4,593 research outputs found

    Adaptive processing with signal contaminated training samples

    Get PDF
    We consider the adaptive beamforming or adaptive detection problem in the case of signal contaminated training samples, i.e., when the latter may contain a signal-like component. Since this results in a significant degradation of the signal to interference and noise ratio at the output of the adaptive filter, we investigate a scheme to jointly detect the contaminated samples and subsequently take this information into account for estimation of the disturbance covariance matrix. Towards this end, a Bayesian model is proposed, parameterized by binary variables indicating the presence/absence of signal-like components in the training samples. These variables, together with the signal amplitudes and the disturbance covariance matrix are jointly estimated using a minimum mean-square error (MMSE) approach. Two strategies are proposed to implement the MMSE estimator. First, a stochastic Markov Chain Monte Carlo method is presented based on Gibbs sampling. Then a computationally more efficient scheme based on variational Bayesian analysis is proposed. Numerical simulations attest to the improvement achieved by this method compared to conventional methods such as diagonal loading. A successful application to real radar data is also presented

    A bayesian approach to adaptive detection in nonhomogeneous environments

    Get PDF
    We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter
    corecore