conversely, if p is such that there exists a closed filter c contained in it
such that c ∈ W ∩W ′, then c ∈ W and c ∈ W ′ so that p ∈ W and p ∈ W ′,
hence p ∈W ∩W ′.

Next we verify that DX satisfies the HMS separation axiom. Suppose
W 6⊆W ′. If W and W ′ would contain precisely the same clopen filters then
they would coincide (by definition of DX), so we can find a clopen filter
a ∈ Clp′fX such that a ∈ W and a /∈ W ′. This implies that W ∈ a and
since a is a clopen filter this proves that DX satisfies the HMS separation
axiom.

For compactness, suppose

DX ⊆
⋃
k∈K

ak ∪
⋃
`∈L

b`, (14.2)

where ak,X \ b` ∈ Clp′fX. Construct the element W ∈ DX by:

• If a ∈ Clp′fX, then a ∈ W if and only if there exists ` ∈ L such that
X \ b` ⊆ a;

• If c is a closed filter of X, then c ∈W if and only if every clopen filter
containing c is in W ;

• If p is any filter of X, then p ∈ W if and only if there exists a closed
filter c such that c ⊆ p and c ∈W .

Observe that the second and third steps do not add any extra clopen filters
to W , so that a clopen filter a is in W if and only if there exists some b` such
that X\ b` ⊆ a. By construction W /∈ b` for any of the ` ∈ L, so there must
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exist some k′ ∈ K such that W ∈ ak′ . This implies ak′ ∈W , which entails
that there exists some `′ ∈ L such that X \ b`′ ⊆ ak′ . A straightforward
argument now shows that

DX ⊆ ak′ ∪ b`′ ,

so we have found a finite subcover of (14.2). We conclude that DX is a Stone
space.

14.44. Lemma. If f : X1 → X2 is an I-space morphism then Df : DX1 →
DX2 is an M-space morphism.

Proof. It can be proven in the same way as in Lemma 7.39 that Df is well
defined, and the same goes for continuity. We still need to show that Df
preserves the top element and binary meets.

The top element of DX1 is ℱil′X1. Since

Df(ℱil′X1) = {p ∈ ℱil′X2 | f−1(p) ∈ ℱil′X1} = ℱil′X2,

the map Df preserves the top element. Next, suppose W,V ∈ DX1. Then
we have

Df(W ∩ V ) = {p ∈ ℱil′X2 | f−1(p) ∈W ∩ V }
= {p ∈ ℱil′X2 | f−1(p) ∈W} ∩ {p ∈ ℱil′X2 | f−1(p) ∈ V }
= Df(W ) ∩Df(V )

so Df preserves binary meets as well.

14.45. Proposition. The assignment D from Definition 14.42 defines a
functor ISpace→ MSpace.

Proof. It follows from Lemmas 14.43 and 14.44 that D is well defined. Func-
toriality can be verified via a straightforward computation.

Next, we will show that D is dual to ℳ, with respect to HMS duality
and its restriction to implicative semilattices. That is, we show that the
following diagram commutes up to natural isomorphism:

SL MSpace

ISL ISpace

Clpf

≡op

ℱil

Clp′f

≡op

ℳ

ℱil′

D

We do so by giving a natural isomorphism ξ : D→ ℱil ·ℳ ·Clp′f.
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14.46. Definition. Let X be an I-space. For each W ∈ DX, define a
filter ξX(W ) ∈ ℱil(ℳ(Clp′fX)), viewed as a semilattice homomorphism into
2 = {>,⊥}, by

ξX(W ) : ℳ(Clp′fX)→ 2 : 7→
{
> if a ∈W
⊥ otherwise

This yields a map ξX : DX→ ℱil(ℳ(Clp′fX)). We write ξ : D→ ℱil ·ℳ ·
Clp′f for the resulting transformation.

It is easy to see that ξX(W ) does indeed define a filter. In the next
two lemmas we prove that ξX is a natural transformation and a natural
isomorphism, respectively.

14.47. Lemma. The assignment ξ is a natural transformation.

Proof. First we verify that the components of ξ are M-space morphisms.
Let X be an I-space and W,W ′ ∈ DX. In order to show that ξX(W ∩
W ′) = ξX(W ) ∩ ξX(W ′) it suffices to prove that a ∈ ξX(W ∩ W ′) iff
a ∈ ξX(W ) ∩ ξX(W ′), where a ∈ Clp′fX, because filters in ℱil(ℳ(Clp′fX))

are determined uniquely by the elements of the form a they contain. To
this end, observe

a ∈ ξX(W ∩W ′) iff a ∈W ∩W ′ iff a ∈W and a ∈W ′

iff a ∈ ξX(W ) and a ∈ ξX(W ′).

So ξX preserves binary meets. The top element of DX is ℱil′X and ξX(ℱil′X)
is the filter containing everything in ℳ(Clp′fX), so ξX preserves the top
element as well. Therefore ξX is a semilattice homomorphism.

For continuity, note that the topology on ℱil(ℳ(Clp′fX)) is generated by

sets of the form â = {p ∈ ℱil(ℳ(Clp′fX)) | a ∈ p} and their complements,

where a ∈ Clp′fX. So it suffices to show that ξ−1
X ( â) is clopen in DX. We

compute

ξ−1
X ( â) = {W ∈ DX | ξX(W ) ∈ â}

= {W ∈ DX | a ∈ ξX(W )}
= {W ∈ DX | a ∈W}
= a

We conclude that the components of ξ are M-space morphisms.

