7 research outputs found

    Robustness of Nonlinear Control Systems to Network-Induced Imperfections

    Get PDF
    Nowadays control systems are increasingly implemented over shared resource-constrained communication networks. Namely, sensors, controllers and actuators no longer exchange information through dedicated point-to-point connections but compete for network access, which gives rise to network-induced imperfections that adversely affect control performance. Prevalent network phenomena are scheduling protocols, nonuniform variable delays, quantization, packet dropouts, sampled and distorted data. Besides possessing usual robustness requirements (e.g., to modeling uncertainties or external disturbances), such control systems ought to be robust against the aforementioned network phenomena as well. This article brings a methodology to quantify control system robustness via Lp-gains as the control laws, communication delays, sampling intervals, noise levels or scheduling protocols change. Building upon impulsive delayed system modeling, Lyapunov stability and the small-gain theorem, the proposed methodology takes into account nonlinear time-varying dynamic controllers and plants as well as model-based estimation, output feedback and large delays. The inverted pendulum example is provided

    Fault Diagnosis in a Networked Control System under Communication Constraints: A Quadrotor Application

    Get PDF
    This paper considers the problem of attitude sensor fault diagnosis in a quadrotor helicopter. The proposed approach is composed of two stages. The first one is the modelling of the system attitude dynamics taking into account the induced communication constraints. Then a robust fault detection and evaluation scheme is proposed using a post-filter designed under a particular design objective. This approach is compared with previous results based on the standard Kalman filter and gives better results for sensor fault diagnosis

    Middleware and Architecture for Advanced Applications of Cyber-physical Systems

    Get PDF
    In this thesis, we address issues related to middleware, architecture and applications of cyber-physical systems. The first problem we address is the cross-layer design of cyber-physical systems to cope with interactions between the cyber layer and the physical layer in a dynamic environment. We propose a bi-directional middleware that allows the optimal utilization of the common resources for the benefit of either or both the layers in order to obtain overall system performance. The case study of network connectivity preservation in a vehicular formation illustrates how this approach can be applied to a particular situation where the network connectivity drives the application layer. Next we address another aspect of cross-layer impact: the problem that arises when network performance, in this case delay performance, affects control system performance. We propose a two-pronged approach involving a flexible adaptive model identification algorithm with outlier rejection, which in turn uses an adaptive system model to detect and reject outliers, thus shielding the estimation algorithm and thereby improving reliability. We experimentally demonstrate that the outlier rejection approach which intercepts and filters the data, combined with simultaneous model adaptation, can result in improved performance of Model Predictive Control in the vehicular testbed. Then we turn to two advanced applications of cyber-physical systems. First, we address the problem of security of cyber-physical systems. We consider the context of an intelligent transportation system in which a malicious sensor node manipulates the position data of one of the autonomous cars to deviate from a safe trajectory and collide with other cars. In order to secure the safety of such systems where sensor measurements are compromised, we employ the procedure of “dynamic watermarking”. This procedure enables an honest node in the control loop to detect the existence of a malicious node within the feedback loop. We demonstrate in the testbed that dynamic watermarking can indeed protect cars against collisions even in the presence of sensor attacks. The second application of cyber-physical systems that we consider is cyber-manufacturing which is an origami-type laser-based custom manufacturing machine employing folding and cutting of sheet material to manufacture 3D objects. We have developed such a system for use in a laser-based autonomous custom manufacturing machine equipped with real-time sensing and control. The basic elements in the architecture are a laser processing machine, a sensing system to estimate the state of the workpiece, a control system determining control inputs for a laser system based on the estimated data, a robotic arm manipulating the workpiece in the work space, and middleware supporting the communication among the systems. We demonstrate automated 3D laser cutting and bending to fabricate a 3D product as an experimental result. Lastly, we address the problem of traffic management of an unmanned aerial system. In an effort to improve the performance of the traffic management for unmanned aircrafts, we propose a probability-based collision resolution algorithm. The proposed algorithm analyzes the planned trajectories to calculate their collision probabilities, and modifies individual drone starting times to reduce the probability of collision, while attempting to preserve high performance. Our simulation results demonstrate that the proposed algorithm improves the performance of the drone traffic management by guaranteeing high safety with low modification of the starting times

