12,249 research outputs found

    Cortical topography of intracortical inhibition influences the speed of decision making

    Get PDF
    The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes

    Sex Differences in Spatial Accuracy Relate to the Neural Activation of Antagonistic Muscles in Young Adults

    Get PDF
    Sex is an important physiological variable of behavior, but its effect on motor control remains poorly understood. Some evidence suggests that women exhibit greater variability during constant contractions and poorer accuracy during goal-directed tasks. However, it remains unclear whether motor output variability or altered muscle activation impairs accuracy in women. Here, we examine sex differences in endpoint accuracy during ankle goal-directed movements and the activity of the antagonistic muscles. Ten women (23.1 ± 5.1 years) and 10 men (23 ± 3.7 years) aimed to match a target (9° in 180 ms) with ankle dorsiflexion. Participants performed 50 trials and we recorded the endpoint accuracy and the electromyographic (EMG) activity of the primary agonist (Tibialis Anterior; TA) and antagonist (Soleus; SOL) muscles. Women exhibited greater spatial inaccuracy (Position error: t = −2.65, P = 0.016) but not temporal inaccuracy relative to men. The motor output variability was similar for the two sexes (P \u3e 0.2). The spatial inaccuracy in women was related to greater variability in the coordination of the antagonistic muscles (R 2 0.19, P = 0.03). These findings suggest that women are spatially less accurate than men during fast goal-directed movements likely due to an altered activation of the antagonistic muscles

    Influence of training history and contraction velocity on hamstring muscle coactivation during maximal effort knee extension

    Get PDF
    When a muscle produces voluntary force, muscles on the opposite side of the joint, the antagonists, are also activated. While coactivation of the knee flexors during knee extension is presumed to increase joint stability by decreasing anterior shear force of the tibia on the femur, the coactivation of the hamstrings also produces what is called the antagonist torque. Systematic exercise in the form of resistance training can reduce antagonist muscle coactivation in healthy young adults. However, the mechanical consequence of this neurological adaptation is unclear. We thus hypothesized that previously strength-trained individuals would exhibit less antagonist coactivation, resulting in a reduced antagonist torque, and that with an increase in contraction speed there would be an increase in antagonist coactivation to slow the movement but there would be less of an increase due to speed in the trained compared with untrained individuals. Therefore, the purpose of this study was to determine the effects of training status on coactivation, i.e., antagonist torque, and on the speed-sensitivity of coactivation. Subjects for this study were fitted with surface EMG electrodes on their thigh muscles, and performed maximal effort knee extensions on a dynamometer, using shortening (concentric) and lengthening (eccentric) contractions at 30, 90, and 150°/s. As expected, trained individuals produced ~44% less coactivation at all contractions speeds. Against the hypothesis, coactivation did not increase in either group as velocity increased, as there was less than 10% difference in coactivation levels between the 3 speeds. Also against the hypothesis, as determined with an EMG-driven mathematical model, antagonist torque did not decrease with decreasing coactivation; in fact we see a trend towards the opposite for trained individuals. A borderline greater antagonist torque was noted in the trained compared to the untrained subjects even with decreased coactivation of the trained. These data suggest that antagonist muscle coactivation is less in trained healthy young adults but this reduced neural activation does not manifest itself in lower levels of antagonist torque. Therefore, leg strength training may increase muscle strength in part by reducing antagonist muscle coactivation without compromising joint stability.  M.S

    Age and Sex Differences in Steadiness of Elbow Flexor Muscles with Imposed Cognitive Demand

    Get PDF
    Purpose: These studies determined (1) age and sex-related differences in steadiness of isometric contractions when high cognitive demand was imposed across a range of forces with the elbow flexor muscles (study 1) and, (2) sex differences in steadiness among older adults when low cognitive demand was imposed (study 2). Methods: 36 young adults (18–25 years; 18 women) and 30 older adults (60–82 years; 17 women) performed isometric contractions at 5%, 30% and 40% of maximum voluntary contraction (MVC). Study 1 involved a high-cognitive demand session (serial subtractions by 13 during the contraction) and a control session (no mental math). Study 2 (older adults only) involved a low-cognitive demand session (subtracting by 1s). Results: Older individuals exhibited greater increases in force fluctuations (coefficient of variation of force, CV) with high cognitive demand than young adults, with the largest age difference at 5% MVC (P = 0.01). Older adults had greater agonist EMG activity with high-cognitive demand and women had greater coactivation than men (PP = 0.03). Conclusion: Older adults had reduced steadiness and increased muscle activation when high cognitive demand was imposed while low cognitive demand induced increased force fluctuations in older women but not older men. These findings have implications for daily and work-related tasks that involve cognitive demand performed simultaneously during submaximal isometric contractions in an aging workforce

    Effect of Sensory Feedback from the Proximal Upper Limb on Voluntary Isometric Finger Flexion and Extension in Hemiparetic Stroke Subjects