Naturality of ξ can be proven in the same way as in Lemma 12.29.

14.48. Lemma. The natural transformation ξ is a natural isomorphism.
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Proof. We need to show that the components of ξ are isomorphisms. Since
a bijective semilattice homomorphism is a semilattice isomorphism, and
a bijective continuous function between Stone spaces is automatically a
homeomorphism, it suffices to show that the components of ξ are bijective
functions.

So let X be an I-space. We start with injectivity. Suppose W,W ′ ∈ DX
are two distinct elements. Since they are determined by the clopen filters
they contain, without loss of generality we can find a clopen filter a ∈ Clp′fX
such that a ∈W and a /∈W ′. This implies a ∈ ξX(W ) while a /∈ ξX(W ′),
so that ξX(W ) 6= ξX(W ′).

Next we prove surjectivity. Suppose Q ∈ ℱil(ℳ(Clp′fX)). We construct
WQ ∈ DX such that ξX(WQ) = Q. Define WQ by

• If a is a clopen filter of X, then a ∈WQ iff a ∈ Q;

• If c is a closed filter of X, then c ∈WQ iff every clopen filter a containing
c is in WQ;

• If p is any filter of X, then p ∈WQ iff there is a closed filter c contained
in p such that c ∈WQ.

Note that steps two and three of the definition cannot add any clopen filters
to WQ, so we have a ∈WQ if and only if a ∈ Q for all a ∈ Clp′fX. Therefore
we have ξX(WQ) = Q, provided WQ ∈ DX.

So let us verify that WQ ∈ DX. If c is a closed filter that is not clopen,
then by definition we have c ∈WQ iff all clopen filters containing it are in WQ.
If c is a clopen filter, then we must have that c ∈WQ implies that all clopen
filters containing it are in WQ. This is indeed the case: if c ⊆ a ∈ Clp′fX
then c ≤ a, so the fact that Q is a filter containing c implies a ∈ Q,
so that a ∈WQ. Finally, if p is any filter then p ∈WQ if and only if there is
a closed filter contained in p that is in WQ, by definition.

14.49. Theorem. We have a dual equivalence Dialg(ℳ, j) ≡op Dialg(ℐ,D).

Proof. The natural isomorphism ξ proves that ℳ and D are dual functors.
The claimed duality then follows from Theorem 10.5.

Thus, we can think of (ℐ,D)-dialgebras as descriptive frames for the
logic MIM. Our next task is to define a translation. Since we know we want
this to satisfy ρ̄X ◦ τX = iduDX for all I-spaces X, we first compute ρ̄. This
will then suggest a definition of τ .

A similar computation as in Section 12.2 shows that ρ̄ : ℋ ·u′ → u ·D
satisfies

a ∈ ρ̄X(W ) iff a ∈W,

for all clopen filter a of X. Since we know that ρ̄X is an element of DX we
know what it looks like: we simply add closed filters and arbitrary filters as
stipulated by the clauses from Definition 14.42.
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It is now easy to see that the following translation τ : u ·D→ ℋ ·u′ will
satisfy our requirements.

14.50. Definition. Define τ : u ·D→ ℋ ·u′ on components by τX(W ) = W .
That is, we view the elements of DX as elements of ℋ(u′X).

It is obvious that τ is a natural transformation.

14.51. Lemma. For every I-space X we have ρ̄X ◦ τX = iduDX.

Proof. This follows immediately from the definitions.

We can now instantiate Theorem 10.35 to the following representation
theorem.

14.52. Theorem. Every (ℳ, j)-dialgebra can be embedded in the complex
algebra of some (i,ℋ)-dialgebra.

As a consequence of Theorem 10.48 we get completeness.

14.53. Theorem. The logic MIM is complete with respect to the class of
(i,ℋ)-dialgebras.

Furthermore, the duality and translation give rise to a Goldblatt-Thomason
theorem. We leave the definitions of regular subframe, epimorphic image,
coproduct and filter extension to the reader, and only state the main theorem.

14.54. Theorem. Suppose Prop is infinite and let K ⊆ Dialg(i,ℋ) be a
class of (i,ℋ)-dialgebras that is closed under taking filter extensions. Then
K is axiomatic if and only if it is closed under regular subframes, epimorphic
images and coproducts, and it reflects filter extensions.

Proof. Apply Theorem 11.23.

14.55. Remark. It can be proven in a similar manner as in Section 14.5
that the logic MIM characterises the meet-implication-modality-fragment of
intuitionistic logic with a geometric modality from [187, Section 6], discussed
in Subsections 9.3.3 and 12.2.

Conclusions of Chapter VI

We have investigated the Heyting-Lewis (family of) logic(s) of strict implica-
tion. We have described a categorical duality, provided a (truth preserving)
translation into classical bimodal logic, and established a Blok-Esakia style
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theorem for Heyting-Lewis logic. The latter yields results on canonicity,
correspondence, the finite model property, and decidability.

Subsequently, we studied modal extensions of the (>,∧,→)-fragment of
intuitionistic logic. We exhibited these as dialgebraic logic and applied general
results from Chapter V to obtain a Hennessy-Milner theorem, completeness,
a representation theorem and a Goldblatt-Thomason theorem. Furthermore,
we recognised that the normal modal extension of this propositional logic
forms a “common denominator” of many normal modal intuitionistic logics,
in the sense that it has all these logics as conservative extensions.

