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Abstract—We consider the problem of finding efficiently a high have recently become a focus of attention in the research
quality k-clustering of n points in a (possibly discrete) metric community due to the commercial success of services pro-
space. Many methods are known when the point are vectors vided, for example, byjivisimg Dogpile, andKartoo (see also

in a real vector space, and the distance function is a standard . . . L . .
geometric distancg such asl, L. (Euclidean) or L3 (squared [GRSO04]). Real-time high quality clustering is a key ingredient

Euclidean distance). In such cases efficiency is often sought viaOf such systents

sophisticated multidimensional search structures for speeding up Overall one can distinguish several general purpose al-
nearest neighbor queries (e.g. variants of kd-trees). Such tech- gorithms of wide applicability, as well as many domain-
niques usually work well in spaces of moderately high dimension specific methods developed within each discipline. In this

(say up to 6 or 8). Our target is a scenario in which either the id fl | lqorith d
metric space cannot be mapped into a vector space, or, if this paper we consiaer mostly general purpose aigorithms an

mapping is possible, the dimension of such a space is so highthe experiments described are meant to give examples of the
as to rule out the use of the above mentioned techniques. This effectiveness of the method mainly on data sets found in
setting is rather typical in Information Retrieval applications. |nformation Retrieval tasks.

We augment the well knownfurthest-point-first algorithm for k- njore generally in this paper we consider the following type
centerclustering in metric spaces with a filtering step based on the S .

triangular inequality and we compare this algorithm with some of applicative scenario:

recent fast variants of the classicak-meansiterative algorithm a) the input data "points” admit a distance function that is a
augmented with an analogous filtering schemes. We extensively metric, in particular, the triangular inequality is satisfied;
tested the two solutions on synthetic geometric data and real data b) computing the distance function for a pair of "points”

from Information Retrieval applications. The main conclusion . f th . lis t inimize th
we draw is that our modified furthest-point-first method attains IS expensive, (hus a primary goal IS 1o minimize the

solutions of better or comparable quality within a fraction of the number of distance evaluations;

time used by the fast k-means algorithm. Thus our algorithm is ¢) the requirement of finding an high quality clustering is

valuable when either real time constraints or the large amount balanced by the need to find such high quality clustering

of data highlight the poor scalability of traditional clustering quickly;

methods. d) the number of data pointa and the target number
|. INTRODUCTION of clusters of clusterg are both large, where "large”

) . ] o here must be considered in the context of the required
“Clustering” is an important operation in the exploratory response time;

analysis of large data sets. Intuitively, given a data set frome) when the data set can be mapped in a real vector space
some domain, data “points” that are “similar” with each R4, the dimension? of such a space is also large.
other should belong to the same cluster, as a consequence

the partition of the data set into clust_grs makes explicit theAS in many other areas of algorithmic research empirical
structurg of th? c_iata space” so to facilitate further human B'érformance and provable complexity/quality properties are
automat|_c anaysis. - o ) in general difficult to pursue together. Recently, using tech-
Clustering has a wide range of applications in areas Suﬁfbues from random sampling and approximation theory, new

as data mining, text mining, pattern recognition, quantizatiogyq oithm have been produced with good performance/quality
and expression of genomic data. Classical textbooks (see

e.g. [JD88], [Har75], [DO74], [And73] and [Zup82] ) and !However a second essential ingredient, not treated here, is that of finding
surveys (see e.g. [JMF99] and [Ber02] ) contain hundreds ggnificant labelling of the clusters found to convey useful information to the
bibliographic references on the issue of clustering. user

Tools for clustering results of several web search enginesrk partially supported by the Italian Registry of ccTLD .it.
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guarantees in Euclidean space (e.g. [AP98] and [Mat00]) thiis experiment k-center achieves quality levels comparable
metric spaces [Ind99], whose value in an empirical setting those attained by k-means after ten iterations, but uses
has yet to be established. On the other hand an even msubstantially less time. Among the initializations of k-means

difficult task is to analyze formally the performance of welbnly one based on sampling is as fast as k-center but yields

established clustering algorithm such as the k-means algoritantower quality in F-measure. In experiments with collections
[HPSO5]. Our course is an intermediate one: we start with ah snippets generated on-line by querying a large directory

algorithm that has performance guarantees and we augmermifitveb pages (ODP) results of comparable and often better

with heuristics, based on the triangular inequality and randaiiality are attained by k-center while the gain in time is of a

sampling, so to attain good empirical performance, which factor ranging from 5 to 10. Although more experiments are

demonstrated via carefully designed experiments. surely needed to fine tune the technique these findings give us
Our algorithm is a variation of the furthest-point-heuristia fair confidence on the validity of the proposed algorithm

for the k-center problem [Gon85], [HS85], [DF85]. Taking aghe paper is organized as follows. We introduce formalism and
measure of quality the minimum of the maximum diameter @fotation in Section Il. The main algorithms are described in

a cluster over all possible k-clustering of setropoints in a Section 11l and our heuristic modifications in Section IV. The
metric space, the solution found by the furthest-point-heurisékperimental setting and the results are described in Section
is within a factor 2 of the optimum. This approximation factox/. A survey of the main results on clustering is in Sections
is tight for polynomial algorithms in metric spaces and almost| and ViII.

tight in Euclidean spaces, unless P=NP. A straightforward im-

plementation of the furthest-point-heuristic would coXink)

distance evaluations. In this paper we modify the furthest-

point-heuristic by using the triangular inequality to filter out [I. FORMALISM AND NOTATION

useless distance computation, thus significantly speeding up

the computation in practice with respect to the straightforwadd Internal and external quality criteria

implementation. Moreover we will show that the speed/qualit

performances of our modified furthest-point-heuristic is co
petitive with those attained by recently modified versions
k-means described by Phillips [Phi02] that also exploit filte
based on the triangular inequality.

