125 research outputs found

    Changes in the eruptive style of Stromboli Volcano before the 2019 paroxysmal phase discovered through SOM clustering of seismo-acoustic features compared with camera images and GBInSAR data

    Get PDF
    Two paroxysmal explosions occurred at Stromboli on 3 July and 28 August 2019, the first of which caused the death of a young tourist. After the first paroxysm an effusive activity began from the summit vents and affected the NW flank of the island for the entire period between the two paroxysms. We carried out an unsupervised analysis of seismic and infrasonic data of Strombolian explosions over 10 months (15 November 2018–15 September 2019) using a Self-Organizing Map (SOM) neural network to recognize changes in the eruptive patterns of Stromboli that preceded the paroxysms. We used a dataset of 14,289 events. The SOM analysis identified three main clusters that showed different occurrences with time indicating a clear change in Stromboli’s eruptive style before the paroxysm of 3 July 2019. We compared the main clusters with the recordings of the fixed monitoring cameras and with the Ground-Based Interferometric Synthetic Aperture Radar measurements, and found that the clusters are associated with different types of Strombolian explosions and different deformation patterns of the summit area. Our findings provide new insights into Strombolian eruptive mechanisms and new perspectives to improve the monitoring of Stromboli and other open conduit volcanoes

    Volcanic Hot-Spot Detection Using SENTINEL-2: A Comparison with MODIS−MIROVA Thermal Data Series

    Get PDF
    In the satellite thermal remote sensing, the new generation of sensors with high-spatial resolution SWIR data open the door to an improved constraining of thermal phenomena related to volcanic processes, with strong implications for monitoring applications. In this paper, we describe a new hot-spot detection algorithm developed for SENTINEL-2/MSI data that combines spectral indices on the SWIR bands 8a-11-12 (with a 20-meter resolution) with a spatial and statistical analysis on clusters of alerted pixels. The algorithm is able to detect hot-spot-contaminated pixels (S2Pix) in a wide range of environments and for several types of volcanic activities, showing high accuracy performances of about 1% and 94% in averaged omission and commission rates, respectively, underlining a strong reliability on a global scale. The S2-derived thermal trends, retrieved at eight key-case volcanoes, are then compared with the Volcanic Radiative Power (VRP) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) and processed by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during an almost four-year-long period, January 2016 to October 2019. The presented data indicate an overall excellent correlation between the two thermal signals, enhancing the higher sensitivity of SENTINEL-2 to detect subtle, low-temperature thermal signals. Moreover, for each case we explore the specific relationship between S2Pix and VRP showing how different volcanic processes (i.e., lava flows, domes, lakes and open-vent activity) produce a distinct pattern in terms of size and intensity of the thermal anomaly. These promising results indicate how the algorithm here presented could be applicable for volcanic monitoring purposes and integrated into operational systems. Moreover, the combination of high-resolution (S2/MSI) and moderate-resolution (MODIS) thermal timeseries constitutes a breakthrough for future multi-sensor hot-spot detection systems, with increased monitoring capabilities that are useful for communities which interact with active volcanoes

    Volcanic Processes Monitoring and Hazard Assessment Using Integration of Remote Sensing and Ground-Based Techniques

    Get PDF
    The monitoring of active volcanoes is a complex task based on multidisciplinary and integrated analyses that use ground, drones and satellite monitoring devices. Over time, and with the development of new technologies and increasing frequency of acquisition, the use of remote sensing to accomplish this important task has grown enormously. This is especially so with the use of drones and satellites for classifying eruptive events and detecting the opening of new vents, the spreading of lava flows on the surface or ash plumes in the atmosphere, the fallout of tephra on the ground, the intrusion of new magma within the volcano edifice, and the deformation preceding impending eruptions, and many other factors. The main challenge in using remote sensing techniques is to develop automated and reliable systems that may assist the decision maker in volcano monitoring, hazard assessment and risk reduction. The integration with ground-based techniques represents a valuable additional aspect that makes the proposed methods more robust and reinforces the results obtained. This collection of papers is focused on several active volcanoes, such as Stromboli, Etna, and Volcano in Italy; the Long Valley caldera and Kilauea volcano in the USA; and Cotopaxi in Ecuador

    Magma recharge in persistently active basaltic-1 andesite systems and its geohazards implications: The case of Villarrica volcano, Chile.

