16 research outputs found

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Optimal Video Streaming in Dense 5G Networks With D2D Communications

    Full text link
    © 2017 IEEE. Mobile video traffic and mobile devices have now outpaced other data traffic and fixed devices. Global service providers are attempting to propose new mobile infrastructures and solutions for high performance of video streaming services, i.e., high quality of experience (QoE) at high resource efficiency. Although device-to-device (D2D) communications have been an emerging technique that is anticipated to provide a massive number of mobile users with advanced services in 5G networks, the management of resource and co-channel interference between D2D pairs, i.e., helper-requester pairs, and cellular users (CUs) is challenging. In this paper, we design an optimal rate allocation and description distribution for high performance video streaming, particularly, achieving high QoE at high energy efficiency while limiting co-channel interference over D2D communications in 5G networks. To this end, we allocate optimal encoding rates to different layers of a video segment and then packetize the video segment into multiple descriptions with embedded forward error correction before transmission. Simultaneously, the optimal numbers of descriptions are distributed to D2D helpers and base stations in a cooperative scheme for transmitting to the D2D requesters. The optimal results are efficiently in correspondence with intra-popularity of different segments of a video characterized by requesters' behavior, characteristic of lossy wireless channels, channel state information of D2D requesters, and constraints on remaining energy of D2D helpers and target signal to interference plus noise ratio of CUs. Simulation results demonstrate the benefits of our proposed solution in terms of high performance video streaming

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Energy-efficient cooperative resource allocation for OFDMA

    Get PDF
    Energy is increasingly becoming an exclusive commodity in next generation wireless communication systems, where even in legacy systems, the mobile operators operational expenditure is largely attributed to the energy bill. However, as the amount of mobile traffic is expected to double over the next decade as we enter the Next Generation communications era, the need to address energy efficient protocols will be a priority. Therefore, we will need to revisit the design of the mobile network in order to adopt a proactive stance towards reducing the energy consumption of the network. Future emerging communication paradigms will evolve towards Next Generation mobile networks, that will not only consider a new air interface for high broadband connectivity, but will also integrate legacy communications (LTE/LTE-A, IEEE 802.11x, among others) networks to provide a ubiquitous communication platform, and one that can host a multitude of rich services and applications. In this context, one can say that the radio access network will predominantly be OFDMA based, providing the impetus for further research studies on how this technology can be further optimized towards energy efficiency. In fact, advanced approaches towards both energy and spectral efficient design will still dominate the research agenda. Taking a step towards this direction, LTE/LTE-A (Long Term Evolution-Advanced) have already investigated cooperative paradigms such as SON (self-Organizing Networks), Network Sharing, and CoMP (Coordinated Multipoint) transmission. Although these technologies have provided promising results, some are still in their infancy and lack an interdisciplinary design approach limiting their potential gain. In this thesis, we aim to advance these future emerging paradigms from a resource allocation perspective on two accounts. In the first scenario, we address the challenge of load balancing (LB) in OFDMA networks, that is employed to redistribute the traffic load in the network to effectively use spectral resources throughout the day. We aim to reengineer the load-balancing (LB) approach through interdisciplinary design to develop an integrated energy efficient solution based on SON and network sharing, what we refer to as SO-LB (Self-Organizing Load balancing). Obtained simulation results show that by employing SO-LB algorithm in a shared network, it is possible to achieve up to 15-20% savings in energy consumption when compared to LTE-A non-shared networks. The second approach considers CoMP transmission, that is currently used to enhance cell coverage and capacity at cell edge. Legacy approaches mainly consider fundamental scheduling policies towards assigning users for CoMP transmission. We build on these scheduling approaches towards a cross-layer design that provide enhanced resource utilization, fairness, and energy saving whilst maintaining low complexity, in particular for broadband applications

    Joint coding/decoding techniques and diversity techniques for video and HTML transmission over wireless point/multipoint: a survey

