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Abstract
We unify several seemingly different graph and digraph classes under one umbrella. These classes
are all, broadly speaking, different generalizations of interval graphs, and include, in addition to
interval graphs, adjusted interval digraphs, threshold graphs, complements of threshold tolerance
graphs (known as ‘co-TT’ graphs), bipartite interval containment graphs, bipartite co-circular
arc graphs, and two-directional orthogonal ray graphs. (The last three classes coincide, but have
been investigated in different contexts.) This common view is made possible by introducing
reflexive relationships (loops) into the analysis. We also show that all the above classes are
united by a common ordering characterization, the existence of a min ordering. We propose a
common generalization of all these graph and digraph classes, namely signed-interval digraphs,
and show that they are precisely the digraphs that are characterized by the existence of a min
ordering. We also offer an alternative geometric characterization of these digraphs. For most of
the above graph and digraph classes, we show that they are exactly those signed-interval digraphs
that satisfy a suitable natural restriction on the digraph, like having a loop on every vertex, or
having a symmetric edge-set, or being bipartite. For instance, co-TT graphs are precisely those
signed-interval digraphs that have each edge symmetric. We also offer some discussion of future
work on recognition algorithms and characterizations.
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Figure 1 A min ordering of a digraph is an ordering of the vertices such that neither of the
depicted submatrices occurs in the corresponding adjacency matrix.
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Figure 2 An interval graph and corresponding interval model. There is an implicit loop at each
vertex.

1 Introduction

A digraph H is reflexive if each vv ∈ E(H), v ∈ V (H) (H has all loops); irreflexive if no
vv ∈ E(H) (H has no loops); and symmetric if ab ∈ E(H) implies ba ∈ E(H). In this paper,
we shall treat both graphs and digraphs; for simplicity we view graphs as symmetric digraphs.
(Thus, graphs can have loops, and irreflexive graphs are loopless.) Loops play an important
role in this paper, and this is not common in the literature on graph classes that we consider.
They allow us to view several seemingly unrelated graph classes through a common lens.

A min ordering of a digraph H is a linear ordering < of the vertices of H, so that
ab ∈ E(H), a′b′ ∈ E(H) and a < a′, b′ < b implies that ab′ ∈ E(H). In other words, a min
ordering is an ordering of the vertices such that when the rows and columns of the adjacency
matrix are ordered in this way, neither the matrix whose rows are 01 and 11 nor the matrix
whose rows are 01 and 10 appears as a submatrix. (See Figure 1.) Note that the presence or
absence of loops (1’s on the diagonal of the adjacency matrix) can affect whether the graph
has a min ordering.

Our goal in this paper is to promote a class of digraphs (or 0,1-matrices) that is a broad
generalization of interval graphs and that retains some of the desirable structural properties
of interval graphs. A graph H is an interval graph if it is the intersection graph of a family
of intervals on the real line, i.e., if there exists a family of intervals {[xv, yv]|v ∈ V (H)} such
that uv ∈ E(H) if and only if [xu, yu] ∩ [xv, yv] 6= ∅. The family of intervals is an interval
model of H. (See Figure 2.) We note that the definition implies that an interval graph is
reflexive. A related concept for bipartite graphs is as follows. A bipartite graph H with parts
A,B is an interval bigraph if there are intervals {[xa, ya], a ∈ A}, and {[xb, yb], b ∈ B}, such
that for a ∈ A and b ∈ B, ab ∈ E(H) if and only if [xa, ya] ∩ [xb, yb] 6= ∅.
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Figure 3 An adjusted interval digraph and a corresponding adjusted interval model. The source
interval for each vertex is the upper one.

Interval graphs are important in graph theory and in applications, and are distinguished by
several elegant characterizations and efficient recognition algorithms [3, 8, 11, 13, 16, 24, 31].
For this reason, there have been attempts to extend the concept to digraphs [29], with mixed
success. (Many of the desirable structural properties are absent.) More recently a more
restricted class of digraphs has been found to offer a nicer generalization of interval graphs;
these are the adjusted interval digraphs [10]. A digraph H is an adjusted interval digraph if
there are two families of real intervals, the source intervals {[xv, yv]|v ∈ V (H)} and the sink
intervals and {[xv, zv]|v ∈ V (H)} such that uv ∈ E(H) if and only if the source interval for
u intersects the sink interval for v. (See Figure 3.) This differs from the class in [29] in that
the left endpoint, xv, must be shared by the two intervals [xv, yv] and [xv, zv] assigned to
v; they are “adjusted.” The interval graphs are the special case where [xv, yv] = [xv, zv] for
each v ∈ V (H). An adjusted interval model of H is a set of source and sink intervals that
represent H in this way.

