5,581 research outputs found

    Toward an organization-oriented design methodology for agent societies

    Get PDF

    Self-organising agent communities for autonomic resource management

    No full text
    The autonomic computing paradigm addresses the operational challenges presented by increasingly complex software systems by proposing that they be composed of many autonomous components, each responsible for the run-time reconfiguration of its own dedicated hardware and software components. Consequently, regulation of the whole software system becomes an emergent property of local adaptation and learning carried out by these autonomous system elements. Designing appropriate local adaptation policies for the components of such systems remains a major challenge. This is particularly true where the system’s scale and dynamism compromise the efficiency of a central executive and/or prevent components from pooling information to achieve a shared, accurate evidence base for their negotiations and decisions.In this paper, we investigate how a self-regulatory system response may arise spontaneously from local interactions between autonomic system elements tasked with adaptively consuming/providing computational resources or services when the demand for such resources is continually changing. We demonstrate that system performance is not maximised when all system components are able to freely share information with one another. Rather, maximum efficiency is achieved when individual components have only limited knowledge of their peers. Under these conditions, the system self-organises into appropriate community structures. By maintaining information flow at the level of communities, the system is able to remain stable enough to efficiently satisfy service demand in resource-limited environments, and thus minimise any unnecessary reconfiguration whilst remaining sufficiently adaptive to be able to reconfigure when service demand changes

    Self-organization in Communicating Groups: the emergence of coordination, shared references and collective intelligence\ud

    Get PDF
    The present paper will sketch the basic ideas of the complexity paradigm, and then apply them to social systems, and in particular to groups of communicating individuals who together need to agree about how to tackle some problem or how to coordinate their actions. I will elaborate these concepts to provide an integrated foundation for a theory of self-organization, to be understood as a non-linear process of spontaneous coordination between actions. Such coordination will be shown to consist of the following components: alignment, division of labor, workflow and aggregation. I will then review some paradigmatic simulations and experiments that illustrate the alignment of references and communicative conventions between communicating agents. Finally, the paper will summarize the preliminary results of a series of experiments that I devised in order to observe the emergence of collective intelligence within a communicating group, and interpret these observations in terms of alignment, division of labor and workflow

