1,484 research outputs found

    Gossip, Sexual Recombination and the El Farol Bar: modelling the emergence of heterogeneity

    Get PDF
    Brian Arthur's `El Farol Bar' model is extended so that the agents also learn and communicate. The learning and communication is implemented using an evolutionary process acting upon a population of mental models inside each agent. The evolutionary process is based on a Genetic Programming algorithm. Each gene is composed of two tree-structures: one to control its action and one to determine its communication. A detailed case-study from the simulations show how the agents have differentiated so that by the end of the run they had taken on very different roles. Thus the introduction of a flexible learning process and an expressive internal representation has allowed the emergence of heterogeneity

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Second CLIPS Conference Proceedings, volume 1

    Get PDF
    Topics covered at the 2nd CLIPS Conference held at the Johnson Space Center, September 23-25, 1991 are given. Topics include rule groupings, fault detection using expert systems, decision making using expert systems, knowledge representation, computer aided design and debugging expert systems

    Learning Appropriate Contexts

    Get PDF
    Genetic Programming is extended so that the solutions being evolved do so in the context of local domains within the total problem domain. This produces a situation where different “species” of solution develop to exploit different “niches” of the problem – indicating exploitable solutions. It is argued that for context to be fully learnable a further step of abstraction is necessary. Such contexts abstracted from clusters of solution/model domains make sense of the problem of how to identify when it is the content of a model is wrong and when it is the context. Some principles of learning to identify useful contexts are proposed

    VADA: A transformation-based system for variable dependence analysis

    Get PDF
    Variable dependence is an analysis problem in which the aim is to determine the set of input variables that can affect the values stored in a chosen set of intermediate program variables. This paper shows the relationship between the variable dependence analysis problem and slicing and describes VADA, a system that implements variable dependence analysis. In order to cover the full range of C constructs and features, a transformation to a core language is employed Thus, the full analysis is required only for the core language, which is relatively simple. This reduces the overall effort required for dependency analysis. The transformations used need preserve only the variable dependence relation, and therefore need not be meaning preserving in the traditional sense. The paper describes how this relaxed meaning further simplifies the transformation phase of the approach. Finally, the results of an empirical study into the performance of the system are presented

    L’INTELLECT INCARNÉ: Sur les interprĂ©tations computationnelles, Ă©volutives et philosophiques de la connaissance

    Get PDF
    Modern cognitive science cannot be understood without recent developments in computer science, artificial intelligence (AI), robotics, neuroscience, biology, linguistics, and psychology. Classic analytic philosophy as well as traditional AI assumed that all kinds of knowledge must eplicitly be represented by formal or programming languages. This assumption is in contradiction to recent insights into the biology of evolution and developmental psychology of the human organism. Most of our knowledge is implicit and unconscious. It is not formally represented, but embodied knowledge which is learnt by doing and understood by bodily interacting with ecological niches and social environments. That is true not only for low-level skills, but even for high-level domains of categorization, language, and abstract thinking. Embodied cognitive science, AI, and robotics try to build the embodied mind in an artificial evolution. From a philosophical point of view, it is amazing that the new ideas of embodied mind and robotics have deep roots in 20th-century philosophy.Die moderne Kognitionswissenschaft kann nicht verstanden werden ohne Einbeziehung der neuesten Errungenschaften aus der Computerwissenschaft, kĂŒnstlichen Intelligenz (AI), Robotik, Neurowissenschaft, Biologie, Linguistik und Psychologie. Die klassische analytische Philosophie, wie auch die traditionelle AI, setzten voraus, dass alle Arten des Wissens explizit durch formale oder Programmsprachen dargestellt werden mĂŒssen. Diese Annahme steht im Widerspruch zu den rezenten Einsichten in die Evolutionsbiologie und Entwicklungspsychologie des menschlichen Organismus. Der grĂ¶ĂŸte Teil unseres Wissens ist implizit und unbewusst. Es ist kein formal reprĂ€sentiertes, sondern ein verkörpertes Wissen, das durch Handeln gelernt und durch körperliche Interaktion mit ökologischen Nischen und gesellschaftlichen Umgebungen verstanden wird. Dies gilt nicht nur fĂŒr niedere Fertigkeiten, sondern auch fĂŒr höher gestellte DomĂ€nen: Kategorisierung, Sprache und abstraktes Denken. Die verkörperte Erkenntniswissenschaft, AI und Robotik versuchen, den verkörperten Geist in einer artifiziellen Evolution zu bilden. Vom philosophischen Standpunkt gesehen ist es erstaunlich, wie tief die neuen Ideen des verkörperten Geistes und der Robotik in der Philosophie des 20. Jahrhunderts verankert sind.La science cognitive moderne ne peut ĂȘtre comprise sans les progrĂšs rĂ©cents en informatique, intelligence artificielle, robotique, neuroscience, biologie, linguistique et psychologie. La philosophie analytique classique et l’intelligence artificielle traditionnelle prĂ©sumaient que toutes les sortes de savoir devaient ĂȘtre reprĂ©sentĂ©es explicitement par des langages formels ou programmatiques. Cette thĂšse est en contradiction avec les dĂ©couvertes rĂ©centes en biologie de l’évolution et en psychologie Ă©volutive de l’organisme humain. La majeure partie de notre savoir est implicite et inconsciente. Elle n’est pas reprĂ©sentĂ©e formellement, mais constitue un savoir incarnĂ©, qui s’acquiert par l’action et se comprend en interaction corporelle avec nos niches Ă©cologiques et nos environnements sociaux. Cela n’est pas seulement vrai pour nos aptitudes Ă©lĂ©mentaires, mais aussi pour nos facultĂ©s supĂ©rieures de catĂ©gorisation, de langage et de pensĂ©e abstraite. Science cognitive incarnĂ©e, l’intelligence artificielle, ainsi que la robotique, tentent de construire un intellect incarnĂ© en Ă©volution artificielle. Du point de vue philosophique, il est admirable de voir Ă  quel point les nouvelles idĂ©es d’intellect incarnĂ© et de robotique sont ancrĂ©es dans la philosophie du XXe siĂšcle

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications
    • 

    corecore