    Get PDF
    This study investigated the potential influence of proximal sensory feedback on voluntary distal motor activity in the paretic upper limb of hemiparetic stroke survivors and the potential effect of voluntary distal motor activity on proximal muscle activity. Ten stroke subjects and 10 neurologically intact control subjects performed maximum voluntary isometric flexion and extension, respectively, at the metacarpophalangeal (MCP) joints of the fingers in two static arm postures and under three conditions of electrical stimulation of the arm. The tasks were quantified in terms of maximum MCP torque [MCP flexion (MCPflex) or MCP extension (MCPext)] and activity of targeted (flexor digitorum superficialis or extensor digitorum communis) and nontargeted upper limb muscles. From a previous study on the MCP stretch reflex poststroke, we expected stroke subjects to exhibit a modulation of voluntary MCP torque production by arm posture and electrical stimulation and increased nontargeted muscle activity. Posture 1 (flexed elbow, neutral shoulder) led to greater MCPflex in stroke subjects than posture 2 (extended elbow, flexed shoulder). Electrical stimulation did not influence MCPflex or MCPext in either subject group. In stroke subjects, posture 1 led to greater nontargeted upper limb flexor activity during MCPflex and to greater elbow flexor and extensor activity during MCPext. Stroke subjects exhibited greater elbow flexor activity during MCPflex and greater elbow flexor and extensor activity during MCPext than control subjects. The results suggest that static arm posture can modulate voluntary distal motor activity and accompanying muscle activity in the paretic upper limb poststroke

    Frontostriatal Maturation Predicts Cognitive Control Failure to Appetitive Cues in Adolescents

    Get PDF
    Adolescent risk-taking is a public health issue that increases the odds of poor lifetime outcomes. One factor thought to influence adolescents' propensity for risk-taking is an enhanced sensitivity to appetitive cues, relative to an immature capacity to exert sufficient cognitive control. We tested this hypothesis by characterizing interactions among ventral striatal, dorsal striatal, and prefrontal cortical regions with varying appetitive load using fMRI scanning. Child, teen, and adult participants performed a go/no-go task with appetitive (happy faces) and neutral cues (calm faces). Impulse control to neutral cues showed linear improvement with age, whereas teens showed a nonlinear reduction in impulse control to appetitive cues. This performance decrement in teens was paralleled by enhanced activity in the ventral striatum. Prefrontal cortical recruitment correlated with overall accuracy and showed a linear response with age for no-go versus go trials. Connectivity analyses identified a ventral frontostriatal circuit including the inferior frontal gyrus and dorsal striatum during no-go versus go trials. Examining recruitment developmentally showed that teens had greater between-subject ventral-dorsal striatal coactivation relative to children and adults for happy no-go versus go trials. These findings implicate exaggerated ventral striatal representation of appetitive cues in adolescents relative to an intermediary cognitive control response. Connectivity and coactivity data suggest these systems communicate at the level of the dorsal striatum differentially across development. Biased responding in this system is one possible mechanism underlying heightened risk-taking during adolescence

    Voluntary Activation and Variability During Maximal Dynamic Contractions with Aging

    Get PDF
    Whether reduced supraspinal activation contributes to age-related reductions in maximal torque during dynamic contractions is not known. The purpose was to determine whether there are age differences in voluntary activation and its variability when assessed with stimulation at the motor cortex and the muscle during maximal isometric, concentric, and eccentric contractions. Thirty young (23.6 ± 4.1 years) and 31 old (69.0 ± 5.2 years) adults performed maximal isometric, shortening (concentric) and lengthening (eccentric) contractions with the elbow flexor muscles. Maximal isometric contractions were performed at 90° elbow flexion and dynamic contractions at a velocity of 60°/s. Voluntary activation was assessed by superimposing an evoked contraction with transcranial magnetic stimulation (TMS) or with electrical stimulation over the muscle during maximal voluntary contractions (MVCs). Old adults had lower MVC torque during isometric (− 17.9%), concentric (− 19.7%), and eccentric (− 9.9%) contractions than young adults, with less of an age difference for eccentric contractions. Voluntary activation was similar between the three contraction types when assessed with TMS and electrical stimulation, with no age group differences. Old adults, however, were more variable in voluntary activation than young (standard deviation 0.99 ± 0.47% vs. 0.73 ± 0.43%, respectively) to both the motor cortex and muscle, and had greater coactivation of the antagonist muscles during dynamic contractions. Thus, the average voluntary activation to the motor cortex and muscle did not differ with aging; however, supraspinal activation was more variable during maximal dynamic and isometric contractions in the old adults. Lower predictability of voluntary activation may indicate subclinical changes in the central nervous system with advanced aging

    A multimodal investigation in eye movements

    Get PDF
    While functional magnetic resonance imaging (fMRI) has identified which regions of interest (ROIs) are functionally active during a vergence movement (inward or outward eye rotation), task-modulated coactivation between ROIs is less understood. This study tests the following hypotheses: (1) significant task-modulated coactivation would be observed between the frontal eye fields (FEFs), the posterior parietal cortex (PPC), and the cerebellar vermis (CV); (2) significantly more functional activity and task-modulated coactivation would be observed in binocularly normal controls (BNCs) compared with convergence insufficiency (CI) subjects; and (3) after vergence training, the functional activity and task-modulated coactivation would increase in CIs compared with their baseline measurements. A block design of sustained fixation versus vergence eye movements stimulates activity in the FEFs, PPC, and CV. fMRI data from four CI subjects before and after vergence training are compared with seven BNCs. Functional activity is assessed using the blood oxygenation level dependent (BOLD) percent signal change. Task-modulated coactivation is assessed using an ROI-based task modulated coactivation analysis that reveals significant correlation between ROIs
    • …
    corecore