We list some potential directions for future research.

Heyting-Lewis logic without (Di). One of the main challenges in the con-
text of Heyting-Lewis logic is the development of semantics and decidability
results of iA− logics not including (Di). We have seen that such logics arise
for example under the functional programming interpretation (arrows with-
out choice). Let us note here that iA− extends the minimal system IPC�
of intuitionistic conditional logic proposed recently by Weiss [436, 437, 108],
which was also discussed in Subsections 9.3.5 and 12.4. This allows the use
of an intuitionistic variant of Chellas frames or selection function frames in
conditional logic [103]. Another approach is to generalise so-called Veltman
semantics of classical interpretability logics [239], as classically preservativity
is the contrapose of arithmetical interpretability. Conceivable variants of
generalised Veltman semantics would be equivalent to subclasses of Chellas-
Weiss frames (much like Kripke frames can be seen as a limiting case of
neighbourhood frames). Nevertheless, in the classical setting, (generalised)
Veltman semantics has proved particularly suitable for decidability and
complexity results [239, 307, 308], allowing adaptations of standard modal
techniques such as filtration [345], so it does seem promising to work with
more restrictive structures.

Extending the theory of modal meet-implication logics. While we
have given two modal extensions of MI, there may be many other interesting
ones. For example, it would be interesting to investigate modalities of higher
arities, such as the monotone implication investigated in Section 8, or a weak
negation modality like in [88].

Alternatively, one could use the given dualities deepen the theory of
normal and monotone modal meet-implication logic. It may serve as a
stepping stone towards Sahlqvist correspondence and canonicity.

Co- and contravariant functors. In many examples of modal logics
based on a dual adjunction, the contravariant functor turning frames into
algebras has a covariant counterpart. For classical modal logic we have a
co- and contravariant powerset functor, and in positive modal logic taking
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the collection of up-closed subsets of a poset gives rise to both a co- and
a contravariant functor. The same happens here, where the contravariant
filter functor fil and the covariant filter functor G (that can be extended
to MFrm) coincide on objects. This raises the question whether these are
instances of a more general phenomenon. Perhaps one can identify those
dual adjunction that allow for such a covariant counterpart.

More examples of dialgebraic logics. Finally, we wonder what other
logical paradigms can be captured by the theory of dialgebraic logic. We list
a few candidates.

1. An obvious candidate is modal bi-intuitionistic logic. Bi-intuitionistic
logic is the extension of intuitionistic logic with a binary operator
dual to the intuitionistic implication, called exclusion, subtraction or
co-implication. This arrow satisfies a b ≤ c iff a ≤ b ∨ c and can be
interpreted in an intuitionistic Kripke model (X,≤, V ) by

x  ϕ ψ iff ∃y ∈ X such that y ≤ x and y  ϕ and y 6 ψ.

Bi-intuitionistic logic was introduced by Rauszer in 1974 [360]. Rauszer’s
study of bi-intuitionistic spans many papers [360, 361, 362, 363, 364,
365, 366, 367], but later work on the subject revealed a number of
imprecisions and mistakes [121, 122, 347, 353, 195]. A recent overview
addressing this is given by Goré and Shillito [195].

Anyhow, it seems that the dialgebraic treatment of modal intuitionistic
logics carries over without much trouble to a bi-intuitionistic base. This
potentially covers logics from [395] [199, Section 5],[201, Section 5],
although further research has to point out to which extend this works.

2. Just like bi-intuitionistic logic, dual-intuitionistic logic is closely related
to intuitionistic logic [415, 194, 121, 207, 412, 390]. Again, it seems
plausible that dialgebras provide a uniform framework to extend it
with modal operators.

3. Next we mention Da Costa logic, introduced by Priest [354] and further
investigated in [355, 85, 157, 331]. It is named for its close connection
to Da Costa’s system Cω, see e.g. [120, 119]. It is a mix between
intuitionistic and dual-intuitionistic logic, in the sense that it has
an intuitionistic implication but a dual negation. (The absence of a
bottom element prevents one from re-obtaining intuitionistic negation.)
Its algebraically semantics is given by distributive lattices with two
additional operators, corresponding to→ and ¬[354, Section 5], so its
dialgebraic treatment may be based on the inclusion of such algebras
into the category of distributive lattices. Potentially, modal extensions
of this logic can be viewed as fragments of First-Order da Costa
logic [355].
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4. Lastly, it is conceivable that restrictions of HMS duality (Subsec-
tion 2.1) give rise to usable dualities for other varieties of algebras.
Investigations of this are already underway [63].
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[183] K. Gödel. Eine interpretation des intuitionistischen aussagenkalkülus. Ergebnisse
eines mathematischen Kolloquiums 4, pages 34–40, 1933.

[184] R. I. Goldblatt. Metamathematics of modal logic I. Reports on Mathematical Logic,
6:41–78, 1976.

[185] R. I. Goldblatt. Grothendieck topology as geometric modality. Mathematical Logic
Quarterly, 27:495–529, 1981. doi:10.1002/malq.19810273104.

[186] R. I. Goldblatt. Logics of Time and Computation. Center for the Study of Language
and Information, USA, 1987.

[187] R. I. Goldblatt. Mathematics of Modality. CSLI publications, Stanford, California,
1993.