Clustering is such a very important but also rather vague ta

S0 to give rise to a very large spectrum of tools, models afgorthm is sup_pozeld to find out,_alsohcaIITd merx]undhtruth
approaches. Here we restrict ourselves to consider algorithtn unsupervised learning setting the algorithm has no (or
for which some provable guarantee in time, quality or bothery little) a priori information on the structure of the ground

has been established and those that for their wide use g}gh and only the general soundness of the overall data model

considered the standard empirical benchmark, namely Lloyénb association with a well designed algorithm can lead to a

algorithm (aka. K-means algorithm), including some recefftuStering of high quality.

improved variants. In the context of on-line applications ifP" the other hand amternal criterion is one in which the
Information Retrieval, the scatter/gather algorithm descrip@ytcome of the algorithm is compared against a functional
in [CPKT92], [CKP93], [HP96] is often used as a benchmaripat is in_principle computablg (for example via exhaustive
algorithm. Scatter/gather is a variant of k-means with addinumeration) from the same input data that are fed to the
tional split/join operations on clusters intended to improve ttfdustering algorithm. In general, the form of the functional
quality of those clusters of lower quality. The initialization ands one of the ingredients that are used on the design of the
the first refinement steps have complex@fnk) and there clustering a_lgorlthm. Wheq inner criteria are use_d _the |n|t|_al
in no speed up due to the use of the triangular inequalitiéjé?ta modellmg phase.has I|ttle_|mp§ct and the main item being
therefore scatter/gather incurs in the high time costs of t§@uged is the clustering algorithm itself.

standard k-means algorithm. For this reason we concluded thkprmal proofs of cluster quality can be made only with
Phillips’ variant [Phi02] is a fairer benchmark for our tests. respect to internal criteria, since these are formal objects,
In Section V the experimental setting and results are describ&bile external criteria are not formalized (and often, indeed,
in detail. Here we give a brief summary. Experiments witAot formalizable). While it is fair to use internal criteria to
the synthetic data set BIRCH, with 100,000 points and 1@®@mpare different algorithms provided these are designed for
classes in 2D, which is considered challenging for clusteriige same internal criterion, no such restriction applies if the
algorithms, are shown in table 1. In this experiment k-center @xternal criterion is used. Besides external criteria are closer
faster than all of the initializations of k-means we tested, ari@ the notion of "user satisfaction” which is rather informal
has better quality. After ten iterations k-mans attains qualit very important in Information Retrieval applications.
slightly superior to k-center, but with a higher time cost by twoSince we compare two algorithms developed for different
orders of magnitude. Experiments with the Reuters collectiamternal criteria, we shall use in our tests an external criterion
of 8528 documents and 55 classes are shown in Table Il.damparison. In the next section we formalize these concepts.

'he quality of the output of a clustering algorithm can be
aluated in several ways, but a basic distinction can be made
ﬁ\étweenintemal end external criteriaAn external criterion
is one in which the outcome of the algorithm is compared
ggainst the hidden classification of the input points that the



B. Formalization of the problem biological significance to be attached to a linear combination
of encoding strings. In this case a metric model is more natural.
One feature to be considered in the choice of the clustering
algorithm is the role of transitivity. That is, i is close tob
andb is close tac is this sufficient to conclude that b, ¢ might

be in the same cluster, or it must also heldlose toc? In a
2-dimensional example with points, the first choice allows the
formation of arbitrary shaped clusters, while the second choice
forces the creation of ball-like clusters. The first choice might
lead to discovering new and unexpected associations, but is

. i . ; also less robust to noise and spurious chaining effects.
Given S, determine fs is our goal, or, more precisely,

determine the partition of into equivalence classes induce% Iust?rgciz :?jti?fzgjllr':m?oaléﬁni]ﬁtiltzzlllfy \:vzes?n:rrl?f(;/t tﬁgrzgt?i; of
by f~!; we denote this partition withP(S, Fi): P : P 9

of the comparison by passing to our algorithm as a parameter
the number of clusters in the ground truth.

We have a finite or infinite class of objeasand finite subset
S C C, where we denote withn the cardinality ofS. We
stipulate the existence of a labelling functigh : S — L
associating to each element gfa label form a denumerable
set L of labels. To simplif§ our setting we identifyL, with
the set of natural numberS. Note that generallyf depends
on S. On the other hand, whefidoes not depend of, it is
just the restriction tae5' of a functionF' : C — L. This would
be a restricted and simpler case.