Adjacency on a set of intervals can also be defined by interval containment. A graph is a
containment graph of intervals [31] if there is a family of intervals {[xv, yv]|v ∈ V (H)} on the
real line such that uv ∈ E(H) if and only if one of [xu, yu] and [xv, yv] contains the other.
A graph is a containment graph of intervals if and only if it and its complement are both
transitively orientable, thus if and only if it is a permutation graph [31].

For this paper, a more relevant class is a bipartite version of this concept. A bipartite
graph H with parts A,B is an interval containment bigraph [31] if there are sets of intervals
{Ia|a ∈ A}, and {Jb|b ∈ B}, such that ab ∈ E(H) if and only if Jb ⊆ Ia. These graphs have
been studied, from the point of view of another geometric representation, as two-directional
orthogonal ray graphs [30]. A bipartite graph H with parts A and B is called a two-directional
orthogonal ray graph if there exists a set {Ua, a ∈ A} of upwards vertical rays, and a set
{Rb, b ∈ B} of horizontal rays to the right such that ab ∈ E(H) if and only if Ua ∩Rb 6= ∅.
It is known that a bipartite graph is an interval containment graph if and only if it is a
two-directional orthogonal ray graph [22], and if and only if its complement is a circular arc
graph [9].

It is sometimes convenient to view bipartite graphs as digraphs, with all edges oriented
from part A to part B; thus we speak of a bipartite interval containment digraph, a bipartite
interval digraph, or a two-directional orthogonal ray digraph. In general, a bipartite digraph is
a bipartite graph with parts A and B and all arcs being oriented from A to B.

There is an interesting intermediate concept that uses both intersection and containment
of intervals to define adjacency. An interval model of an interval graph G can be viewed
as two mappings {v → xv|v ∈ V (H)} and {v → yv|v ∈ V (H)} such that xv ≤ yv for each
v ∈ V (H), and such that uv ∈ E(H) if and only if yv ≤ xu and yu ≤ xv. The constraint
xv ≤ yv comes from the need for [xv, yv] to be an interval. The proposition that two intervals
intersect is the same as xv ≤ yu and xu ≤ yv, since this means that neither interval lies
entirely to the right of the other.
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Figure 4 A co-TT graph and a corresponding co-TT model; ab is an edge since 1 ≤ 10 and 3 ≤ 8,
ad is an edge since 1 ≤ 2 and 7 ≤ 8. However, bd is not an edge: although 7 ≤ 10, 3 is not less
than or equal to 2. The example of this figure is one of the well-known minimal graphs that are not
interval graphs, illustrating that the interval graphs are a proper subclass of the co-TT graphs.

A generalization of interval models is obtained by dropping the constraint xv ≤ yv in this
formulation. To develop the motivation for this, we start with the complements of threshold
tolerance graphs. A graph H is a threshold tolerance graph [27] if its vertices v can be
assigned weights wv and tolerances tv so that ab is an edge of H if and only if wa + wb > ta
or wa +wb > tb. (When all tv are equal, this defines a better known class of threshold graphs
[5].) Co-threshold tolerance (‘co-TT’) graphs are complements of threshold tolerance graphs.
Equivalently, a graph H is a co-TT graph, if there exist real numbers xv, yv, v ∈ V (H), such
that ab ∈ E(H) if and only if xa ≤ yb and xb ≤ ya [14]. This differs from the definition of
interval graphs in that it is no longer required that xv ≤ yv, illustrating the motivation for
dropping the constraint in this case. (See Figure 4.) That these are precisely the co-TT
graphs is easily seen by letting xv = wv and yv = tv − wv. The two mappings v → xv and
v → yv, are called the co-TT model of H.