[188] R. I. Goldblatt. Axiomatic classes of intuitionistic models. Journal of Universal
Computer Science, 11(12):1945–1962, 2005.

[189] R. I. Goldblatt. Cover semantics for quantified lax logic. Journal of Logic and
Computation, 21:1035–1063, 2010. doi:10.1093/logcom/exq029.

[190] R. I. Goldblatt and S. K. Thomason. Axiomatic classes in propositional modal logic.
In J. Crossley, editor, Algebra and Logic, pages 163–173, Berlin, Heidelberg, 1974.
Springer. doi:10.1007/BFb0062855.

[191] V. Goranko and D. Vakarelov. Sahlqvist formulas unleashed in polyadic modal
languages. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakcharyaschev, editors,
Proc. AIML 2001, Singapore, 2001. World Scientific.

[192] V. Goranko and D. Vakarelov. Sahlqvist formulas in hybrid polyadic modal logics.
Journal of Logic and Computation, 11:737–754, 2001. doi:10.1093/logcom/11.5.737.

[193] V. Goranko and D. Vakarelov. Elementary canonical formulae: extending
Sahlqvist’s theorem. Annals of Pure and Applied Logic, 141(1):180–217, 2006.
doi:10.1016/j.apal.2005.10.005.
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logics. Časopis pro pěstováńı matematiky a fysiky, 67:1–25, 1938.

[403] M. H. Stone. The representation of Boolean algebras. Bulletin of the American
Mathematical Society, 44:807–816, 1938.

[404] T. Suzuki. A Sahlqvist theorem for substructural logic. The Review of Symbolic
Logic, 6(2):229–253, 2013. doi:10.1017/S1755020313000026.

[405] Y. Suzuki and H. Ono. Hilbert-style proof system for BPL, 1997. Technical report,
IS-RR-97-0040F.

[406] Y. Tanaka. Duality for κ-additive complete atomic modal algebras. Algebra univer-
salis, 82(31), 2021. doi:10.1007/s00012-021-00724-7.
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Index of categories and
functors

Categories

Below we list the categories used in this thesis. In the descriptions we sometimes write
“compl” for “complete,” “descr” for “descriptive,” “gen” for “general,” “int” for “intuition-
istic,” “mon” for “monotone,” and “nbhd” for “neighbourhood.” We also write “BA” for
“Boolean algebra,” “DL” for “distributive lattice” “HA” for “Heyting algebra.” Also, under
“morphism” we write “(complete) homomorphism” if it preserves all relevant operators of
the category, and “bounded morphism” and “neighbourhood morphism” if it the morphisms
are analogues of bounded morphisms or neighbourhood morphisms.

Name Objects Morphisms See

Frm -frames bounded morphisms Exm. 9.7

nFrm n-frames bounded morphisms Def. 9.22
Mod -models -model morphisms Def. 9.13
J -Frm J-frames bounded morphisms Def. 13.12
J -Mod J-models bounded morphisms Def. 13.16
BA Boolean algebras (Boolean) homomorphisms Sec. 1.1
BAM monotone BA expansions homomorphisms Def. 3.33
c-HFrm condensed H -frames bounded morphisms Def. 9.14
CABA complete atomic BAs complete homomorphisms Def. 1.16
CACA compl. atomic convex algebras complete homomorphisms Sec. 4.2.3
CAContA complete atomic contingency

algebras
complete homomorphisms Sec. 4.2.2

caMA complete atomic modal alge-
bras ( preserves finite meets)

complete homomorphisms Sec. 4.2.4

CAMA compl. atomic modal algebras complete homomorphisms Def. 3.21
CANA compl. atomic nbhd. algebras complete homomorphisms Def. 3.27
CINF coupled int. nbhd. frames CIN-morphisms Def. 9.33
CNA contingency nbhd. algebras homomorphisms Exm. 4.54
CNF convex neighbourhood frames neighbourhood morphisms Sec. 4.2.3
ContF contingency frames neighbourhood morphisms Sec. 4.2.2

425
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Name Objects Morphisms See

D- Frm descriptive -frames gen. bounded morphisms Def. 9.17
D-CINF descriptive CIN-frames gen. CIN-morphisms Def. 12.44
D-CNF descriptive contingency neigh-