    Design for manufacturability : a feature-based agent-driven approach

    Get PDF

    Challenges for adaptation in agent societies

    Full text link
    The final publication is available at Springer via http://dx.doi.org/[insert DOIAdaptation in multiagent systems societies provides a paradigm for allowing these societies to change dynamically in order to satisfy the current requirements of the system. This support is especially required for the next generation of systems that focus on open, dynamic, and adaptive applications. In this paper, we analyze the current state of the art regarding approaches that tackle the adaptation issue in these agent societies. We survey the most relevant works up to now in order to highlight the most remarkable features according to what they support and how this support is provided. In order to compare these approaches, we also identify different characteristics of the adaptation process that are grouped in different phases. Finally, we discuss some of the most important considerations about the analyzed approaches, and we provide some interesting guidelines as open issues that should be required in future developments.This work has been partially supported by CONSOLIDER-INGENIO 2010 under grant CSD2007-00022, the European Cooperation in the field of Scientific and Technical Research IC0801 AT, and projects TIN2009-13839-C03-01 and TIN2011-27652-C03-01.Alberola Oltra, JM.; Julian Inglada, VJ.; García-Fornes, A. (2014). Challenges for adaptation in agent societies. Knowledge and Information Systems. 38(1):1-34. https://doi.org/10.1007/s10115-012-0565-yS134381Aamodt A, Plaza E (1994) Case-based reasoning; foundational issues, methodological variations, and system approaches. AI Commun 7(1):39–59Abdallah S, Lesser V (2007) Multiagent reinforcement learning and self-organization in a network of agents. In: Proceedings of the sixth international joint conference on autonomous agents and multi-agent systems, pp 172–179Abdu H, Lutfiyya H, Bauer MA (1999) A model for adaptive monitoring configurations. In: Proceedings of the VI IFIP/IEEE IM conference on network management, pp 371–384Alberola JM, Julian V, Garcia-Fornes A (2011) A cost-based transition approach for multiagent systems reorganization. In: Proceedings of the 10th international conference on aut. agents and MAS (AAMAS11), pp 1221–1222Alberola JM, Julian V, Garcia-Fornes A (2012) Multi-dimensional transition deliberation for organization adaptation in multiagent systems. In: Proceedings of the 11th international conference on aut. agents and MAS (AAMAS12) (in press)Argente E, Julian V, Botti V (2006) Multi-agent system development based on organizations. Electron Notes Theor Comput Sci 160(3):55–71Argente E, Botti V, Carrascosa C, Giret A, Julian V, Rebollo M (2011) An abstract architecture for virtual organizations: the Thomas approach. Knowl Inf Syst 29(2):379–403Ashford SJ, Taylor MS (1990) Adaptation to work transitions. An integrative approach. Res Pers Hum Resour Manag 8:1–39Ashford SJ, Blatt R, Walle DV (2003) Reflections on the looking glass: a review of research on feedback-seeking behavior in organizations. J Manag 29(6):773–799Astley WG, Van de Ven AH (1983) Central perspectives and debates in organization theory. Adm Sci Q 28(2):245–273Bond AH, Gasser L (1988) A survey of distributed artificial intelligence readings in distributed artificial intelligence. Morgan Kaufmann, Los AltosBou E, López-Sánchez M, Rodríguez-Aguilar JA (2006) Adaptation of autonomic electronic institutions through norms and institutional agents In: Engineering societies in the agents world. Number LNAI 445, Springer, Dublin, pp 300–319Bou E, López-Sánchez M, Rodríguez-Aguilar JA (2007) Towards self-configuration in autonomic electronic institutions. In: COIN 2006 workshops. Number LNAI 4386, pp 220–235Bou E, López-Sánchez M, Rodríguez-Aguilar JA (2008) Using case-based reasoning in autonomic electronic institutions. In: Proceedings of the 2007 international conference on coordination, organizations, institutions, and norms in agent systems III, pp 125–138Brett JM, Feldman DC, Weingart LR (1990) Feedback-seeking behavior of new hires and job changers. J Manag 16:737–749Bulka B, Gaston ME, desJardins M (2007) Local strategy learning in networked multi-agent team formation. Auton Agents Multi-Agent Syst 15(1):29–45Campos J, López-Sánchez M, Esteva M (2009) Assistance layer, a step forward in multi-agent systems. In: Coordination support international joint conference on autonomous agents and multiagent systems (AAMAS), pp 1301–1302Campos J, Esteva M, López-Sánchez M, Morales J, Salamó M (2011) Organisational adaptation of multi-agent systems in a peer-to-peer scenario. Computing 91(2):169–215Carley KM, and Gasser L (1999) Computational organization theory. Multiagent systems: a modern approach to distributed artificial intelligence. MIT Press, Cambridge, pp 299–330Carvalho G, Almeida H, Gatti M, Vinicius G, Paes R, Perkusich, A, Lucena C (2006) Dynamic law evolution in governance mechanisms for open multi-agent systems. In: Second workshop on software engineering for agent-oriented systemsCernuzzi L, Zambonelli F (2011) Adaptive organizational changes in agent-oriented