One view of a co-TT model is that there are now intervals whose ‘beginning’ xv may
come after their ‘end’ yv. In other words, we may have ‘intervals’ [xv, yv] with yv < xv. We
may view a co-TT model as consisting of intervals [xv, yv], v ∈ V (H), some of which go in
the positive direction (have xv ≤ yv) and others go in the negative direction (have xv > yv).
We speak of positive or negative intervals, and positive or negative vertices that correspond
to them. (In the literature [14, 12, 17, 27], the direction is denoted by colors of the intervals:
positive intervals, and vertices, are colored blue, and negative intervals, and vertices, are
colored red.) The above definition of adjacency has interesting consequences. Two positive
vertices are adjacent if and only if they intersect; in particular, each positive vertex has a
loop. Two negative vertices are never adjacent; in particular negative vertices have no loops.
Finally, a positive vertex u corresponding to a positive interval [a, b] and a negative vertex
v corresponding to a negative interval [c, d] are adjacent if and only if [d, c] is contained in
[a, b] (i.e., a ≤ d ≤ c ≤ b). We also use the following signed shorthand, which will be useful
later: a positive vertex or interval will be called a +-vertex or +-interval respectively, and a
negative vertex or interval will be called a −-vertex or −-interval respectively. It follows
from the above discussion that in a co-TT graph, the +-vertices induce a reflexive interval
graph, the −-vertices form an independent set, and the edges between the +-vertices and
the −-vertices form a bipartite interval containment graph.
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Figure 5 A signed interval digraph and a corresponding signed interval model. The source
interval for each vertex is the upper one. There is a loop at a because its positive source interval
intersects its positive sink interval. There is an edge from a to b because a’s positive source interval
contains b’s negative sink interval, an edge from b to c because b’s positive source interval intersects
c’s positive sink interval, and an edge from d to c because d’s negative source interval is contained
in c’s positive sink interval.

Note that co-TT graphs are a generalization of interval graphs; the interval graphs are
those co-TT graphs where all vertices are positive. In other words, they are the reflexive
co-TT graphs.

2 Signed Interval Digraphs

We have now seen extensions of interval graphs in two different directions. First, by taking
two (adjusted) intervals instead of just one interval, we were able to extend the definition
from reflexive graphs to reflexive digraphs. Second, by admitting intervals [a, b] that go in the
negative direction (have b < a), we were able to extend the definition from reflexive graphs
to graphs that have some vertices with loops and others without. Both these generalizations
have proved very fruitful [10, 8, 10, 21, 14, 12, 17, 27].

We now define a new class of digraphs that unifies these extensions. A digraph H is a
signed-interval digraph if there exist three mappings from V (H) to the real line, v → xv, v →
yv, and v → zv, such that uv ∈ E(H) if and only if xu ≤ zv and xv ≤ yu. We call the three
mappings v → xv, v → yv, and x→ zv a signed-interval model of H. Alternatively, a signed
interval model is obtained in by assigning, for each v ∈ V (H) a source interval [xv, yv] and a
sink interval [xv, zv], such that uv ∈ E(H) if and only if xu ≤ zv and xv ≤ yu. (See figure 5.)
Since it is possible that xv > yv and/or xv > zv, each of [xv, yv] and [xv, zv] can be negative
or positive. Since the source interval and sink interval for v share the endpoint xv, we retain
the property that the intervals are adjusted.

Signed-interval digraphs with all intervals positive, are reflexive, and are adjusted interval
digraphs. Signed-interval digraphs with yv = zv, for all v ∈ V (H), are symmetric, and
are co-TT graphs. Signed-interval digraphs that satisfy both conditions, i.e., with all
xv ≤ yv = zv, v ∈ V (H), are interval graphs. Furthermore, we show below that there are no
reflexive signed-interval digraphs other than adjusted interval digraphs, no symmetric signed-
interval digraphs other than co-TT graphs, and no reflexive and symmetric signed-interval
digraphs other than interval graphs.

The structure of signed-interval digraphs can be described in a language similar to what
was used for co-TT graphs. Let H be a signed-interval digraph and consider a signed-
interval model of H given by the ordered pairs (Iv, Jv) of intervals where Iv = [xv, yv] and
Jv = [xv, zv]. For α, β ∈ {+,−}, we say a vertex v is of type (α, β) if Iv is an α-interval

MFCS 2018
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and Jv is a β-interval. The subdigraph of H induced by (+,+)-vertices is an adjusted
interval digraph. The (−,−)-vertices of H form an independent set. The arcs between the
(+,−)- and (−,−)-vertices form a bipartite interval containment digraph. The arcs between
the (−,+)- and (−,−)-vertices also form a bipartite interval containment digraph. Similar
properties hold for the other parts and their connections.