    Get PDF
    I. Introduction The concomitant developments of the Internet, which offers to its users always larger and more evolved contents (from HTML (HyperText Markup Language) files to multimedia applications), and of wireless systems and handhelds integrating them, have progressively convinced a fair share of people of the interest to always be connected. Still, constraints of heterogeneity, reliability, quality and delay over the transmission channels are generally imposed to fulfill the requirements of these new needs and their corresponding economical goals. This implies different theoretical and practical challenges for the digital communications community of the present time. This paper presents a survey of the different techniques existing in the domain of HTML and video stream transmission over erroneous or lossy channels. In particular, the existing techniques on joint source and channel coding and decoding for multimedia or HTML applications are surveyed, as well as the related problems of streaming and downloading files over an IP mobile link. Finally, various diversity techniques that can be considered for such links, from antenna diversity to coding diversity, are presented...L’engouement du grand public pour les applications multimĂ©dia sans fil ne cesse de croĂźtre depuis le dĂ©veloppement d’Internet. Des contraintes d’hĂ©tĂ©rogĂ©nĂ©itĂ© de canaux de transmission, de fiabilitĂ©, de qualitĂ© et de dĂ©lai sont gĂ©nĂ©ralement exigĂ©es pour satisfaire les nouveaux besoins applicatifs entraĂźnant ainsi des enjeux Ă©conomiques importants. À l’heure actuelle, il reste encore un certain nombre de dĂ©fis pratiques et thĂ©oriques lancĂ©s par les chercheurs de la communautĂ© des communications numĂ©riques. C’est dans ce cadre que s’inscrit le panorama prĂ©sentĂ© ici. Cet article prĂ©sente d’une part un Ă©tat de l’art sur les principales techniques de codage et de dĂ©codage conjoint dĂ©veloppĂ©es dans la littĂ©rature pour des applications multimĂ©dia de type tĂ©lĂ©chargement et diffusion de contenu sur lien mobile IP. Sont tout d’abord rappelĂ©es des notions fondamentales des communications numĂ©riques Ă  savoir le codage de source, le codage de canal ainsi que les thĂ©orĂšmes de Shannon et leurs principales limitations. Les techniques de codage dĂ©codage conjoint prĂ©sentĂ©es dans cet article concernent essentiellement celles dĂ©veloppĂ©es pour des schĂ©mas de codage de source faisant intervenir des codes Ă  longueur variable (CLV) notamment les codes d’Huffman, arithmĂ©tiques et les codes entropiques universels de type Lempel-Ziv (LZ). Faisant face au problĂšme de la transmission de donnĂ©es (Hypertext Markup Language (HTML) et vidĂ©o) sur un lien sans fil, cet article prĂ©sente d’autre part un panorama de techniques de diversitĂ©s plus ou moins complexes en vue d’introduire le nouveau systĂšme Ă  multiples antennes d’émission et de rĂ©ception

    Quality-Oriented Mobility Management for Multimedia Content Delivery to Mobile Users

    Get PDF
    The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently we propose the Smooth Adaptive Soft-Handover Algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections. To estimate the capacity of each connection the novel Quality of Multimedia Streaming (QMS) metric is proposed. The QMS metric aims at offering maximum flexibility and efficiency allowing the applications to fine tune the behavior of the handover algorithm. The current simulation-based performance evaluation clearly shows the better performance of the proposed Smooth Adaptive Soft-Handover Algorithm as compared with other handover solutions. The evaluation was performed in various scenarios including multiple mobile hosts performing handover simultaneously, wireless networks with variable overlapping areas, and various network congestion levels

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Cooperative systems based signal processing techniques with applications to three-dimensional video transmission