P(S,fs)={A€2%FeL : A= fs'(1)}.
C. Problems: k-center, k-medians, k-means
Note that this second formulation relieves us from the burden
of determining exactly the nature of the label ebr from
the temptation of using special properties of clever labelli

schemes. X . . g
aceV, endowed with a distance functidn, andk, partition

What is known, provided a computational cost is paid in it%o. X .
point-wise evaluation, is a distance functibn: Sx S — Rx ; '?ttc;] subset<’, CI’“ atnd d%t'errryne qumla“_ﬂ’“ €V so
r&q e maximum cluster radius is minimized :

associating a hon negative real number to a pair of elements
S. A proper modelling of the problem aims at the devising a min max max D(z, 1)
distanceD that, for everys, is related to the partitio® (.S, fs) j =l

and is computable. . . A second equivalent definition is as follows. For a paint
Itis a natural step forward to interpré? as a metric (thus gnd a set of pointsY, we setD(p, X) = mingex D(p,q),
imposing or assuming) that satisfies the three axioms (for everyis extending the notion if distance from point-to-point to
s,p €5, D(s,5) = 0, D(s,p) = D(p,s) and the triangular point-to-set. Given the input sét and a set of center® the
inequality (metric case). partition of S is implicit. We can define the k-center problem

A more elaborated model requires a mapping of the elemegts he problem of finding a séf of & points so to find:
of S to points in a Real Vector Spadé, my : S — V, while

the distanceD is a normed distance in such space. The use of min max D(p, X)

vector space model introduces a large quantity of possibilities, Xopes

in particular it is possible to generate new points in a vector 2) The k-medians problenGiven S andk, partition S into

space as a linear combination of other points. Note that poistsbset<;, ..C, and determine pointg;, ..ux € V so that the

so constructed are not necessarily in relations to elementssafn of all the point-center distances is minimized:

S (or of C), thus properties oD defined for points inny (S)

might not hold for other points ifv. min Y Y D(x, ).

In many applications the Vector space model is an obvious 7 w€C;

one or at least a simple one to conceive. For example protgiithe more compact notation this becomes the problem of

expression data ip-arrays are naturally modelled as a twofinging:

dimensional matrix, thus suggesting to consider the columns

as dimensions of the real vector space and the rows as point

in such space (or viceversa). For information retrieval appli-

cations mapping a text as point in an high dimensional vectdbhe 1-median problem (finding a point minimizing the sum of

space using the TF-IDF model is by now a standard todlistances from all other points in the set) is also known as the

Is some other areas such as clustering of proteins basedFemmat-Weber problem and does not have a closed formula

similarity of their DNA encoding strings, instead the mappingolution.

to a vector space is more problematic, since there is little3) The k-means problenGiven S and k, partition S into
subsets’, ..Cy and determine pointgsy, ..., € V so that so

2In some application areas, such as clustering of results from web searctth@t sum of squares of inter-cluster point-center distances is
engines the labelling task is not a trivial one. minimized:

3In the second case we have a universal labelling, in the first a local one. . 9
In certain application the local model might be more appropriate, in some the min Z Z (D(x, pj))
universal model is more appropriate. j z€C;

The following are some classical internal functionals to be
r{ginimized.
1) The k-center problemGiven S a point set in vector

H}énz D(p, X).
peES



In the more compact notation this becomes the problem ffgorithm 1 Feder and Greene version of furthest-point-

finding: heuristic
min D(p, X))? T =0,
X z;( v X)) dist(p) =00 Vp €S,

while |T| < k do

The value of this functional for a given clustering is also called ¢ = narg max{dist(p)|p € S\ T};

the squared error distortiorof the clustering.

. . add qto T;
4) The gengrallzed k-m_eans proble.rﬁomenmes a more updatencighbour (p), dist(p) ¥p € S\ T
general objective function is used, defined as: end while

min > [C;|* Y (D(x, 1))
J Z'GCJ'
actually spent in updating the invariants, if this is done in a

where fora = 0 one gets the previous formula, far = 1 . . . . ; .
one gets the sum of average point center distances. Tﬁrmghtforward manner it take3(n) time per iteration, so in

o : otal O(nk) time.
more general formulation is used for example in [IKI94]. . : - .
Since in the continuous case it can be shown that— The main result of [FG88] is an efficient way of updating

(1/1C;1) Zpecf p that is the optimal center of a cluster is théhe invariantsneighbour(p) anddist(p) when the problem is

centroid of the cluster, simple algebraic manipulations sho&?;trig] ?r?_tc::irgecr:c:gnc?\l/eﬁzl?ltﬁgifﬁtr?gsdt thfin(iljf giﬁhlif r;:an
that for o = 2 one gets the sum of squares of all pairwis ' P 9

: L Ee made to run i (n log k) time. This result is achieved via
distances of points in clusters. the application of rgieragrch)ies of bounding boxes inspired by
D. Variants the method of Vaidya for the all-nearest-neighbors problem
If we impose that als@, .., € S we have a "combinatorial” [Vai89]. Such scheme is rather complex and at the best of my
version of the above problems. A continuous version of ti@owledge it has not been implemented.
above problem is one in which the set of points is not discretariel Har-Peled in [HPO1] solves the Euclideircenter

(while the set of centers is discrete) [FMWOO]. problem, within an approximation factor 2, fok =
O(/n/logn) in expected timeD(n) provided the computa-

tional model allows for constant time hashing and floor func-

E. Graph based measures tion. This algorithm uses a clever mix of random sampling,
The classical k-center, k-median and k-mean formulatiof@st point location and the furthest point heuristic.

for the clustering problem are very popular but by no means
the only one. Recently in [DFK99], [KVVO00], [CKVWO03], A version of the algorithm that produces a hierarchy of clusters
[Dhi01], clustering criteria based on the notion of the condués described in [Das02].
tance qf a cut in a _graph have been_ proposed together V\gh The k-means algorithm (aka Lloyd’s algorithm)
approximation algorithms based on Singular Value Decompo- i
sition computations. Other classical graph-based clustering &fgyd's algorithm (see [Har75], [For65], [LIo57]) can be seen
obtained via the construction of Minimum (and maximum§S an iterative cluster quality booster. It takes as input a
Spanning Trees of the distance graph of the input poirff%ugh k-clustering (or more precisely k candidate centers) and

