18,226 research outputs found

    Relating threshold tolerance graphs to other graph classes

    Get PDF
    A graph G=(V, E) is a threshold tolerance if it is possible to associate weights and tolerances with each node of G so that two nodes are adjacent exactly when the sum of their weights exceeds either one of their tolerances. Threshold tolerance graphs are a special case of the well-known class of tolerance graphs and generalize the class of threshold graphs which are also extensively studied in literature. In this note we relate the threshold tolerance graphs with other important graph classes. In particular we show that threshold tolerance graphs are a proper subclass of co-strongly chordal graphs and strictly include the class of co-interval graphs. To this purpose, we exploit the relation with another graph class, min leaf power graphs (mLPGs)

    Obstruction characterization of co-TT graphs

    Full text link
    Threshold tolerance graphs and their complement graphs ( known as co-TT graphs) were introduced by Monma, Reed and Trotter[24]. Introducing the concept of negative interval Hell et al.[19] defined signed-interval bigraphs/digraphs and have shown that they are equivalent to several seemingly different classes of bigraphs/digraphs. They have also shown that co-TT graphs are equivalent to symmetric signed-interval digraphs. In this paper we characterize signed-interval bigraphs and signed-interval graphs respectively in terms of their biadjacency matrices and adjacency matrices. Finally, based on the geometric representation of signed-interval graphs we have setteled the open problem of forbidden induced subgraph characterization of co-TT graphs posed by Monma, Reed and Trotter in the same paper.Comment: arXiv admin note: substantial text overlap with arXiv:2206.0591

    Letter graphs and geometric grid classes of permutations: characterization and recognition

    Full text link
    In this paper, we reveal an intriguing relationship between two seemingly unrelated notions: letter graphs and geometric grid classes of permutations. An important property common for both of them is well-quasi-orderability, implying, in a non-constructive way, a polynomial-time recognition of geometric grid classes of permutations and kk-letter graphs for a fixed kk. However, constructive algorithms are available only for k=2k=2. In this paper, we present the first constructive polynomial-time algorithm for the recognition of 33-letter graphs. It is based on a structural characterization of graphs in this class.Comment: arXiv admin note: text overlap with arXiv:1108.6319 by other author

    The vertex leafage of chordal graphs

    Full text link
    Every chordal graph GG can be represented as the intersection graph of a collection of subtrees of a host tree, a so-called {\em tree model} of GG. The leafage ℓ(G)\ell(G) of a connected chordal graph GG is the minimum number of leaves of the host tree of a tree model of GG. The vertex leafage \vl(G) is the smallest number kk such that there exists a tree model of GG in which every subtree has at most kk leaves. The leafage is a polynomially computable parameter by the result of \cite{esa}. In this contribution, we study the vertex leafage. We prove for every fixed k≥3k\geq 3 that deciding whether the vertex leafage of a given chordal graph is at most kk is NP-complete by proving a stronger result, namely that the problem is NP-complete on split graphs with vertex leafage of at most k+1k+1. On the other hand, for chordal graphs of leafage at most ℓ\ell, we show that the vertex leafage can be calculated in time nO(ℓ)n^{O(\ell)}. Finally, we prove that there exists a tree model that realizes both the leafage and the vertex leafage of GG. Notably, for every path graph GG, there exists a path model with ℓ(G)\ell(G) leaves in the host tree and it can be computed in O(n3)O(n^3) time

    Partitioning Perfect Graphs into Stars

    Full text link
    The partition of graphs into "nice" subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into same-size stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP-complete cases, for example, on grid graphs and chordal graphs.Comment: Manuscript accepted to Journal of Graph Theor

    Interval-Like Graphs and Digraphs

    Get PDF
    We unify several seemingly different graph and digraph classes under one umbrella. These classes are all, broadly speaking, different generalizations of interval graphs, and include, in addition to interval graphs, adjusted interval digraphs, threshold graphs, complements of threshold tolerance graphs (known as `co-TT\u27 graphs), bipartite interval containment graphs, bipartite co-circular arc graphs, and two-directional orthogonal ray graphs. (The last three classes coincide, but have been investigated in different contexts.) This common view is made possible by introducing reflexive relationships (loops) into the analysis. We also show that all the above classes are united by a common ordering characterization, the existence of a min ordering. We propose a common generalization of all these graph and digraph classes, namely signed-interval digraphs, and show that they are precisely the digraphs that are characterized by the existence of a min ordering. We also offer an alternative geometric characterization of these digraphs. For most of the above graph and digraph classes, we show that they are exactly those signed-interval digraphs that satisfy a suitable natural restriction on the digraph, like having a loop on every vertex, or having a symmetric edge-set, or being bipartite. For instance, co-TT graphs are precisely those signed-interval digraphs that have each edge symmetric. We also offer some discussion of future work on recognition algorithms and characterizations
    • …
    corecore