    Get PDF
    We report whole-rock chemistry, mineral chemistry, and volatile content from Villarrica volcano’s major recent paroxysms and background activity. Composition of the volcanic products are basalt to basaltic andesite with whole-rock SiO2 content between 50-56 wt%, and a mineralogy dominated by olivine (Fo71-80), clinopyroxene (Mg# ~50) and plagioclase (An60-80). Volatile contents in melt inclusions are up to 1.5 wt% H2O, 500 ppm CO2, 1230 ppm sulphur and 580 ppm chlorine. Regardless of the type of activity, there are no substantial variations in whole-rock composition or the volatile content when the activity switches from background activity to a major paroxysm, strongly suggesting that this shift does not just depend on the arrival of new magma in the shallow magmatic system. Geothermobarometry constrains crystallisation of the major mineral phases at various depths between 3 and 12.7 km, suggesting that degassing of a volatile-rich recharge magma occurs deeper than 12 km, producing efficient mixing throughout the whole system, and sustaining the lava lake activity in Villarrica’s summit crater. The occurrence of a permanent lava lake also suggests that the magma recharge must be close to continuous and therefore sudden changes between background and paroxysmal volcanic activity are likely controlled by relatively small changes in the rate of recharge and/or the volatile release rate in the magmatic system. This has important implications for the understanding of eruption triggers and the forecasting of volcanic eruptions

    Tephra sedimentation and grainsize associated with pulsatory activity: the 2021 Tajogaite eruption of Cumbre Vieja (La Palma, Canary Islands, Spain)

    Get PDF
    Long-lasting eruptions are of complex characterization and are typically associated with challenging risk assessment and crisis management due to the usual occurrence of multiple interacting hazards evolving at different temporal and spatial scales (e.g., lava, tephra, and gas). The 2021 Tajogaite eruption of Cumbre Vieja (La Palma) demonstrated how even hybrid events that are mostly effusive can be associated with widespread and impacting tephra deposits as a result of a complex interplay among gas flux, conduit geometry, and magma feeding rate. In this novel study, direct observations, syn-eruptive and post-eruptive sampling, and statistical analysis of pulsatory activity have been combined to provide new insights into eruption dynamics. They show how rapid gas segregation and high magma ascent rate modulated the gas flux at multiple vents, resulting in short-time fluctuations among the different explosive styles (ash-poor gas puffing, Strombolian, violent Strombolian, and lava fountaining) and unsteady tephra ground accumulation. Various size-selective sedimentation processes were also observed, including particle aggregation and ash fingers, which have impacted the overall tephra dispersal. In fact, even though both local and total grainsize distributions of selected layers, units, and of the whole tephra blanket are unimodal with a low fine-ash content, grainsize analysis of 154 samples suggests no correlation of particles <63 Î¼m with distance from vents. Our analyses demonstrate the need to include a detailed characterization of all products of hybrid eruptions for a comprehensive interpretation of eruptive dynamics and to use multiple classification strategies that can capture eruptive styles at different temporal scales

    Vulkanische Seismizität des Vulkans Villarrica

    Get PDF
    This thesis analyzes the nature and origin of the low-frequent seismicity of Villarrica Volcano in Chile. Villarrica is an active volcano with an intermittent lava lake in its central vent. The typical volcanic activity consists of persistent degassing and usually mild Strombolian explosions and is accompanied by a notorious seismic tremor overlain by swarms of transient events in approximately 1-min intervals. Both types of signals display frequencies between 0.5 and 5 Hz. They are usually attributed to the volcanic activity with the transients being interpreted as the bursting of slugs at the surface of the lava lake (Strombolian explosions). This work examines the origin of the tremor signal and the nature of the transient events. The base for this work are 12 days of seismic data recorded by a dense local seismic network in early March 2012. The results are most likely applicable to today’s conditions since Villarrica is generally a stable system. The tremor source was located in the crater area using three different location methods. The occurrence of the transients in terms of magnitude and waiting time between two events is statistically similar to properties found for gaseous slugs flowing through a liquid-filled pipe and therefore supports the interpretation of these events as explosions. The waveforms could be classified into at least 67 families although the majority belonged to one of two families. The families likely originate in or close to the crater and share a similar source region
    • …
    corecore