[ABKY88]. produces as output another k-clustering (hopefully of better
quality). It is had been shown in [SI84] that the using the sum

lll. ALGORITHMS of squared Euclidean distances as internal quality criterion,

A. The furthest-point-first method the procedure converges to a local minimum for the objective

In [Gon85] it is shown an algorithm called APPROX in thafunction within a finite number of iterations. Its main building

paper that finds a solution within a constant factor of thJOcks are:

optimum for thek-center problem when only the metric space 1) Generation of the initial selection df points;

model is assumed. Basically the same solution called furthest2) Main iteration loop;

point-traversal has been found also by Hochbaum and Shmoys) Termination condition.

[HS85], although in the context of clustering of a graph. In the main iteration loop, given a set of centroid points,
each input point is associated to its closest centroid, and

In [FG88] the same algorithm is christened "Furthest poithe collection of points associated to a centroid is a cluster.

algorithm” and described in a slightly different languagd-or each cluster a new centroid that is a (weighted) linear

Given the setS of points, and a sef’ C S of centers. We combination of the cluster points is recomputed. Thus a new

keep for every poinp € S\ T the center inT" closest top, iteration can start.

such point is calledeigbour(p), and the value of the distanceGiven the importance of this algorithm there is a vast literature

D(p, neighbour(p)) is dist(p). discussing several shortcomings and improvements to the basic

This description of the algorithm concentrate on buildinffamework. In particular, one well known shortcoming is that

the setT" of the heads of the clusters. Most of the time isome clusters may become empty during the computation.



To overcome this behavior, following [Phi02], we adopt the V. EXPERIMENTS
ISODATA [TG77] technique that splits one of the "largest’s. Algorithms and Variants

clusters so to maintain the number of clusters unchanged. \\..~ o experiments with two variants of the k-center

There exists two basic versions Lloyd’s a'go”thm (al_sglgorithm and three variants of the k-means algorithm. We
batch k-means) [LI057] apd MacQueen's algorithm (adapt'_\@lose the three initialization methods for k-means that have
k-means) _[Mac§7]. In_ this second method uses an on—Ier en amply cited in literature and are relatively simple. More
approach, in which points are adged one by one. The centro anced and complex initializations have been ruled out
are recompL_lted for each new point that is assigned to a clusiglye the possible boost in quality is paid immediately in an
however points _already assigned to clusters do not changgessive time for the initialization, thus falling immediately
when the centroids moves. out of the trade-off region of interest for this study.

It is_ well knov_vn_,_apd our experiments _confirm this, that theKC This is the k-center algorithm described in Section I1I-A
quality of the initialization has a deep impact on the output together with the triangle inequality filtering.

quality. Initialization of k-means is a delicate step and severahS This is the same algorithm as KC but applied to a

methods are compared in [PLL99], [BF98]. Random Sample of the input points of size= /nk,

sincek < n we haven’ < n always. Afterwards the
IV. OUR CONTRIBUTION remainingn—n’ input points are associated to the closest
center.
. ” PTS This is the k-means described in section IlI-B where
We have produced an upgraded version of the "furthest point initial centers are randomly chosen among the input data

algorlthm_ that exploits thg tnangu_lar meg_uahty to _f||ter out and the rest of elements are assigned to the closest center
useless distance computations. This modified algorithm works [For65]

in any metric space. RP
Consider in Feder and Greene’s algorithm a center T'

and its associated set of closest poitNgc) = {p € S\

T | neigbour(p) = c}. Store such set of poiniV(c) by
decreasing distance to When a new centey is selected we
scanN (c) in decreasing order of distance and we stop the scan
when for a pointp € N(c), we haveD(p,c) < D(q,c)/2.

By the triangular inequality, any point that satisfies this
condition cannot be closer tg than toc. This rule filters

out form the scan points for whiclp cannot possibly be

an associated center, thus speeding up the update of the
invariants. Note that all mutual distances of centers7in )
must be available, thus, there is a co¥#?) to compute and B- Quality measures

maintain this information. The gain is that potentially fewer As mentioned in section II-A, there are two fundamentally
thann points need to be scanned at each iteration. different ways for evaluating the clustering quality: the internal
We consider a standard model in which all data reside and the external criterion. The first one is based on the evalu-
main memory. In our scenario the scalability issue arisé§on of how the output clustering approx a certain objective
not because of the need to access slow secondary memoffi#gction, while the second is based on the comparison between
but because of an excessive number of expensive distatft® output clustering and the ground truth. In our experiments
computations. In this context algorithms that as a first stépe ground truth is always available, so we will use the external
compute all®(n?) pairwise distances among the input point§1easure for evaluating clustering quality.

are ruled out as too expensfveAlso methods that perform We denote with P(S, fs) = {Ci,...,Ci} the ground
@(nk) distance Computations are too slow except whten truth partition formed by a collection Gﬂasses and with

is a very small number (e.g. 2 or 3). Using our filtering’ = {O1,..,Ox} the outcome of the clustering algorithm
step within the furthest-point-first algorithms, in terms othat is a collection ofclusters We use three well known
asymptotic complexity we could not prove any better bourfiHality measureF-measure Entropy and Accuracythat has
than the naiveD(nk), however experiment have shown thaPeen widely used in information retrieval, (see e.g. [SKKOO]
under several different scenarios the speed gain is substarlfidfVWO03] and references therein).

and this improvement makes the "furthest point algorithm” 1) F-measure:The F-measure was introduced in [LA99]
truly scalable. and is based on tharecisionandrecall that are concepts well

known in the information retrieval literature [Kow97], [VR79].
Given a clusteiO; and a clasg’; we have:

This is the k-means described in section IlI-B with
an initialization based on Random perturbation of the
global centroid point. Points are considered as a dis-
tribution with meany and standard deviatioa. Cen-
troids are then obtained by generating points along a
two-dimensional Gaussian distribution of meanand
standard deviatiow.