bourhood frames
gen. nbhd. morphisms Exm. 4.54

D-KF descriptive Kripke frames gen. frame morphisms Def. 3.16
D-INF descr. instantial nbhd. frames bounded morphisms Def. 5.27
D-INM descr. instantial nbhd. model bounded morphisms Def. 5.39
D-MF+ descr. positive mon. frames gen. nbhd. morphisms Def. 7.18
D-MM+ descr. positive mon. models gen. nbhd. morphisms Def. 7.18
D- nFrm descriptive n-frames gen. n-frame morphisms Def. 12.2
D-FOS descriptive field of sets general morphisms Def. 1.8
D-Frm descriptive J-frames general J-frame morphisms Def. 13.22
D-IFrm descriptive I-frame general I-frame morphism Def. 2.41
D-IFrm descriptive -frames gen. -frame morphisms Def. 14.18
D-iKrip desc. int. Kripke frames gen. bounded morphisms Def. 1.35
D-KF descriptive Kripke frames gen. bounded morphisms Def. 3.16
D-NF descr. nbhd. frames gen. nbhd. morphissm Def. 4.38
D-NFπ σ-descr. nbhd. frames gen. nbhd. morphisms Rem. 4.63
D-NFσ σ-descr. nbhd. frames gen. nbhd. morphisms Def. 4.62
D-OMF descr. ordered mon. frames gen. nbhd. morphisms Def. 8.34
D-ROU descriptive ring of upsets gen. ring of upset morphisms Def. 1.25
D-SOF descriptive π-system of filters general morphisms Def. 2.6
DL distributive lattices homomorphisms
DLM DL with monotone operators homomorphisms Def. 7.4
DLM models based on DLMs homomorphisms Def. 7.5
DLMI DL with mon. implication homomorphisms Def. 8.6
DLMIM models based on DLMIs homomorphisms Def. 8.10
DLMM models based on DLMs model homomorphisms Def. 7.5
ES Esakia spaces Esakia morphisms Def. 1.40
FF filter frames neighbourhood morphisms Sec. 4.2.4
FOS fields of sets field of set morphisms Def. 1.6
G-Frm general J-frames general J-frame morphisms Def. 13.22
G-IFrm general I-frames general I-frame morphisms Def. 2.41
G-iKrip gen. int. Kripke frames gen. bounded morphisms Def. 1.35
G-INF gen. instantial nbhd. frames gen. bounded morphisms Def. 5.25
G-ISFF general ISF-frames general ISF-morphisms Def. 12.58
G-MF+ gen. positive mon. frames gen. nbhd. morphisms Def. 7.17
G-MM+ gen. positive mon. models gen. nbhd. morphisms Def. 7.17
G-S4K general S4K-frames general bounded morphisms Def. 13.54
HA Heyting algebras Heyting homomorphisms Sec. 1.4
HAC HAs with conditional opera-

tors
homomorphisms Def. 9.36

HAM HAs with monotone operators homomorphisms Def. 9.31
HAnO HAs with n-ary operators homomorphisms Def. 9.25
HAO HAs with operator homomorphisms Def. 9.8
HD-MF H-descr. monotone frames gen. nbhd. morphisms Def. 3.39
HFrm H -frames bounded morphisms Def. 9.14
HLA Heyting-Lewis algebras homomorphisms Def. 13.10
IFrm I-frames I-frame morphisms Def. 2.35
IFrm -frames -frame morphisms Def. 14.4
iKrip intuitionistic Kripke frames bounded morphisms Def. 1.33
INF instantial nbhd. frames instantial nbhd. morphisms Def. 5.3
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Name Objects Morphisms See

INM instantial nbhd. models instantial nbhf. morphisms Def. 5.3
Int complete atomic interior alge-

bras
complete homomorphisms Sec. 4.2.5

ISFF int. selection function frames ISF-morphisms Def. 9.38
ISL implicative semilattices homomorphisms Def. 2.20
ISL ISLs with operator homomorphisms Def. 14.2
K+Space K+-spaces K+-space morphisms Def. 6.15
KF Kripke frames bounded morphisms Def. 3.15
MA modal algebras homomorphisms Def. 3.1
MF monotone frames bounded (nbhd.) morphisms Def. 3.36
MFrm M-frames M-frame morphisms Def. 2.33
MF+ positive monotone frames neighbourhood morphisms Def. 7.14
MLA monotone Lewis algebras homomorphisms Def. 8.53
MM+ positive monotone models neighbourhood morphisms Def. 7.14
Mon int. monotone frames int. nbhd. morphisms Def. 9.28
MSpace M-spaces continuous SL morphisms Def. 2.11
NA neighbourhood algebras homomorphisms Def. 3.27
NF neighbourhood frames neighbourhood morphisms Def. 3.30
OKF ordered Kripke frames ordered bounded morphisms Def. 6.5
OMF ordered monotone frames neighbourhood morphisms Def. 8.22
OMM ordered monotone models neighbourhood morphisms Def. 8.22
PMA positive modal algebras homomorphisms Def. 6.3
Pos posets order-preserving functions Def. 1.20
PreInt complete atomic pre-interior

algebras
complete homomorphisms Sec. 4.2.5

PreKrip preordered int. Kripke frames bounded morphisms Def. 1.33
PreKF preordered Kripke frames bounded morphisms Def. 6.4
PreOrd preorders order-preserving functions Def. 1.20
PreTopint pre-topological spaces interior maps Sec. 4.2.5
Pries Priestley spaces Priestley morphisms Def. 1.30
ROU rings of upsets ring of upsets morphisms Def. 1.25
σD-IMF descr. int. mon. frames gen. nbhd. morphisms Def. 12.24
S4K frames for S4K bounded morphisms Def. 13.53
S4BHL frames for S4BHL bounded morphisms Def. 13.53
sc-HFrm strictly condensed H -frames bounded morphisms Def. 9.14
Set sets functions Sec. 1.1
SL semilattices homomorphisms Def. 2.1
SIS strict implication spaces bounded continuous mor.’s Def. 13.23
SOF π-systems of filters general morphisms Def. 2.6
Stone Stone spaces continuous functions Def. 1.12
Top topological spaces continuous functions Def. 1.12
Topint topological spaces interior maps Sec. 4.2.5
WZ -frames -frame morphisms Sec. 9.1
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Functors

We list the most common functors used in this thesis. We note that the functor D is used
throughout this thesis to denote various functors whose coalgebras are descriptive frames
for the logic under consideration in the respective subsections.

