1,871 research outputs found

    Design and Analysis of SD_DWCA - A Mobility based clustering of Homogeneous MANETs

    Full text link
    This paper deals with the design and analysis of the distributed weighted clustering algorithm SD_DWCA proposed for homogeneous mobile ad hoc networks. It is a connectivity, mobility and energy based clustering algorithm which is suitable for scalable ad hoc networks. The algorithm uses a new graph parameter called strong degree defined based on the quality of neighbours of a node. The parameters are so chosen to ensure high connectivity, cluster stability and energy efficient communication among nodes of high dynamic nature. This paper also includes the experimental results of the algorithm implemented using the network simulator NS2. The experimental results show that the algorithm is suitable for high speed networks and generate stable clusters with less maintenance overhead

    Distributed Clustering in Cognitive Radio Ad Hoc Networks Using Soft-Constraint Affinity Propagation

    Get PDF
    Absence of network infrastructure and heterogeneous spectrum availability in cognitive radio ad hoc networks (CRAHNs) necessitate the self-organization of cognitive radio users (CRs) for efficient spectrum coordination. The cluster-based structure is known to be effective in both guaranteeing system performance and reducing communication overhead in variable network environment. In this paper, we propose a distributed clustering algorithm based on soft-constraint affinity propagation message passing model (DCSCAP). Without dependence on predefined common control channel (CCC), DCSCAP relies on the distributed message passing among CRs through their available channels, making the algorithm applicable for large scale networks. Different from original soft-constraint affinity propagation algorithm, the maximal iterations of message passing is controlled to a relatively small number to accommodate to the dynamic environment of CRAHNs. Based on the accumulated evidence for clustering from the message passing process, clusters are formed with the objective of grouping the CRs with similar spectrum availability into smaller number of clusters while guaranteeing at least one CCC in each cluster. Extensive simulation results demonstrate the preference of DCSCAP compared with existing algorithms in both efficiency and robustness of the clusters

    Clustering and Hybrid Routing in Mobile Ad Hoc Networks

    Get PDF
    This dissertation focuses on clustering and hybrid routing in Mobile Ad Hoc Networks (MANET). Specifically, we study two different network-layer virtual infrastructures proposed for MANET: the explicit cluster infrastructure and the implicit zone infrastructure. In the first part of the dissertation, we propose a novel clustering scheme based on a number of properties of diameter-2 graphs to provide a general-purpose virtual infrastructure for MANET. Compared to virtual infrastructures with central nodes, our virtual infrastructure is more symmetric and stable, but still light-weight. In our clustering scheme, cluster initialization naturally blends into cluster maintenance, showing the unity between these two operations. We call our algorithm tree-based since cluster merge and split operations are performed based on a spanning tree maintained at some specific nodes. Extensive simulation results have shown the effectiveness of our clustering scheme when compared to other schemes proposed in the literature. In the second part of the dissertation, we propose TZRP (Two-Zone Routing Protocol) as a hybrid routing framework that can balance the tradeoffs between pure proactive, fuzzy proactive, and reactive routing approaches more effectively in a wide range of network conditions. In TZRP, each node maintains two zones: a Crisp Zone for proactive routing and efficient bordercasting, and a Fuzzy Zone for heuristic routing using imprecise locality information. The perimeter of the Crisp Zone is the boundary between pure proactive routing and fuzzy proactive routing, and the perimeter of the Fuzzy Zone is the boundary between proactive routing and reactive routing. By adjusting the sizes of these two zones, a reduced total routing control overhead can be achieved

    Optimized reduction approach of congestion in mobile ad hoc network based on Lagrange multiplier

    Get PDF
    Over the past decades, computer networks have experienced an outbreak and with that came severe congestion problems. Congestion is a crucial determinant in the delivery of delay-sensitive applications (voice and video) and the quality of the network. in this paper, the Lagrangian optimization rate, delay, packet loss, and congestion approach (LORDPC) are presented. A congestion avoidance routing method for device-to-device (D2D) nodes in an ad hoc network that addresses the traffic intensity problem. The method of Lagrange multipliers is utilized for active route election to dodge heavy traffic links. To demonstrate the effectiveness of our proposed method, we applied extensive simulation that presents path discovery and selection. Results show that LORDPC decreases delay and traffic intensity while maintaining a high bitrate and low packet loss rate and it outperformed the ad hoc on-demand distance vector (AODV) protocol and the Lagrangian optimization rate, delay, and packet loss, approach (LORDP)
    • …
    corecore