This is the k-means described in section IlI-B where
seeds are randomly chosen among the input data. The
remaining points are assigned one per time to the nearest
centroid that must be recomputed [Mac67].

_1¢in o,
1051

_[cinoy)
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4Many variants of HAC: Hierarchical Agglomerative Clustering pay this

initial high cost recall(i, j)

precision(i, j)



where || denotes the cardinality of a set. Note that precision °***®
and recall are real numbers in the ranfel]. Intuitively
precision measures the probability that an element of the class
1 falls in the cluster; while recall is the probability that an
element of the clustef is also an element of the clagsThe
F-measuref'(i, j) of a clusterj and a classg is the harmonic

5e+06

4e+06

T

3e+06

T

mean of precision and recall: .
2e+06 4
Fi, j) =2 precision(i, j)recall(i, j)
Z? = .. . . . .
J precision(i, j) + recall(i, j) 1e+06 - 1

The F-measure of an entire clustering is computed by the |
following formula:

_1e+06 L L L L L L
-1le+06 0 1le+06 2e+06 3e+06 4e+06 5e+06 6e+06

X

C; .
F =3 axri, ),
i J Fig. 1. A graphical representation of BIRCH data set

wheren is the sum of the cardinality of all the classes. The
value of F' is in the rang€l0..1] and a higher value indicatesc, pataset description

better quality. For our experiments we employed two types of data sets:
2) Entropy: Entropy is a widely used measure in infor- P nid yb :

4 . synthetic and real data. Synthetic data consist in a collection
mation theory. In a nutshell we can use the relative entroB%/

¢ th t of tainty that h b tpoints in the bi-dimensional Cartesian space generated
0 measure the amount of uncertainty that we have a QaL(*:cording to the BIRCH [HEO2] experiment described in

the ground truth_proviQed the available information is th8etai|s in section V-D. As real data we used the well known
computgd clustering. Given a clustey; and a clasgC;, we Reuters data set and the resulting snippets of a set of query
can define made to ODP [Pro] (Open Directory Project).
Experiments of synthetic data show that our algorithm is faster
than the accelerated K-means [Phi02] and even more accurate.
Experiments using real data sets show that both algorithms
have comparable quality, but the time cost of k-means is far
E; = Zpi,j log p; ;, larger than that of k-center. Especially for on-line snippet
i clustering, where response time is a crucial parameter this
feature could determine the success or failure of the clustering

105
Jo ZTJEj’ system.
J D. Synthetic data

wheren is the number of elements of the whole clustering. We build synthetic data according to the BIRCH experiment
The value ofF is in the rangel0..logn] and a lower value as described in [HEO2]. In this experiments the data set is
indicates better quality. constituted of 10,000 points in a bi-dimensional space. In order
3) Accuracy: While the entropy of a clustering is anto build the clusters we build a 10 x 10 uniform grid in the
average of the entropy of single clusters, a notion of accurdeiydimensional space. Each cell of the grid is a square of size
is obtained using simply the maximum operator: 41/2. The bottom-left vertex of the first cell have coordinates
0,0. The center of each cell is also the center of each cluster. A
cluster is populated by inserting 100 points according to a bi-
dimensional Gaussian distribution with mean the coordinate
of its center and variance 1. Note that according with the
A= Z @Aj. Gaussian distribution some points of a cluster can fall in a
=" different cell respect to the one containing its center. In figure
1 we show a graphical representation of the BIRCH data set.
The accuracyA is in the range[0..1] and a higher value Clearly, a distribution like that in the BIRCH experiment
indicates better quality. We report results on the F-measu(see Figure 1) is not a realistic one, but it is considered a
Entropy and Accuracy in our experiments. In general they acballenging input for clustering algorithms. This experiment
all rather consistent. Occasionally when quality indicators giwgves a hint that the k-center algorithm algorithm can indeed
diverging results, we take the F-measure as the most significketmore competitive than k-means in metric spaces in which
one since it balances better the need to attain simultaneously distance function is well defined and there is a high degree
good precision and recall. of locality.
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Fig. 2. BIRCH experiment with 10,000 points, 100 clusters. F-measufég. 3. BIRCH experiment with 10,000 points, 100 clusters. Entropy versus
versus number of distance computations. number of distance computations.
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In Figures 2, 3 and 4 we show the correlation of the number
of inter-point distance computations (x-axis) and the quality of o /ﬁ 1
the resulting clustering (y-axis), at each iteration of the k-mean =

method. Each curve represents the evolution of a variant of | /
the k-means algorithm for each different initialization method.