Name Type See

at CABA→ Set Sec. 1.2
ℬ Set→ Set Def. 3.31
ℬAx Set→ Set Def. 4.18
C Pos→ Pos Rem. 8.24
C PreKrip→ PreOrd Def. 9.41
cf CABA→ Set Sec. 1.2
Clp Stone→ BA Sec. 1.1
Clpdn Pries→ Set Def. 6.18
Clp′dn ES→ Set Def. 12.1
Clpf MSpace→ SL Def. 2.16
Clp′f ISpace→ ISL Def. 2.49
Clpup Pries→ DL Sec. 1.3
Clp′up ES→ HA Def. 1.42
D Stone→ Stone Def. 4.39
DAx Stone→ Stone Def. 4.48
Dσ Stone→ Stone Def. 4.64
Dσ

Ax Stone→ Stone Def. 4.65
D� ES→ Pries Def. 12.61
fil0 SL→ Set Def. 2.4
fil SL→ SL Def. 2.4
ℱil SL→ MSpace Def. 2.16
ℱil′ ISL→ ISpace Def. 2.49
H CABA→ CABA Def. 3.37
ℋ IFrm→ MFrm Def. 14.38
ℋ iKrip→ Pos Def. 9.29
ℋ Pos→ Pos Def. 7.26
ℋ Set→ Set Def. 3.37
J BA→ BA Def. 5.10
J DL→ DL Def. 8.7
K BA→ BA Def. 3.7
K HA→ DL Def. 9.9
K ISL→ SL Def. 14.7
K+ DL→ DL Def. 6.6
ℒ CABA→ CABA Prop. 3.29
ℒ BA→ BA Def. 8.54
ℒAx BA→ BA Def. 4.10
ℒΛ,Ax BA→ BA Def. 3.44
ℒΛ,Ax A′ → A Def. 9.54
ℒ� HA→ DL Exm. 9.60
ℒ HA→ DL Exm. 9.59

Name Type See

ℒM HA→ DL Sec. 9.3.3
ℒJ HA→ DL Def. 13.29
ℒn HA→ DL Def. 9.26
ℳ BA→ BA Def. 3.34
ℳ+ DL→ DL Def. 7.24
ℳ ISL→ SL Def. 14.37
N BA→ BA Prop. 3.29
NAx BA→ BA Def. 4.44
N PreKrip→ PreOrd Def. 9.34
℘ Set→ BA Def. 1.1
℘ Set→ CABA Sec. 1.2
P Set→ Set Def. 3.19
Pv PreOrd→ PreOrd Def. 6.9
Pbd PreKrip→ PreOrd Def. 9.15
Pc
bd PreKrip→ PreOrd Def. 9.15

Psc
bd PreKrip→ PreOrd Def. 9.15

Pc Pos→ Pos Def. 6.11
Pup Pos→ Pos Def. 9.3
Pup iKrip→ Pos Def. 9.3
Pdn iKrip→ Pos Exm. 9.7
pf0 DL→ Set Def. 1.24
pf DL→ Pos Def. 1.24
Pf DL→ Pries Sec. 1.3
Pf′ HA→ ES Def. 1.42
Pn iKrip→ Pos Def. 9.23
Ps iKrip→ Pos Def. 13.31
Q Set→ Set Def. 3.31
ρ̂ G-S4K→ G-Frm Def. 13.60
σ̂ G-Frm→ G-S4K Def. 13.56
uf BA→ Set Def. 1.4
Uf BA→ Stone Sec. 1.1
up Pos→ DL Sec. 1.3
up PreOrd→ DL Sec. 1.3
Up Pos→ Set Def. 1.22
Up PreOrd→ Set Def. 1.22
V Stone→ Stone Def. 3.12
V ISpace→ MSpace Def. 14.19
Vc Pries→ Pries Def. 6.16
Vdn ES→ Pries Def. 12.4
Vs ES→ Pries Def. 13.37
Vup ES→ Pries Def. 9.18
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H -frame, 221
condensed, 221
strictly condensed, 221

H -frame morphism, 221
K+-space, 152
M+-space, 164

-frame, 215, 371
-model, 215, 371
-bisimulation, 296
-frame, 219

n-frame, 226

n-model, 226
D-hyperspace, 102
π-descriptive neighbourhood frame, 113
π-system, 39
π-system of filters, 39
σ-descriptive

intuitionistic monotone frame, 300
neighbourhood frame, 112

J-frame, 332
J-model, 333

algebra for a functor, 69
algebraic model, 239
atom, 25
atomic Boolean algebra, 26
axiom pair, 235
axiomatic class of algebras, 287
axiomatic class of frames, 281

bimodel Heyting-Lewis frame, 347
bounded morphism, 32, 53, 72

canonical extension, 109
CIN-frame, 230
CIN-morphism, 230
cluster, 349

co-convex, 185
co-witness, 122
coalgebra for a functor, 70
complete atomic

Boolean algebra, 26
contingency algebras, 97
convex algebras, 97
interior algebra, 100
modal algebra (CAMA), 74
modal algebra (caMA), 98
neighbourhood algebra, 77
pre-interior algebra, 100

complete Boolean algebra, 25
complete congruence, 74, 88
complete homomorphism, 25
complete ultrafilter, 26
concrete, 246
conditional intuitionistic logic