We emphasize that our definition of co-TT graphs differs from the standard definition
[12, 14, 27]. In the standard definition, the condition ab ∈ E(H) ⇐⇒ xa ≤ yb and xb ≤ ya

is applied only for a 6= b, and so the graphs have no loops. Thus a graph under the standard
interpretation is co-TT if and only if with a suitable addition of loops it is co-TT under our
definition above. This difference is not important as it was shown in [13] that if a graph H
is co-TT (in the standard sense), then it has a co-TT model with negative intervals for all
simplicial vertices without true twins and all other intervals positive. Thus there is an easy
translation between the co-TT graphs as defined here and the standard irreflexive co-TT
graphs: namely, loops are to be placed on all vertices other than simplicial vertices without
true twins.

3 Min Orderings

Interval graphs, adjusted interval digraphs, co-TT graphs, and two-directional orthogonal
ray digraphs all have min orderings when care is taken to specify which vertices have loops
and which do not. [8, 10, 18, 30].

Min orderings are a useful tool for graph homomorphism problems. A homomorphism
of a digraph G to a digraph H is a mapping f : V (G)→ V (H) such that f(u)f(v) ∈ E(H)
whenever uv ∈ E(G). If a digraph H has a min ordering, there is a simple polynomial-time
algorithm to decide if a given input graph G admits a homomorphism to a fixed digraph H
[15, 20]. In fact, the algorithm is well known in the AI community as the arc-consistency
algorithm [20]; it is easy to see that it also solves list homomorphism problems, where we
seek a homomorphism of input G to fixed H taking each vertex of G to one of a ‘list’ of
allowed images. In fact, many (but not all) homomorphism and list homomorphism problems
that can be solved in polynomial time can be solved using arc-consistency with respect to a
min ordering.

Graph and digraph homomorphism problems are special cases of constraint satisfaction
problems. A general tool for solving polynomial time solvable constraint satisfaction problems
are the so-called polymorphisms [4]. Without going into the technical details, we mention
that min-orderings are equivalent to conservative semilattice polymorphisms [10].

We prove below that a digraph has a min ordering if and only if it is a signed-interval
digraph. We also give another geometric characterization of signed-interval digraphs, as
bi-arc digraphs. We show that a reflexive signed-interval digraphs are precisely adjusted
interval digraphs, that symmetric signed-interval digraphs are precisely co-TT graphs, that
reflexive and symmetric signed-interval digraphs are precisely interval graphs, and that
bipartite signed-interval digraphs are precisely two-directional ray graphs.

The main result of this section is the following.

I Theorem 1. A digraph admits a min ordering if and only if it is a signed-interval digraph.

Before embarking on the proof we offer an alternate definition of a min ordering. Consider
any linear ordering < of V (H). To this ordering, we prepend an intial element α, which is a
place holder and not a vertex. Thus, α < x for each vertex x. We denote by O(a) the last
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vertex b (in the order <), such that b is an out-neighbor of a (i.e., such that ab ∈ E(H)), or
α if a has no out-neighbor. Similarly, for each vertex b, we denote by I(b) the last vertex a
such that a is an in-neighbor of b (i.e., such that ab ∈ E(H)), or α if a has no in-neighbor.

I Proposition 2. A linear ordering < of V (H) is a min ordering of a digraph H if and only
if the following property holds:

ab ∈ E(H) if and only if a ≤ I(b) and b ≤ O(a).

Proof. Suppose first that < is a min ordering of H with α prepended. If ab ∈ E(H), then by
the definition of O(a), I(b) we have a ≤ I(b) and b ≤ O(a). On the other hand, let a ≤ I(b)
and b ≤ O(a). Note that if a = I(b) or b = O(a) we have ab ∈ E(H) also by definition.
Therefore it remains to consider vertices a, b such that a < c = I(b) and b < d = O(a).
Then ad, cb ∈ E(H) and the min ordering property implies that ab ∈ E(H). This proves the
property.

Conversely, assume that < is a linear ordering of V (H) with α prepended and that
the property holds for <. We claim it is a min ordering of H. Otherwise some ab ∈
E(H), a′b′ ∈ E(H), a < a′, b′ < b would have ab′ 6∈ E(H). This is a contradiction, since we
have a < a′ ≤ I(b′) and b′ < b ≤ O(a). J

We proceed to prove the theorem.