Since k-center is not an iterative algorithm, each variant i3 o
. . S osloe i
represented by a single point. 8
[ Algorithm ][ #Dist. [ F-measure][ Entropy | Accuracy | ors 1
K-center 95831 0.792 || 0.502 0.798
K-center RS || 107555 0.884 || 0.317 | 0.884 arl cmean o ——
Tnit. MQ 990000 0.825]] 0.403 | 0.837 oener ke ®
Init. PTS 176264 0.675 || 0.680 0.672 KecenterRS @
Init. RP 149081 0.629 || 0.834 0.612 0.65 . L : .
0 500000 1le+06 1.5e+06 2e+06 2.5e+06
K-means MQ 2424365 0.910 0.203 0.915 Distance computation
K-means PTS|| 1628974 0.883 || 0.242 0.888
K-means RP || 1309060 0.886 || 0.238 0.888 Fig. 4. BIRCH experiment with 10,000 points, 100 clusters. Accuracy versus
number of distance computations.
TABLE |

DATA SET BIRCH wWITH 10000POINTS AND 100CLUSTERS
sive classes. We further remove 10 classes each containing
only a document.
In Table Il it is shown for each variant of k-center and

E. Text data k-mean (after 10 iterations) the time cost in seconds, the

Since the pioneering work of Salton [SM86] it is known thahumber of distance computations and the quality of the final
text corpora can be embedded in high dimensional real vectbustering (using three quality criteria). In terms of number
spaces so that properly defined similarity measures for pairsaff comparisons there is one order of magnitude difference
vectors (e.g. the cosine similarity) approximate well the notidmetween k-center and k-means, however in terms of time there
of “similarity of topic” of the two corresponding documentsis a two orders of magnitude gap. This is due to the fact that the
We tested our algorithm on one quite large static collection afixiliary operations of book keeping and centroid computation
news, the Reuters collection, which is often used as benchmhdve a large impact.
in the Information Retrieval literature. Also, we tested our The evolution of the trade off quality/time at each iteration
algorithm on on-line generated collections of snippets resulting k-means is shown in figures 5, 6, and 7.
from queries to the ODP (Open Directory Project) hierarchy
of topics. Table Il shows that in terms of time RP and MQ are more

1) Reuters: Reuters is one of the most used data setxpensive k-means initializations than PTS. This is due to the
in information retrieval [NISO5]. After an initial cleaning to computation of new centroids. In the MQ case we were able
remove multi-labelled documents, we obtain a corpus of 8588 save significantly in time by an incremental computation of
documents of various length organized in 65 mutually exclmew centroids. K-center KC and RS have a cost in time that



[ Algorithm [[ #Dist. [ Time ][ F-measure] Entropy [ Accuracy | 15 i i
K-center 470782] 212 || 0.340 1398 | 0.594 K S
K-center RS || 499593 | 190 || 0.441 1.240 | 0.650 14t e foonerke B
Init. MQ 466565 | 3656 || 0.479 0.963 0.698
Init. PTS 455365 225 || 0.263 1.258 0.639 13+ 1
Init. RP 471075 | 54687 || 0.182 1.642 0.515 -
K-means MQ || 4630184 | 44248 || 0.433 0.948 0.708 12 1
K-means PTS|| 4561664 | 41868 || 0.296 0.901 0.742 2
K-means RP || 4483178 | 97018 || 0.298 0.924 0.735 ,g 11+ g
w
TABLE I 1r b
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is two orders of magnitude less than that of K-means MQ and
RP. In terms of time cost KC and RS are at a par with PTS,
however the quality in terms of"-measure is significantly Fig. 7. Accuracy of Reuters versus time (in secs) on a logarithmic scale
better than that attained by PTS. After iterating ten times k-
means only slightly improves the quality. Note that, in the
case of MQ, the F-measure decreases at each iteration oPkzzles This coarsification is needed in order to balance the
means. This is a rare event but a possible one since k-mear@igber of classes and the number of snippets returned by
guaranteed for certain metrics to reach a local minimum ordyquery. In ODP the textual quality of the snippets is quite
for the interior quality criterion, not for the exterior one.  variable, therefore to filter out noise in our tests we first
2) Web snippetsWe made a series of experiments usingollect at most 400 snippets returned from a query process,
as input the snippets resulting from a query to the weBen we discard snippets that are shorter than 40 characters
based directory "The Open Directory Project” [Pro]. The Opeand containing less then 3 words.
Directory Project (ODP for short) is a pre-classified collectio@lustering of snippets is used as an on-line support to web
of a few millions of web pages (on December 3, 200%rowsing, therefore real-time response is a critical parameter.
ODP reached 4M entries) pre-classified into more than 59@Kclustering phase that introduces a delay comparable to the
categories by a wide group of volunteer human experts. Ttige needed for just downloading the snippets, thus in effect
classification induced by the ODP labelling scheme gives us @aubling the user latency, is not acceptable for most users. For
objective "ground truth” against which we can compare ouhis reason, instead of setting a fixed number of iteration to
clustering. In ODP documents are organized according withe k-means algorithm, we decided a reasonable time deadline
a hierarchical ontology. For any snippet we obtain a labéh our experiments of 5 seconds) and we halt the iterative
for its class by considering only the first two levels of th@lgorithms at the end of the first iteration that is passed the
path on the ODP category tree. For example, if we have twieadline. We count only the clustering time needed
documents, the first one in categoBames — Puzzles — We planed a set of queries according with the method used
Anagrams and the second in categogames — Puzzles in [GDGLO5], by dividing queries in three broad families:
— Crosswords they are both considered in claGames— ambiguous queries, generic queries and specific queFies

Time (in seconds)