algebras, 232
completeness, 317
descriptive frame, see descriptive

ISF-frame
duality, 315
frames, 232
general frame, see general ISF-frame
representation theorem, 316

congruence rule for coalgebraic logics, 82
consequence pair, 147, 157, 179
contingency frame, 97
contingency neighbourhood algebra, 107
contravariant powerset functor, 79
convex, 160
convex neighbourhood frame, 97
convex powerset functor, 151
convex Vietoris functor, 153
convexification, 160
coproduct, 282
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430 Index

coupled intuitionistic neighbourhood frame,
230

coupled intuitionistic neighbourhood mor-
phism, 230

crowded, 131

d-persistent, 198
descriptive

-frame, 223, 378

n-frame, 290
J-frame, 335
CIN-frame, 307
contingency neighbourhood frame,

107
I-frame, 55
instantial neighbourhood frame, 131
instantial neighbourhood model, 136
intuitionistic Kripke frame, 32
ISF-frame, 312
Kripke frame, 72
neighbourhood frame, 102
ordered -model, 192
ordered monotone frame, 191
positive monotone frame, 164

dialgebra, 218
dialgebra morphism, 218
dialgebraic logic

algebraic model morphism, 240
axiom pair, 235
axiomatic class of frames, 281
behavioural equivalence, 258
canonical, 270
completeness, 272
completeness theorem, 277
complex algebra, 245
concrete, 246
epimorphic image, 282
Goldblatt-Thomason theorem, 288
Hennessy-Milner theorem, 259
interpretation, 240, 244
logical equivalence, 258
modal similarity type, 234
natural translation, 262
one step axiom pair, 235
predicate lifting, 247
prime filter extension, 286
regular subframe, 282
representation theorem, 265
separating, 259
Σ-axiom pair, 235
Σ-formula, 235
soundness, 248, 272
source completeness, 274
translation, 262

valuation, 245
distributive lattice

with monotone implication, 181
with monotone operators, 158

distributive semilattice, 51
DLM-model, 158
DLMI-model, 182
downset, 27
downward closure, 27
dual functors, 70

Egli-Milner order, 150
epimorphic image, 282
Esakia duality, 35
Esakia morphism, 35
Esakia space, 35

field of sets, 22
filter, 28, 38
filter extension, 384
filter frame, 98
finitary one-step axiom, 104
fusion operator, 225

general
-frame, 378

n-frame, 290
S4K-frame, 347
J-frame, 335
J-model, 337
CIN-frame, 307
I-frame, 55
IN-frame, 131
instantial neighbourhood frame, 131
intuitionistic Kripke frame, 32
intuitionistic monotone frame, 299
ISF-frame, 311
Kripke frame, 72
neighbourhood frame, 102
ordered -frame, 191
positive monotone frame, 163
positive monotone model, 163

Goldblatt-Thomason theorem
for dialgebraic logics, 288
for Heyting-Lewis logic, 346
for instantial neighbourhood logic,

140
for intuitionistic logic with n-ary di-

amonds, 298
for modal meet-implication logic, 384
for monotone modal intuitionistic

logic, 306
for monotone subintuitionistic logic,

320
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for non-normal modal intuitionistic
logic, 311

for normal modal intuitionistic logic,
289

H-descriptive monotone frame, 80
Hansen-Kupke duality, 81
Hennessy-Milner theorem

for descriptive -frames, 260, 383
for descriptive n-frames, 297
for descriptive IN-models, 137
for dialgebraic logics, 259
for finite -frames, 260, 384
for finite n-frames, 297
for finite IN-models, 138
for finite ordered monotone models,

318
for non-normal modal intuitionistic

logic, 309
Heyting algebra

with n-ary operator, 227
with conditional operator, 232
with monotone operator, 229
with operator, 219

Heyting-Lewis algebra, 331
Heyting-Lewis logic, 326

J-morphic image, 339
Blok-Esakia theorem, 359
canonical, 337
completeness, 345
complex algebra, 333
descriptive frame, 335
disjoint union, 340
duality, 344
frames, 332
Gödel-McKinsey-Tarski translation,

348
general frame, 335
generated subframe, 339
Goldblatt-Thomason theorem, 346
modal companion, 354
models, 333
prime filter extension, 345
regular subframe, 339
representation theorem, 345
strength axiom, 327

HL-algebra, 331
HMS duality, 44
HMS separation axiom, 42

I-frame, 53
I-model, 53
I-model morphism, 53
I-space, 57

I-space morphism, 58
implicative Kripke frame, 53
implicative semilattice, 45

with operator, 371
implicative semilattice homomorphism,

45
IN-frame, 121
IN-model, 121
INL-bisimulation, 135
instantial

neighbourhood algebra, 122
neighbourhood frame, 121
neighbourhood model, 121

instantial neighbourhood logic, 120
algebras, 122
bisimulation, 135
co-witness, 122
complex algebra, 123
crowded, 131
descriptive frames, 131
frames, 121
general frames, 131
Goldblatt-Thomason theorem, 140
Hennessy-Milner theorem, 138
largest representative, 132
models, 121
ultrafilter extension, 138
witness, 122

interior algebra, 100
interior map, 99
intuitionistic

epistemic logic of entailment, 330
Kripke bisimulation, 259
monotone bisimulation, 303
monotone frame, 228
monotone model, 228
neighbourhood morphism, 228
selection function frame, 232
selection function model, 233
selection function morphism, 232

intuitionistic Kripke frame, 32
intuitionistic logic with n-ary diamonds

algebras, 227
completeness, 298
descriptive frame, 290
duality, 296
frames, 219, 226
general frame, 290
Goldblatt-Thomason theorem, 298
Hennessy-Milner theorem, 297
prime filter extension, 298
representation theorem, 298

