18,665 research outputs found

    A Scalable Algorithm for Metric High-Quality Clustering in Information Retrieval Tasks

    Get PDF
    We consider the problem of finding efficiently a high quality k-clustering of n points in a (possibly discrete) metric space. Many methods are known when the point are vectors in a real vector space, and the distance function is a standard geometric distance such as L1, L2 (Euclidean) or L2 2 (squared Euclidean distance). In such cases efficiency is often sought via sophisticated multidimensional search structures for speeding up nearest neighbor queries (e.g. variants of kd-trees). Such techniques usually work well in spaces of moderately high dimension say up to 6 or 8). Our target is a scenario in which either the metric space cannot be mapped into a vector space, or, if this mapping is possible, the dimension of such a space is so high as to rule out the use of the above mentioned techniques. This setting is rather typical in Information Retrieval applications. We augment the well known furthest-point-first algorithm for kcenter clustering in metric spaces with a filtering step based on the triangular inequality and we compare this algorithm with some recent fast variants of the classical k-means iterative algorithm augmented with an analogous filtering schemes. We extensively tested the two solutions on synthetic geometric data and real data from Information Retrieval applications. The main conclusion we draw is that our modified furthest-point-first method attains solutions of better or comparable quality within a fraction of the time used by the fast k-means algorithm. Thus our algorithm is valuable when either real time constraints or the large amount of data highlight the poor scalability of traditional clustering methods

    Improving speaker turn embedding by crossmodal transfer learning from face embedding

    Full text link
    Learning speaker turn embeddings has shown considerable improvement in situations where conventional speaker modeling approaches fail. However, this improvement is relatively limited when compared to the gain observed in face embedding learning, which has been proven very successful for face verification and clustering tasks. Assuming that face and voices from the same identities share some latent properties (like age, gender, ethnicity), we propose three transfer learning approaches to leverage the knowledge from the face domain (learned from thousands of images and identities) for tasks in the speaker domain. These approaches, namely target embedding transfer, relative distance transfer, and clustering structure transfer, utilize the structure of the source face embedding space at different granularities to regularize the target speaker turn embedding space as optimizing terms. Our methods are evaluated on two public broadcast corpora and yield promising advances over competitive baselines in verification and audio clustering tasks, especially when dealing with short speaker utterances. The analysis of the results also gives insight into characteristics of the embedding spaces and shows their potential applications

    Semantic distillation: a method for clustering objects by their contextual specificity

    Full text link
    Techniques for data-mining, latent semantic analysis, contextual search of databases, etc. have long ago been developed by computer scientists working on information retrieval (IR). Experimental scientists, from all disciplines, having to analyse large collections of raw experimental data (astronomical, physical, biological, etc.) have developed powerful methods for their statistical analysis and for clustering, categorising, and classifying objects. Finally, physicists have developed a theory of quantum measurement, unifying the logical, algebraic, and probabilistic aspects of queries into a single formalism. The purpose of this paper is twofold: first to show that when formulated at an abstract level, problems from IR, from statistical data analysis, and from physical measurement theories are very similar and hence can profitably be cross-fertilised, and, secondly, to propose a novel method of fuzzy hierarchical clustering, termed \textit{semantic distillation} -- strongly inspired from the theory of quantum measurement --, we developed to analyse raw data coming from various types of experiments on DNA arrays. We illustrate the method by analysing DNA arrays experiments and clustering the genes of the array according to their specificity.Comment: Accepted for publication in Studies in Computational Intelligence, Springer-Verla
    • …
    corecore