A . Algorithm ][ Time ][ F-measure] Entropy [ Accuracy
each query we indicate the numberof_smppets found, the Query = “health'n = 154 = 47 Bulld fime = 0.788
number ofk of ODP classes, and the time in seconds used to KC 1255 [ 0.377 0.915 0.551
build the TF-IDF model. For each query and each algorithm RS 1.422 1 0.365 0.880 [ 0.551
we indicated the time used for clustering and the quality of RP 53.634 || 0.292 0971 | 0.493
the outcome. These results are shown in tables Il IV V where 'F\f'% g"‘l’gg 8'3‘3‘2 8'3%2 g'gig
we highlight in bold the two best values in each column. We Query = “language’n = 185% = 33 Build time = 1.022
noticed that the quality of the clustering is very dependent on KC 0.956 || 0.263 1.321 | 0.410
the single query. Moreover, different results could be returned [RS 1.029 ][ 0.298 1301 | 0432
for the same query at different times because of updates made I\R/IPQ 2‘2‘7‘33 g-ggg 1-‘2‘82 g-ig;
by the ODP team.In te_rms of tw_ne k-ce_nter is 5 to 10 times PTS 6038 10576 1310 0421
faster than k-means with a quality that is often better than that Query = “machine’ = 186k = 52 Build time = 0.876
attained by the k-means variants KC 1531 0.408 1137 ] 0.483
RS 1.689 || 0.363 1125 | 0.467
Algorithm [[ Time || F-measure| Entropy | Accuracy RP 83.725 || 0.322 1169 | 0.397
Query = “armstrong = 175k = 52 Build time = 0.692 MQ 9.4684 || 0.420 1.018 0.483
KC 1.258 0.406 0.885 0.582 PTS 9.214 0.398 1.068 0.467
RS 1.451 0.416 0.874 0577 Query = “music’n = 188 k = 44 Build time = 0.807
=p 52980170319 154 T 0434 KC 1.254 || 0.326 0.830 | 0.617
o) =508 10420 0868 T 0571 RS 1.428 || 0.300 0.852 | 0.585
PTS 5759 || 0.377 0.958 | 0.525 RP 57.248 || 0.239 1038 | 0.510
Query = Jaguar'n = 177 k = 26 Build time = 0.707 MQ 6.461 || 0.314 0.895 | 0.595
KC 0.637 || 0.414 1.042 | 0553 PTS 6.609 || 0.287 1.004 | 0.558
RS 0.691 0.382 1.022 0.564 Query = “clusters™n = 194 k = 34 Build time = 0.956
RP 25.082 || 0.250 1.344 | 0.389 KC 1048 1 0.525 0825 | 0644
MQ 6.464 || 0.384 0014 | 0.604 RS 1128 || 0519 0812 | 0649
PTS 6.214 || 0.316 1113 | 0536 RP 45.496 || 0.291 1335 | 0.391
Query = "mandrake’n = 137 k = 31 Build time = 0.599 MQ 6.458 || 0.465 0.830 0.634
KC 0.609 0.377 0.832 0.693 PTS 5.992 0.430 0.872 0.608
RS 0.725 || 0.404 0669 | 0.722
RP 29.564 || 0.246 0.878 | 0.576 TABLE IV
MQ 5.454 0.318 0.755 0.664 CLUSTERING OFSNIPPETS RETURNED BY QUERIES TO THEODP
PTS 5.131 0.299 0.881 0.642 DIRECTORY FORgeneric queries
Query = “java’n = 171 k = 46 Build time = 0.783
KC 1.188 || 0.336 1111 | 0532
RS 1.347 || 0.371 1.042 | 0520
RP 60.716 || 0.267 1.167 | 0.426
MQ 10.241 ]| 0.343 0.984 | 0.520 When k is fixed in [CRW91], [HS91] when the objective
PTS 9.999 || 0.338 0975 | 0.520 function to be optimized is a monotone function of the clusters
TABLE Il Euclidean radii (or diameters) then there is a polynomial time

algorithm in general with timé&(n*). For some special value

of k& and specific functionals better results can be obtained,
e.g. for k = 2 the 2-center problem in 2D is solved in
time O(nlogn). Inaba, Katoh and Imai [IKI94] observed
that for the extended k-means problem one could enumerate
VI. PREVIOUS WORK ALGORITHMS all possible decompositions induced Ry centers in time

In most settings problems listed in Section (II-C) are NF2(n**!) and find thus the optimal solution can be found
hard for non constant number of clustéts Thus one usually in polynomial time for fixedk.

resorts to heuristics or to approximation algorithms. In thié\ (1+¢)-approximation algorithm by Agarwal and Procopiuc
context an approximation algorithm is an algorithm whodéP98] for the Euclidean k-center problem Rf runs in time
output’s value is within a bounded multiplicative factor fromO(nlogk + (k/e)©* 7)), for fixed d and k.
the value of the optimal value of the corresponding functionaalliopoulos and Rao [KR99], improving on previous results
When k is part of the input parameters, Feder and Greegg Arora, Raghavan and Rao, give (& + ¢)-approximation
[FG88] (see also [BE96]) proved that it is NP-hard to approXigorithm for k-median clustering of points i®¢ using time
imate the Euclidean k-center problem in 2d within an approg(gl/ednlognlog k), for fixed d and k.

imation ratio smaller than 1.822 (for the diameter k-centajatousek in [Mat00] give a(1 + €)-approximation algorithm
smaller than 1.969). Moreover it is NP-hard to approximaigy x-mean clustering i? using timeO (n(log n)*(1/¢)2k*4)
the L,-metric k-center problem in 2d within an approximatiogy fixed d and k.

ratio smaller than 2. Har-Peled and Mazudar [HPMO04] have improved the results

5For sake of replicating the experiments, when we make a new query &QJ k-medlan and k-means by algorithms with complexity
also cache its results. linear inn.