ISF-frame, 232
ISF-morphism, 232



432 Index

Jónsson-Tarski duality, 73

Kripke frame, 72
Kripke ICK interpretation, 232

Lindenbaum-Tarski algebra, 242

M-frame, 52
M-frame morphism, 53
M-space, 42
meet-semilattice, 37
meet-semilattice homomorphism, 37
modal algebra, 65
modal meet-implication logic

completeness, 383
coproduct, 377
descriptive frames, 378
duality, 380
epimorphic image, 376
filter extension, 384
frames, 371
general frames, 378
generated subframe, 376
Goldblatt-Thomason theorem, 384
Hennessy-Milner theorem, 383, 384
Kripke bisimulation, 383
models, 371
regular subframe, 376
representation theorem, 384
soundness, 372

modal positive logic
algebras, 148
duality, 155
K+-space, 152
ordered bounded morphism, 149
ordered Kripke frame, 149
preordered Kripke frame, 149

monotone Boolean algebra expansion, 79
monotone frame, 80
monotone Lewis algebra, 202
monotone modal intuitionistic logic

algebras, 229
completeness, 305
descriptive frame, 300
duality, 303
frames, 228
general frame, 299
Goldblatt-Thomason theorem, 306
models, 228
prime filter extension, 305
representation theorem, 305

monotone modal meet-implication logic,
387

monotone modal positive logic

algebras, 158
completeness, 165
descriptive frames, 164
duality, 164, 176
frames, 160
general frames, 163
Lindenbaum-Tarski algebra, 159
M+-space, 164
soundness, 162

monotone subintuitionistic implication,
179

monotone subintuitionistic logic
algebras, 181
completeness, 198, 320
d-persistence, 198
decidability, 207
descriptive frames, 191, 192
duality, 197
finite model property, 206
frames, 184
general frames, 191
Goldblatt-Thomason theorem, 320
Hennessy-Milner theorem, 318
Lindenbaum-Tarski algebra, 183
monotone implication functor, 193
order-persistence, 189
ordered frames, 186
rank 0/1 axiom, 205
representation theorem, 320
soundness, 185, 188

neighbourhood algebra, 77
neighbourhood frame, 78
neighbourhood morphism, 78
non-normal modal intuitionistic logic

algebras, 239
completeness, 310
descriptive frame, see descriptive

CIN-frame
duality, 309
frames, 230
general frame, see general CIN-frame
Goldblatt-Thomason theorem, 311
Hennessy-Milner theorem, 309
prime filter extension, 311
representation theorem, 310

normal modal intuitionistic logic
H -frames, 221

condensed, 221
strictly condensed, 221

-frames, 215
-model morphism, 221
-models, 215

algebras, 219
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completeness, 276
coproduct, 283
descriptive frames, 223
duality, 257
generated subframe, 282
Goldblatt-Thomason theorem, 289
Hennessy-Milner theorem, 260
prime filter extension, 286
representation theorem, 266

one step axiom pair, 235
one-step axiom, 82, 87
order-persistence, 189
order-preserving function, 27
ordered -frame, 186
ordered -model, 186
ordered -morphism, 186
ordered bounded morphism, 149
ordered Kripke frame, 149

partial unravelling, 357
partially ordered set, 27
poset, 27
positive modal algebra, 148
positive monotone frame, 160
positive monotone frame morphism, 162
positive monotone model, 160
positive monotone model morphism, 162
positive predicate lifting, 152
pre-interior algebra, 99
pre-topological space, 99
predicate lifting, 81, 247
preorder, 27
preordered bounded morphism, 149
preordered intuitionistic Kripke frame,

32
preordered Kripke frame, 149
preordered set, 27
Priestley duality, 31
Priestley morphism, 31
Priestley separation axiom, 30
Priestley space, 30
prime downset, 38
prime filter, 28
prime filter extension, 286

of a -frame, 286
of a n-frame, 298
of a J-frame, 345
of a CIN-frame, 311
of an intuitionistic monotone frame,

305
of an ordered monotone frame, 320

rank 0/1 axiom, 205

regular subframe, 282
representation theorem, 265

for -frames, 266, 384
for n-frames, 298
for J-frames, 345
for CIN-frames, 310
for conditional intuitionistic logic,

316
for intuitionistic monotone frames,

305
for monotone subintuitionistic logic,

320
ring of sets, 28
ring of upsets, 28

semilattice, 38
separating, 259
Stone duality, 25
Stone space, 24
strict implication frame, 332
strict implication model, 333
strict implication space, 336

Tarski duality, 26
Thomason duality, 76

for contingency frames, 97
for convex neighbourhood frames,

97
for filter frames, 98
for monotone frames, 96

topological space, 99
compact, 24
Hausdorff, 24
Stone space, 24
zero-dimensional, 24

ultrafilter, 21
up-closed, 27
upper powerset functor, 216
upper Vietoris functor, 223
upset, 27
upward closure, 27

Vietoris functor, 71
Vietoris hyperspace, 67

witness, 122
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