methodologies. Knowl Eng Rev 26(2):175–190Cheng BH, Lemos R, Giese H, Inverardi P, Magee J (2009) Software engineering for self-adaptive systems: a research roadmap, pp 1–26Corkill DD, Lesser VR (1983) The use of meta-level control for coordination in a distributed problem solving networks. In: Proceedings of the eighth international joint conference on artificial intelligence. IEEE Computer Society Press, pp 748–756Corkill DD, Lander SE (1998) Diversity in agent organizations. Object Mag 8(4):41–47de Paz JF, Bajo J, González A, Rodríguez S, Corchado JM (2012) Combining case-based reasoning systems and support vector regression to evaluate the atmosphere-ocean interaction. Knowl Inf Syst 30(1):155–177DeLoach SA, Matson E (2004) An organizational model for designing adaptive multiagent systems. In: The AAAI-04 workshop on agent organizations: theory and practice (AOTP), pp 66–73DeLoach SA, Oyeman W, Matson E (2008) A capabilities-based model for adaptive organizations. Auton Agents Multi-Agent Syst 16:13–56Dignum V, Dignum F (2001) Modelling agent societies: co-ordination frameworks and institutions progress in artificial intelligence. LNAI 2258, pp 191–204Dignum V (2004) A model for organizational interaction: based on agents, founded in logic. PhD dissertation, Universiteit Utrecht. SIKS dissertation series 2004-1Dignum V, Dignum F, Sonenberg L (2004) Towards dynamic reorganization of agent societies. In: Proceedings of the workshop on coordination in emergent agent societies, pp 22–27Dignum V, Dignum F (2006) Exploring congruence between organizational structure and task performance: a simulation approach coordination, organization, institutions and norms in agent systems I. In: Proceedings of the ANIREM ’05/OOOP ’05, pp 213–230Dignum V, Dignum F (2007) A logic for agent organizations. In: Proceedings of the multi-agent logics, languages, and organisations federated workshops (MALLOW ’007), formal approaches to multi-agent systems (FAMAS ’007) workshopFox MS (1981) Formalizing virtual organizations. IEEE Transact Syst Man Cybern 11(1):70–80Gaston ME, desJardins M (2005) Agent-organized networks for dynamic team formation. In: Proceedings of the fourth international joint conference on autonomous agents and multiagent systems, pp 230–237Gaston ME, desJardins M (2008) The effect of network structure on dynamic team formation in multi-agent systems. Comput Intell 24(2):122–157Norbert G, Philippe M (1997) The reorganization of societies of autonomous agents. In: MAAMAW-97. Springer, London, pp 98–111Goldman CV, Rosenschein JS (1997) Evolving organizations of agents American association for artificial intelligence. In: Multiagent learning workshop at AAAI97Greve HR (1998) Performance, aspirations, and risky organizational change. Adm Sci Quart 43(1):58–86Guessoum Z, Ziane M, Faci N (2004) Monitoring and organizational-level adaptation of multi-agent systems. In: Proceedings of the AAMAS ’04, pp 514–521Hoogendoorn M, Treur J (2006) An adaptive multi-agent organization model based on dynamic role allocation. In: Proceedings of the IAT ’06, pp 474–481Horling B, Benyo B, Lesser V (1999) Using self-diagnosis to adapt organizational structures. In: Proceedings of the 5th international conference on autonomous agents, pp 529–536Horling B, Lesser V (2005) A survey of multi-agent organizational paradigms. Knowl Eng Rev 19(4): 281–316Hrebiniak LG, Joyce WF (1985) Organizational adaptation: strategic choice and environmental determinism. Adm Sci Quart 30(3):336–349Hübner JF, Sichman JS, Boissier O (2002) MOISE+: towards a structural, functional, and deontic model for MAS organization. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems, pp 501–502Hübner JF, Sichman JS, Boissier O (2004) Using the MOISE+ for a cooperative framework of MAS reorganisation. In: Proceedings of the 17th Brazilian symposium on artificial intelligence (SBIA ’04), vol 3171, pp 506–515Hübner JF, Boissier O, Sichman JS (2005) Specifying E-alliance contract dynamics through the MOISE + reorganisation process Anais do V Encontro Nacional de Inteligde Inteligncia Artificial (ENIA 2005)Jennings NR (2001) An agent-based approach for building complex software systems. Commun ACM 44(4):35–41Kamboj S, Decker KS (2006) Organizational self-design in semi-dynamic environments In: 2007 IJCAI workshop on agent organizations: models and simulations (AOMS@IJCAI), pp 335–337Katz D, Kahn RL (1966) The social psychology of organizations. Wiley, New YorkKelly D, Amburgey TL (1991) Organizational inertia and momentum: a dynamic model of strategic change. Acad Manag J 34(3):591–612Kephart J, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50Kim DH (1993) The link between individual and organizational learning. Sloan Manag Rev 35(1):37–50Kota R, Gibbins N, Jennings NR (2009a) Decentralised structural adaptation in agent organisations organized adaptation in multi-agent systems, pp 54–71Kota R, Gibbins N, Jennings NR (2009b) Self-organising agent organisations. In: Proceedings of the 8th international conference on autonomous agents and multiagent systems (AAMAS 2009)Kota R, Gibbins N, Jennings NR (2012) Decentralised approaches for self-adaptation in agent organisations. ACM Trans Auton Adapt Syst 7(1):1–28Kotter J, Schlesinger L (1979) Choosing strategies for change. Harv Bus Rev 106–1145Lesser VR (1998) Reflections on the nature of multi-agent coordination and its implications for an agent architecture. Auton Agents Multi-Agent Syst 89–111Levitt B, March JG (1988) Organizational learning. Annu Rev Sociol 14:319–340Luck M, McBurney P, Shehory O, Willmott S (2005) Agent technology: computing as interaction (a roadmap for agent based computing)Mathieu P, Routier JC, Secq Y (2002a) Dynamic organization of multi-agent systems. