10 research outputs found

    Coalgebraic Behavioral Metrics

    Get PDF
    We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra α ⁣:XHX\alpha\colon X \to HX for a functor H ⁣:SetSetH \colon \mathrm{Set}\to \mathrm{Set}, we define a framework for deriving pseudometrics on XX which measure the behavioral distance of states. A crucial step is the lifting of the functor HH on Set\mathrm{Set} to a functor H\overline{H} on the category PMet\mathrm{PMet} of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. If HH has a final coalgebra, every lifting H\overline{H} yields in a canonical way a behavioral distance which is usually branching-time, i.e., it generalizes bisimilarity. In order to model linear-time metrics (generalizing trace equivalences), we show sufficient conditions for lifting distributive laws and monads. These results enable us to employ the generalized powerset construction

    Distances between States and between Predicates

    Full text link
    This paper gives a systematic account of various metrics on probability distributions (states) and on predicates. These metrics are described in a uniform manner using the validity relation between states and predicates. The standard adjunction between convex sets (of states) and effect modules (of predicates) is restricted to convex complete metric spaces and directed complete effect modules. This adjunction is used in two state-and-effect triangles, for classical (discrete) probability and for quantum probability

    Up-To Techniques for Behavioural Metrics via Fibrations

    Get PDF
    Up-to techniques are a well-known method for enhancing coinductive proofs of behavioural equivalences. We introduce up-to techniques for behavioural metrics between systems modelled as coalgebras and we provide abstract results to prove their soundness in a compositional way. In order to obtain a general framework, we need a systematic way to lift functors: we show that the Wasserstein lifting of a functor, introduced in a previous work, corresponds to a change of base in a fibrational sense. This observation enables us to reuse existing results about soundness of up-to techniques in a fibrational setting. We focus on the fibrations of predicates and relations valued in a quantale, for which pseudo-metric spaces are an example. To illustrate our approach we provide an example on distances between regular languages

    (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

    Get PDF
    Behavioural equivalences can be characterized via bisimulations, modal logics and spoiler-defender games. In this paper we review these three perspectives in a coalgebraic setting, which allows us to generalize from the particular branching type of a transition system. We are interested in qualitative notions (classical bisimulation) as well as quantitative notions (bisimulation metrics). Our first contribution is to introduce a spoiler-defender bisimulation game for coalgebras in the classical case. Second, we introduce such games for the metric case and furthermore define a real-valued modal coalgebraic logic, from which we can derive the strategy of the spoiler. For this logic we show a quantitative version of the Hennessy-Milner theorem

    Characteristic Logics for Behavioural Hemimetrics via Fuzzy Lax Extensions

    Get PDF
    In systems involving quantitative data, such as probabilistic, fuzzy, or metric systems, behavioural distances provide a more fine-grained comparison of states than two-valued notions of behavioural equivalence or behaviour inclusion. Like in the two-valued case, the wide variation found in system types creates a need for generic methods that apply to many system types at once. Approaches of this kind are emerging within the paradigm of universal coalgebra, based either on lifting pseudometrics along set functors or on lifting general real-valued (fuzzy) relations along functors by means of fuzzy lax extensions. An immediate benefit of the latter is that they allow bounding behavioural distance by means of fuzzy (bi-)simulations that need not themselves be hemi- or pseudometrics; this is analogous to classical simulations and bisimulations, which need not be preorders or equivalence relations, respectively. The known generic pseudometric liftings, specifically the generic Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions, using the fact that both are effectively given by a choice of quantitative modalities. Our central result then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a suitable set of quantitative modalities, the so-called Moss modalities. For nonexpansive fuzzy lax extensions, this allows for the extraction of quantitative modal logics that characterize behavioural distance, i.e. satisfy a quantitative version of the Hennessy-Milner theorem; equivalently, we obtain expressiveness of a quantitative version of Moss' coalgebraic logic. All our results explicitly hold also for asymmetric distances (hemimetrics), i.e. notions of quantitative simulation

    Extending Set Functors to Generalised Metric Spaces

    Get PDF
    For a commutative quantale V, the category V-cat can be perceived as a category of generalised metric spaces and non-expanding maps. We show that any type constructor T (formalised as an endofunctor on sets) can be extended in a canonical way to a type constructor TV on V-cat. The proof yields methods of explicitly calculating the extension in concrete examples, which cover well-known notions such as the Pompeiu-Hausdorff metric as well as new ones. Conceptually, this allows us to to solve the same recursive domain equation X ≅ TX in different categories (such as sets and metric spaces) and we study how their solutions (that is, the final coalgebras) are related via change of base. Mathematically, the heart of the matter is to show that, for any commutative quantale V, the “discrete functor Set → V-cat from sets to categories enriched over V is V-cat-dense and has a density presentation that allows us to compute left-Kan extensions along D

    Effectful program distancing

    Get PDF
    International audienceSemantics is traditionally concerned with program equivalence, in which all pairs of programs which are not equivalent are treated the same, and simply dubbed as incomparable. In recent years, various forms of program metrics have been introduced such that the distance between non-equivalent programs is measured as an element of an appropriate quantale. By letting the underlying quantale vary as the type of the compared programs become more complex, the recently introduced framework of differential logical relations allows for a new contextual form of reasoning. In this paper, we show that all this can be generalised to effectful higher-order programs, in which not only the values , but also the effects computations produce can be appropriately distanced in a principled way. We show that the resulting framework is flexible, allowing various forms of effects to be handled, and that it provides compact and informative judgments about program differences

    Coalgebraic Behavioral Metrics

    No full text
    We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra α ⁣:XHX\alpha\colon X \to HX for a functor H ⁣:SetSetH \colon \mathrm{Set}\to \mathrm{Set}, we define a framework for deriving pseudometrics on XX which measure the behavioral distance of states. A crucial step is the lifting of the functor HH on Set\mathrm{Set} to a functor H\overline{H} on the category PMet\mathrm{PMet} of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. If HH has a final coalgebra, every lifting H\overline{H} yields in a canonical way a behavioral distance which is usually branching-time, i.e., it generalizes bisimilarity. In order to model linear-time metrics (generalizing trace equivalences), we show sufficient conditions for lifting distributive laws and monads. These results enable us to employ the generalized powerset construction
    corecore