Proof. Suppose < is a min ordering of a digraph H with α prepended. We represent
each vertex v ∈ V (H) by the mappings v → v, v → O(v), v → I(v). In other words, v is
represented by the two intervals [v,O(v)] and [v, I(v)]. It follows from Proposition 2 that
ab ∈ E(H) if and only if a ≤ I(b) and b ≤ O(a). Thus H is a signed-interval digraph.

Conversely, suppose we have the three mappings v → xv, v → yv, v → zv from V (H)
to the real line, such that ab ∈ E(H) if and only if xa ≤ zb and xb ≤ ya. Without loss of
generality we may assume the points {xv|v ∈ V (H)} are all distinct. Then we claim that
the left to right ordering of the points xv yields a min ordering < of H. (Specifically, we
define a < b if and only if xa precedes xb.) Consider now ab ∈ E(H), a′b′ ∈ E(H), with
a < a′, b′ < b. This means that xa < xa′ ≤ zb′ and xb′ < xb ≤ ya, whence we must have
ab′ ∈ E(H). J

4 An alternate geometric representation

Digraphs that admit a min ordering have another geometric representation. Let C be a circle
with two distinguished points (the poles) N and S, and let H be a digraph. Let Iv, v ∈ V (H)
and Jv, v ∈ V (H) be two families of arcs on C such that each Iv contains N but not S, and
each Jv contains S but not N . We say that the families Iv and Jv are consistent if they have
the same clockwise order of their clockwise ends, i.e., the clockwise end of Ia precedes in the
clockwise order the clockwise end of Ib if and only if the clockwise end of Ja precedes in the
clockwise order the clockwise end of Jb. Suppose two families Iv, Jv are consistent; we define
an ordering < on V (H) where a < b if and only if the clockwise end of Ia precedes in the
clockwise order the clockwise end of Ib; we call < the ordering generated by the consistent
families Iv, Jv.

A bi-arc model of a digraph H is a consistent pair of families of circular arcs, Iv, Jv, v ∈
V (H), such that ab ∈ E(H) if and only if Ia and Jb are disjoint. A digraph H is called a
bi-arc digraph if it has a bi-arc model.

I Theorem 3. A digraph H admits a min ordering if and only if it is a bi-arc digraph.

MFCS 2018
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Figure 6 Illustration for the proof of Theorem 3.

Proof. Suppose Iv, Jv form a bi-arc model of H. We claim that the ordering < generated
by Iv, Jv is a min ordering of H. Indeed, suppose a < a′ and b′ < b have ab, a′b′ ∈ E(H).
Then Ia′ spans the area of the circle between N and the clockwise end of Ia, and Jb spans
the area of the circle between S and the clockwise end of Jb′ . (See Figure 1.) This implies
that Ia and Jb′ are disjoint: indeed, the counterclockwise end of Ia is blocked from reaching
Jb′ by Jb (since ab ∈ E(H)), and the counterclockwise end of Jb′ is blocked from reaching Ia

by Ia′ (since a′b′ ∈ E(H)). (The clockwise ends are fixed by the ordering <.)
Conversely, suppose < is a min ordering of H. We construct families of arcs Iv and Jv,

with v ∈ V (H), as follows. The intervals Iv will contain N but not S, the intervals Jv will
contain S but not N . The clockwise ends of Iv are arranged in clockwise order according to
<, as are the clockwise ends of Jv. The counterclockwise ends will now be organized so that
Iv, Jv, v ∈ V (H), becomes a bi-arc model of H. For each vertex v ∈ V (H), we define O(v)
and I(v) as in the proof of Theorem 1. Then we assign the counterclockwise endpoint of Iv to
be N if v has no out-neighbors, or else extend Iv counterclockwise as far as possible without
intersecting JO(v), and assign the the counterclockwise endpoint of each Jv to be S if v has
no in-neighbors, or else extend Jv counterclockwise as far as possible without intersecting
II(v). We claim this is a bi-arc model of H. Clearly, if b > O(a), then Ia intersects Jb by the
construction, and similarly for a > I(b) we have Jb intersecting Ia. This leaves disjoint all
pairs Ia, Jb such that a ≤ I(b) and b ≤ O(a); since aO(a), I(b)b ∈ E(H), the definition of
min ordering implies that ab ∈ E(H), as required. J

I Corollary 4. The following statements are equivalent for a digraph H.
H has a min ordering
H is a signed-interval digraph
H is a bi-arc digraph.