    Middleware and Architecture for Advanced Applications of Cyber-physical Systems

    Get PDF
    In this thesis, we address issues related to middleware, architecture and applications of cyber-physical systems. The first problem we address is the cross-layer design of cyber-physical systems to cope with interactions between the cyber layer and the physical layer in a dynamic environment. We propose a bi-directional middleware that allows the optimal utilization of the common resources for the benefit of either or both the layers in order to obtain overall system performance. The case study of network connectivity preservation in a vehicular formation illustrates how this approach can be applied to a particular situation where the network connectivity drives the application layer. Next we address another aspect of cross-layer impact: the problem that arises when network performance, in this case delay performance, affects control system performance. We propose a two-pronged approach involving a flexible adaptive model identification algorithm with outlier rejection, which in turn uses an adaptive system model to detect and reject outliers, thus shielding the estimation algorithm and thereby improving reliability. We experimentally demonstrate that the outlier rejection approach which intercepts and filters the data, combined with simultaneous model adaptation, can result in improved performance of Model Predictive Control in the vehicular testbed. Then we turn to two advanced applications of cyber-physical systems. First, we address the problem of security of cyber-physical systems. We consider the context of an intelligent transportation system in which a malicious sensor node manipulates the position data of one of the autonomous cars to deviate from a safe trajectory and collide with other cars. In order to secure the safety of such systems where sensor measurements are compromised, we employ the procedure of “dynamic watermarking”. This procedure enables an honest node in the control loop to detect the existence of a malicious node within the feedback loop. We demonstrate in the testbed that dynamic watermarking can indeed protect cars against collisions even in the presence of sensor attacks. The second application of cyber-physical systems that we consider is cyber-manufacturing which is an origami-type laser-based custom manufacturing machine employing folding and cutting of sheet material to manufacture 3D objects. We have developed such a system for use in a laser-based autonomous custom manufacturing machine equipped with real-time sensing and control. The basic elements in the architecture are a laser processing machine, a sensing system to estimate the state of the workpiece, a control system determining control inputs for a laser system based on the estimated data, a robotic arm manipulating the workpiece in the work space, and middleware supporting the communication among the systems. We demonstrate automated 3D laser cutting and bending to fabricate a 3D product as an experimental result. Lastly, we address the problem of traffic management of an unmanned aerial system. In an effort to improve the performance of the traffic management for unmanned aircrafts, we propose a probability-based collision resolution algorithm. The proposed algorithm analyzes the planned trajectories to calculate their collision probabilities, and modifies individual drone starting times to reduce the probability of collision, while attempting to preserve high performance. Our simulation results demonstrate that the proposed algorithm improves the performance of the drone traffic management by guaranteeing high safety with low modification of the starting times

    Delay-dependent output feedback compensators for a class of networked control systems

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2014Sistemas de controle via rede (NCS, do inglês Networked Control Systems) são uma classe especial de sistemas amostrados digitalmente, nos quais os dispositivos do sistema de controle se comunicam através de uma rede de comunicação (como mostrado na Fig. I). Significantes avanços tecnológicos tem levado a um maior interesse tanto na utilização de NCS em ambiente industrial (MOYNE; TILBURY, 2007), quanto em pesquisas relacionadas ao assunto (HESPANHA; NAGHSHTABRIZI; XU,2007; HEEMELS; WOUW, 2010; ZHANG; GAO; KAYNAK, 2013). Algumas das vantagens oferecidas por tais sistemas, com relação a sistemas de controle tradicionais, compreendem menor custo de implementação, flexibilidade e facilidade de manutenção. Apesar disso, inerentemente alguns efeitos indesejados também podem ocorrer, tais como atrasos na comunicação e intervalos de amostragem variantes, ocasionando degradação no desempenho do sistema em malha fechada. Devido a esses efeitos, a análise de estabilidade e também o projeto de controladores para NCS tornam-se mais desafiadores (TANG; YU, 2007). De modo geral, os estudos sobre NCS podem ser divididos em duas grandes áreas: controle da rede e controle via rede (GUPTA; CHOW, 2010). A primeira está mais interessada em proporcionar uma melhor qualidade no serviço de transmissão de dados realizado pela rede de comunicação, enquanto a segunda objetiva uma melhor qualidade do desempenho dos sistemas de controle sob determinadas condições induzidas pelos efeitos da utilização da rede. Embora tipicamente tratadas de forma separada, recentemente alguns esforços têm sido empreendidos de modo a integrar algumas características de ambas as áreas em fase de projeto, as chamadas estratégias de co-design (TORNGREN et al., 2006). Uma abordagem integrada é necessária de modo a se obter uma maior compreensão do funcionamento de um NCS, podendo assim obter um melhor desempenho geral do sistema. Neste contexto, especialmente levando em consideração que o uso rede de comunicação é limitado, tal recurso deve ser corretamente distribuído entre os sistemas de controle de modo a garantir um funcionamento adequado. Além disso, requisitos de desempenho individuais de cada planta também devem ser cumpridos, mesmo sujeitos a tais restrições de limites de recursos.Abstract: Networked control system (NCS) is a special class of sampled-data system where control systems devices are interconnected through a communication network. Despite the advantages, such as lower cost, flexibility and easy of maintenance compared to a more traditional implementation, some undesired effects may be induced by the use of a shared medium in the feedback loop, for instance, time-varying sampling intervals and delays. Due to the multidisciplinary nature of an NCS, the analysis and design of such systems also demand a more comprehensive approach. Thus, the main objective of this thesis is to propose some strategies for the synthesis of dynamic output feedback compensators, assuming an industrial network control system environment with temporal behavior features and requirements. Throughout this document, the NCS is modeled considering unknown time-varying delays, which leads to an uncertain system representation, later overapproximated by a convex polytope with additional norm-bounded uncertainty. Based on parameter dependent Lyapunov functions, closed-loop stability conditions are provided, which can be verified in terms of feasibility of a set of linear matrix inequalities (LMIs). The control designs are then promptly derived from the stability conditions, leading to delay-dependent compensators. Furthermore, an integrated control design and resource management strategy is proposed, taking into account the controller design while also addressing the shared nature of the communication network. This co-design strategy assumes that a supervisor task has the knowledge of all devices that access the network, as well as their allocated bandwidths. Numerical examples and simulations are provided to illustrate the effectiveness of the proposed design methodologies
    corecore