    Get PDF
    Three-dimensional (3-D) video has recently emerged to offer an immersive multimedia experience that can not be offered by two-dimensional (2-D) video applications. Currently, both industry and academia are focused on delivering 3-D video services to wireless communication systems. Modern video communication systems currently adopt cooperative communication and orthogonal frequency division multiplexing (OFDM) as they are an attractive solution to combat fading in wireless communication systems and achieve high data-rates. However, this strong motivation to transmit the video signals over wireless systems faces many challenges. These are mainly channel bandwidth limitations, variations of signal-to-noise ratio (SNR) in wireless channels, and the impairments in the physical layer such as time varying phase noise (PHN), and carrier frequency offset (CFO). In response to these challenges, this thesis seeks to develop efficient 3-D video transmission methods and signal processing algorithms that can overcome the effects of error-prone wireless channels and impairments in the physical layer. In the first part of the thesis, an efficient unequal error protection (UEP) scheme, called video packet partitioning, and a new 3-D video transceiver structure are proposed. The proposed video transceiver uses switching operations between various UEP schemes based on the packet partitioning to achieve a trade- off between system complexity and performance. Experimental results show that the proposed system achieves significantly high video quality at different SNRs with the lowest possible bandwidth and system complexity compared to direct transmission schemes. The second part of the thesis proposes a new approach to joint source-channel coding (JSCC) that simultaneously assigns source code rates, the number of high and low priority packets, and channel code rates for the application, network, and physical layers, respectively. The proposed JSCC algorithm takes into account the rate budget constraint and the available instantaneous SNR of the best relay selection in cooperative systems. Experimental results show that the proposed JSCC algorithm outperforms existing algorithms in terms of peak signal-to-noise ratio (PSNR). In the third part of the thesis, a computationally efficient training based approach for joint channel, CFO, and PHN estimation in OFDM systems is pro- posed. The proposed estimator is based on an expectation conditional maximization (ECM) algorithm. To compare the estimation accuracy of the proposed estimator, the hybrid CramÂŽer-Rao lower bound (HCRB) of hybrid parameters of interest is derived. Next, to detect the signal in the presence of PHN, an iterative receiver based on the extended Kalman filter (EKF) for joint data detection and PHN mitigation is proposed. It is demonstrated by numerical simulations that, compared to existing algorithms, the performance of the proposed ECM-based estimator in terms of the mean square error (MSE) is closer to the derived HCRB and outperforms the existing estimation algorithms at moderate-to-high SNRs. Finally, this study extends the research on joint channel, PHN, and CFO estimation one step forward from OFDM systems to cooperative OFDM systems. An iterative algorithm based on the ECM in cooperative OFDM networks in the presence of unknown channel gains, PHNs and CFOs is applied. Moreover, the HCRB for the joint estimation problem in both decode-and-forward (DF) and amplify-and-forward (AF) relay systems is presented. An iterative algorithm based on the EKF for data detection and tracking the unknown time-varying PHN throughout the OFDM data packet is also used. For more efficient 3-D video transmission, the estimation algorithms and UEP schemes based packet portioning were combined to achieve a more robust video bit stream in the presence of PHNs. Applying this combination, simulation results demonstrate that promising bit-error-rate (BER) and PSNR performance can be achieved at the destination at different SNRs and PHN variance. The proposed schemes and algorithms offer solutions for existing problems in the techniques for applications to 3-D video transmission

    User-centric power-friendly quality-based network selection strategy for heterogeneous wireless environments

    Get PDF
    The ‘Always Best Connected’ vision is built around the scenario of a mobile user seamlessly roaming within a multi-operator multi-technology multi-terminal multi-application multi-user environment supported by the next generation of wireless networks. In this heterogeneous environment, users equipped with multi-mode wireless mobile devices will access rich media services via one or more access networks. All these access networks may differ in terms of technology, coverage range, available bandwidth, operator, monetary cost, energy usage etc. In this context, there is a need for a smart network selection decision to be made, to choose the best available network option to cater for the user’s current application and requirements. The decision is a difficult one, especially given the number and dynamics of the possible input parameters. What parameters are used and how those parameters model the application requirements and user needs is important. Also, game theory approaches can be used to model and analyze the cooperative or competitive interaction between the rational decision makers involved, which are users, seeking to get good service quality at good value prices, and/or the network operators, trying to increase their revenue. This thesis presents the roadmap towards an ‘Always Best Connected’ environment. The proposed solution includes an Adapt-or-Handover solution which makes use of a Signal Strength-based Adaptive Multimedia Delivery mechanism (SAMMy) and a Power-Friendly Access Network Selection Strategy (PoFANS) in order to help the user in taking decisions, and to improve the energy efficiency at the end-user mobile device. A Reputation-based System is proposed, which models the user-network interaction as a repeated cooperative game following the repeated Prisoner’s Dilemma game from Game Theory. It combines reputation-based systems, game theory and a network selection mechanism in order to create a reputation-based heterogeneous environment. In this environment, the users keep track of their individual history with the visited networks. Every time, a user connects to a network the user-network interaction game is played. The outcome of the game is a network reputation factor which reflects the network’s previous behavior in assuring service guarantees to the user. The network reputation factor will impact the decision taken by the user next time, when he/she will have to decide whether to connect or not to that specific network. The performance of the proposed solutions was evaluated through in-depth analysis and both simulation-based and experimental-oriented testing. The results clearly show improved performance of the proposed solutions in comparison with other similar state-of-the-art solutions. An energy consumption study for a Google Nexus One streaming adaptive multimedia was performed, and a comprehensive survey on related Game Theory research are provided as part of the work
    corecore