5 0,1-Matrices and bipartite graphs

Irreflexive graphs with at least one edge do not admit a min ordering, since the vertices that
are not reflexive form an independent set. However, in the special case of bipartite graphs,
a version of min ordering has been studied, and has yielded interesting examples. We will
describe that version below, but we first want to explain how to view that definition as a
special case of min ordering as defined here.

A useful perspective on min orderings is obtained by considering 0,1-matrices. Square
0,1-matrices naturally correspond to adjacency matrices of digraphs. Let a simultaneous
permutation of rows and columns of a matrix be one where the permutation of the rows is the
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same as the permutation of the columns. An independent permutation of rows and columns
allows the permutation of the rows to be different from the permutation of the columns.

Let L be the two by two matrix with rows 01 and 11, and let K be the two by two
matrix with rows 01 and 10. (These have been given other names in the literature, up to a
simultaneous permutation of rows and columns they are the gamma matrix, and the identity
matrix.) A matrix M is called K,L-free if it does not contain K or L as a submatrix. If M
is the adjacency matrix of a digraph H, and if the rows and columns of H are in the order <,
then M is K,L-free if and only if < is a min ordering. We call a M a min-orderable matrix
if its rows and columns can be simultaneously permuted to produce a K,L-free matrix. A
digraph has a min ordering if and only if its adjacency matrix is min-orderable.

Therefore, we can say much about matrices that are min-orderable.

I Theorem 5. A square 0,1-matrix is min-orderable if and only if it is the adjacency matrix
of a signed-interval digraph.

Another natural interpretation of a 0,1-matrix is that it represents adjacencies in a
bipartite graph, with rows corresponding to one part and columns to the other part. The
bi-adjacency matrix of a bipartite graph H with marts A,B has its i, j-th entry is 1 if and only
if the i-th vertex in A is adjacent to the j-th vertex in B. Note that for this interpretation
it is not required that the matrix be square. For matrices that are not necessarily square,
we can still ask for independent permutations of rows and columns, to produce a K,L-free
matrix. This suggests a definition of min ordering for bipartite graphs as follows. A min
ordering of a bipartite graph H with parts A and B is a linear ordering <A of A and a linear
ordering <B of B so that for any a, a′ ∈ A, b, b′ ∈ B such that ab ∈ E(H), a′b′ ∈ E(H) and
a < a′, b′ < b we have ab′ ∈ E(H). This is the definition that has been used in the literature;
it is clear how it avoids the problems of the general definition.

There is a simple transformation that connects the two interpretations of 0,1-matrices.
For a matrix M with k rows and ` columns, we define the (k + `) by (k + `) square matrix
M+ to contain the matrix M in the first k rows and the last ` columns, with 0 everywhere
else. Then a simultaneous row/column permutation of M+ corresponds to independent row
and column permutations of M . Note that the square matrix M+ is an adjacency matrix
of the digraph obtained from H by directing all edges from H from the first part to the
second part. Thus to view the special definition of a min ordering for bipartite graphs as a
particular case of the general definition, it suffices to view bipartite graphs as digraphs with
all edges oriented from the first part to the second part. We shall say that H is a bipartite
digraph if it is obtained from a bipartite graph in this way.

A robust class of bipartite graphs is relevant for our discussion. A bipartite graph H with
parts A and B is called a two-directional orthogonal ray graph if there exists a set Ua, a ∈ A,
of upwards vertical rays, and a set Rb, b ∈ B, of horizontal rays to the right such that
ab ∈ E(H) if and only if Ua ∩Rb 6= ∅. Note that we may, if needed, view a two-directional
orthogonal ray graph as a bipartite digraph, with all edges oriented from (say) vertical rays
to horizontal rays.

The following theorem is obtained by a combination of results from [9, 22, 30].

I Theorem 6. The following statements are equivalent for a bipartite graph H.
H is a two-directional orthogonal ray graph
the complement of H is a circular arc graph
H is an interval containment graph.