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems: part 1, pp 451–452Mathieu P, Routier JC, Secq Y (2002b) Principles for dynamic multi-agent organizations. In: Proceedings of the 5th Pacific rim international workshop on multi agents: intelligent agents and multi-agent systems, pp 109–122Matson E, DeLoach S (2003) Using dynamic capability evaluation to organize a team of cooperative, autonomous robots. In: Proceedings of the 2003 international conference on artificial intelligence (IC-AI ’03), Las Vegas, pp 23–26Matson E, DeLoach S (2004) Enabling intra-robotic capabilities adaptation using an organization-based multiagent system. ICRA, pp 2135–2140Matson E, DeLoach S (2005) Formal transition in agent organizations. In: IEEE international conference on knowledge intensive multiagent systems (KIMAS ’05)Matson E, Bhatnagar R (2006) Properties of capability based agent organization transition. In: Proceedings of the IEEE/WIC/ACM international conference on intelligent agent technology IAT ’06, pp 59–65Morales J, López-Sánchez M, Esteva, M (2011) Using experience to generate new regulations. In: Proceedings of the twenty-second international joint conference on artificial Intelligence (IJCAI-11), pp 307–312Muhlestein D, Lim S (2011) Online learning with social computing based interest sharing. Knowl Inf Syst 26(1):31–58Nair R, Tambe M, Marsella S (2003) Role allocation and reallocation in multiagent teams: towards a practical analysis. In: Proceedings of the second AAMAS ’03, pp 552–559Orlikowski WJ (1996) Improvising organizational transformation over time: a situated change perspective. Inf Syst Res 7(1):63–92Panait L, Luke S (2005) Cooperative multi-agent learning: the state of the art. Auton Agents Multi-Agent Syst 11:387–434Ringold PL, Alegria J, Czaplewski RL, Mulder BS, Tolle T, Burnett K (1996) Adaptive monitoring design for ecosystem management. Ecol Appl 6(3):745–747Routier J, Mathieu P, Secq Y (2001) Dynamic skill learning: a support to agent evolution. In: Proceedings of the artificial intelligence and the simulation of behaviour symposium on adaptive agents and multi-agent systems (AISB ’01), pp 25–32Scott RW (2002) Organizations: rational, natural, and open systems, 5th edn. Prentice Hall International, New YorkSeelam A (2009) Reorganization of massive multiagent systems: MOTL/O http://books.google.es/books?id=R-s8cgAACAAJ . Southern Illinois University CarbondaleSo Y, Durfee EH (1993) An organizational self-design model for organizational change. In: AAAI93 workshop on AI and theories of groups and oranizations, pp 8–15So Y, Durfee EH (1998) Designing organizations for computational agents. Simulating organizations. MIT Press, Cambridge, pp 47–64Schwaninger M (2000) A theory for optimal organization. Technical report. Institute of Management at the University of St. Gallen, SwitzerlandTantipathananandh C, Berger-Wolf TY (2011) Finding communities in dynamic social networks. In: IEEE 11th international conference on data mining 2011, pp 1236–1241Wang Z, Liang X (2006) A graph based simulation of reorganization in multi-agent systems. In: IEEE WICACM international conference on intelligent agent technology, pp 129–132Wang D, Tse Q, Zhou Y (2011) A decentralized search engine for dynamic web communities. Knowl Inf Syst 26(1):105–125Weick KE (1979) The social psychology of organizing, 2nd edn. Addison-Wesley, ReadingWeyns D, Haesevoets R, Helleboogh A, Holvoet T, Joosen W (2010a) The MACODO middleware for context-driven dynamic agent organizations. ACM Transact Auton Adapt Syst 3:1–3:28Weyns D, Malek S, Andersson J (2010b) FORMS: a formal reference model for self-adaptation. In: Proceedings of the 7th international conference on autonomic computing, pp 205–214Weyns D, Georgeff M (2010) Self-adaptation using multiagent systems. IEEE Softw 27(1):86–91Zhong C (2006) An investigation of reorganization algorithms. Master-thesi

    Enhancing Knowledge Management Systems with Cognitive Agents

    Get PDF
    After identifying the key challenges of knowledge management and proposing a vision that address them, this paper explores how cognitive agents can be used to design management systems that implement this vision and that in particular support the knowledge management processes in both their social, organizational and individual dimension

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: “How should we plan and execute logistics in supply chains that aim to meet today’s requirements, and how can we support such planning and execution using IT?†Today’s requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting today’s requirements in supply chain planning and execution.supply chain;MAS;multi agent systems
    corecore