Matrices that can be permuted to avoid small submatrices have been of much interest
[1, 23, 25]. This of course corresponds to characterizations of digraphs by forbidden ordered
subgraphs [7, 19]. Our focus was on K,L-free matrices. Let the matrix Γ be obtained from
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68:10 Interval-Like Graphs and Digraphs

L by simultaneously exchanging the rows and columns; i.e., Γ has rows 11, 10. Let I be the
two by two identity matrix. It is easy to see that considering I,Γ-free matrices is equivalent
to considering K,L-free matrices, as the permutation that simultaneously reverses rows and
columns of matrix M transforms a I,Γ-free matrix to a K,L-free matrix and vice versa.
Matrices that are Γ-free have been intensively studied [1, 25], cf. [31]. A bipartite graph
H is chordal bipartite if it contains no induced cycle other than C4. A reflexive graph is
strongly chordal if it contains no induced cycle or induced trampoline. (A trampoline is a
complete graph on v0, v1, v2, . . . , vk−1, k > 2 with vertices ui, i = 0, 1, . . . , k − 1, each only
adjacent to vi, vi+1, subscripts computed modulo k.) The adjacency matrix of a reflexive
graph H can be made Γ-free by simultaneous row / column permutations if and only if H
is strongly chordal; the bi-adjacency matrix of a bipartite graph H can be made Γ-free by
independent permutations of rows and columns if and only if H is chordal bipartite [1]. These
results amount to forbidden structure characterizations of matrices that are permutable (by
simultaneous or independent row and column permutations) to a Γ-free format. Algorithms
to recognize such matrices efficiently have been given in [25, 28]. For L-free matrices, or
equivalently, for I-free matrices a forbidden structure characterization is given in [17]. An
O(n2) recognition algorithm is claimed in [2], cf. [31].

6 Special cases

We now explore what min orderings look like in the special cases we have discussed, namely
reflexive graphs, reflexive digraphs, undirected graphs, and bipartite graphs. The results are
all corollaries of Theorem 1 and Proposition 2.

I Corollary 7. A reflexive graph H is a signed-interval digraph if and only if it is an interval
graph.

I Corollary 8. A reflexive digraph H is a signed-interval digraph if and only if it is an
adjusted interval digraph.

Next we focus on symmetric digraphs, i.e., graphs.

I Corollary 9. A graph H is a signed-interval digraph, i.e., has a min ordering, if and only
if it is a co-TT graph.

Proof. Consider a co-TT model of H, given by the mappings v → xv, v → yv, setting the
third mapping v → zv with each zv = yv, yields a signed-interval digraph model of H.
Conversely, assume H is a graph, i.e., a symmetric digraph, that is a signed-interval digraph.
Let < be a min ordering of H; we again have O(v) = I(v) for all vertices v. We claim that
the mappings v → xv = v, v → yv = O(v) define a co-TT model. Indeed, from Proposition 2
we have ab ∈ E(H) if and only if a ≤ O(b) = yb and b ≤ O(a) = ya, as required. J

Finally, for bipartite graphs we have the following result, stated for convenience in the
language of bipartite digraphs. Note that this has only one consequence, that is, when we
consider an edge ab ∈ E(H) we always assume a ∈ A and b ∈ B.

I Corollary 10. A bipartite digraph H is a signed-interval digraph, i.e., has a min ordering,
if and only if it is a two-directional orthogonal ray graph.

Note that two-directional orthogonal ray graphs themselves have two other equivalent
characterizations in Theorem 6. The characterization of two-directional orthogonal ray graph
by the existence of a min ordering is also observed in [18, 30].
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Proof. Suppose H has a signed-interval model given by the three mappings v → xv, v →
yv, v → zv such that ab ∈ E(H) if and only if xa ≤ zb and xb ≤ ya. We construct a
two-directional ray model for H as follows. For each a ∈ A, we take an upwards vertical ray
starting in the point Pa with x-coordinate equal to ya and with y-coordinate equal to xa. For
each b ∈ B, we take a horizontal ray to the right, starting in the point Qb with x-coordinate
xb and y-coordinate zb. Now Pa intersects Qb if and only if xb ≤ ya and xa ≤ zb, i.e., if and
only if ab ∈ E(H) as required.

Now suppose that H has a two-directional model, i.e., upwards vertical rays Ua, a ∈ A,
and horizontal rays to the right Rb, b ∈ B, such that ab ∈ E(H) if and only if Ua ∩Rb 6= ∅.
We will prove that H has a min ordering, whence it is a signed-interval digraph by Theorem
1. We will define the orders < on A and on B as follows. Assume the starting point of the
vertical ray Ua has the (x, y)-coordinates (ua, va), and the starting point of the horizontal
ray Rb has the (x, y)-coordinates (rb, sb), for a ∈ A, and b ∈ B. It is easy to see that we
may assume, without loss of generality, that all ua, a ∈ A, and rb, b ∈ B are distinct, and
similarly for va, a ∈ A and sb, b ∈ B. We define a < a′ in A if and only if va < v′a, and define
b < b′ in B if and only if rb < rb′ . We show that this is a min ordering of the bipartite
digraph H. Otherwise, some ab ∈ E(H), a′b′ ∈ E(H), a < a′, b′ < b have ab′ 6∈ E(H). There
are two possibilities for ab′ 6∈ E(H); either ua < rb′ or ua > rb′ , va > sb′ . In the former case,
Ua ∩Rb = ∅, in the latter case Ua′ ∩Rb′ = ∅, contradicting the assumptions. J

7 Algorithms and characterizations

Interval graphs are known to have elegant characterization theorems [11, 24], cf. [13, 31] and
efficient recognition algorithms [3, 6, 16]. Thus one might hope to be able to obtain similar
results for their generalizations and digraph analogues. This is true for all the generalizations
described in this paper, at least to some degree. In this section we summarize what is known.

The prototypical characterization of interval graphs is the theorem of Lekkerkerker and
Boland [24]. In our language, it states that a reflexive graph H is an interval graph if and
only if it contains no asteroidal triple and no induced C4 or C5. An asteroidal triple consists
of three non-adjacent vertices such that any two are joined by a path not containing any
neighbors of the third vertex. An equivalent characterization by the absence of a slightly
less concise obstruction is given in [10]. A reflexive graph H is an interval graph if and only
if it contains no invertible pair. An invertible pair is a pair of vertices u, v such that there
exist two walks of equal length, P from u to v, and Q from v to u, where the i-th vertex
of P is non-adjacent to the (i+ 1)-st vertex of Q (for each i), and also two walks of equal
length R,S from v to u and u to v respectively, where the i-th vertex of R is non-adjacent
to the (i+ 1)-st vertex of S (for each i). It is not difficult to see that an asteroidal triple is a
special case of an invertible pair. A number of variants of the definition of an invertible pair
have arisen [10, 12, 17, 18], and they have proved useful to give characterization theorems
for various classes. It is proved in [10] that a reflexive digraph is an adjusted interval digraph
if and only if it contains no directed invertible pair. A directed version of an invertible
pair is defined in [10] in a manner similar to the above definition of an invertible pair.
With yet another labeled version of an invertible pair, we have the following obstruction
characterization of co-TT graphs: a graph is a co-TT graph if and only if it contains no
labeled invertible pair, which follows from the characterization in [12] in terms of an interval
ordering from [26]. For bipartite graphs, an analogous bipartite version of an invertible pair
yields the following result. A bipartite graph is a two-directional orthogonal ray graph if
and only if it contains no bipartite invertible pair, [18]. In fact, in [9] a stronger version is
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68:12 Interval-Like Graphs and Digraphs

shown: there is a bipartite analogue of an asteroidal triple, called an edge-asteroid, and a
bipartite graph is a two-directional orthogonal ray graph if and only if it contains no induced
6-cycle and no edge-asteroid. Finally, in [21], there is an obstruction characterization for
signed-interval digraphs, which is a little more technical than just an invertible pair, [21].

There is a long history of efficient algorithms for the recognition of interval graphs, many
of them linear time, starting from [3] and culminating in [6]. A polynomial time algorithm for
the recognition of adjusted interval digraphs is given in [10]. It is not known how to obtain
a linear time, or even near-linear time algorithm. An O(n2) algorithm for the recognition
of two-directional orthogonal ray graphs follows from Theorem 6 and [26]. A more efficient
algorithm in this case is also not known. On the other hand, an O(n2) algorithm for the
recognition of co-TT graphs has been given in [12]. In [21], a polynomial-time algorithm
for the recognition of a signed-interval digraph is proposed. (A new version of [21] will be
posted on arXiv soon.)
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