CLUSTERING OFSNIPPETS RETURNED BY QUERIES TO THIODP
DIRECTORY FORambuguous queries



CLUSTERING OFSNIPPETS RETURNED BY QUERIES TO THODP
DIRECTORY FORspecific queries

Algorithm ][ Time ][ F-measure] Entropy [ Accuracy o . :

Query = “mickey mouseT = 66 k = 26 Bulld fime = 0.328 Ok cIu_ster; W|th|n a factqu of the cost of th(_a optimal k

KC 0284 11 0.549 0.806 0.606 clustering, it is possible via appropriate sampling to attain an

RS 0.354 || 0.609 0.666 | 0.666 O(kn) expected time algorithm produciritp clusters within

RP 7.516 || 0.473 0816 | 0.530 a factor3(2 + «) of the cost of the optimal k-clustering, with

MQ 5.267 || 0.437 0.833 | 0.530 i o

PTS 3.403 || 0.466 0.760 | 0.575 high prt_)bab|l|ty. . . . .

Query = "olympic games = 183k = 41 Build time = 0.939 Sometimes the pr(_)blem is cast in a sp(_acmc .computatlonal

KC 1.206 || 0.335 1.028 | 0568 model such as: the incremental setting, with points added one

RS 1334 ]| 0.331 0971 | 0.551 by one to the data structure [CCFM97], [Can93], the parallel

Ez ‘1‘8-232 g-ggf 1-832 8-223 setting [Dat94], the data stream setting .

PTS 10516 17 0.301 0967 0535 In Model based clgsterlng_one assumes that th_e data are

Query = “steven spielbergh = 73 k = 11 Build time = 0.262 generated by sampling a mixture of density functions from

KC 0.119 ][ 0.646 0.670 | 0.753 a given class. The objective is to find the parameters of these

RS 0.130 || 0.652 0639 | 0.726 functions that better fit the data.

RP 3.665 || 0.387 1.109 | 0.493

MQ 1.428 || 0.513 0.673 | 0.726 VIlI. PREVIOUS WORK INFORMATION RETRIEVAL

PTS 1.357 ] 0515 0809 | 0657 One of the applicative areas fields in which the model we refer
TABLE V to finds a natural example is that of Information retrieval, in

particular in regarding problem of clustering documents that
are mapped to points in a very high dimensional vector space
[SM86][DS05] [DFGO01].

Often in the context of IR application the clustering problem
is reformulated in terms of "similarity” functions instead of

A second approach to the problem is to develop algorithrilistance functions [DMO1][DGKO2].

with some theoretical guarantee but also simple enough thexts related to the WWW (pages, snippets) have recently
be of practical value. In [KMNO2b] it is shown a(9 + received much attention [SGMOQ], [FG04], [HGKIOZ]. Often

¢)-approximation for the k-means problem in Euclideén in this context techniques based on text are combined with
dimensional space, based on local search for moves improvigghniques based on the hyper-textual graph structure of the
the value of the objective function. An hybrid algorithm"WVWW [MSOO]- . ) _
merging Lloyd’s algorithm with the the local search techniqué-lustering techniques have been used to improve the quality
is also tested for assessing empirical performance. This lo€4 Wide-topic searching on the web [CPKT92], [CKP93],
search technique has been applied to the Euclidean k-medfdR96]. [HGI00], [ZE98] .

problem in [KPR98], [CG99], [AGK 01], and to the metric VIIl. CONCLUSIONS

k-meang problem in [MPOZ]. ) ) The K-means algorithm (Lloyd’s algorithm) is the a well
Associating points to clusters via nearest-neighbor cOMPsown method for clustering, used in a wide range of appli-
tations is the most expensive task in Lloyd's algorithm andyions whose pros and cons are well known. In contrast, the
number of speedup techniques have been proposed receifyest.point-first method for k-clustering has been consid-
[ARS98], [KMN*02a], [PM99], [PMO0OQ], [Phi02]. Some are graq 5o far only of theoretical interest. In this paper we show
based on using kd-trees for speeding up nearest neighfQr resyit of experiments in the area of Information Retrieval
search [ARS98], [PM99], [KMN02a] and these can be usedhdicating that the furthest-point-first method, with additional
in Euclidean spaces of low dimension (say up t0 5 or &jyaring steps, is capable of producing high quality clusters
Others like [Phi02], [PMOO], [EIkO3] are based on using th@;iin "5 fraction of the time used by improved versions of
triangular inequality and work in metric spaces. k-means. In particular we dispense with the need to compute
Other approaches which we will not cover use simulated afsnroids, thus we can deal easily with situations where the

nealing, branch-and-bound searching, gradient descent, genglion of a centroid is not a natural or well defined one, or it
algorithms for which no provable approximation bounds arg expensive to compute and update.

known.

Mishra et al. [MOPO01] show that, for the k-median problem
(both in the discrete and continuous setting), when feedind/@KY88]
clustering algorithm with a random sample of the input data,
the obtained solutions is of comparable quality with respect
to using all of the input data. A similar sample-based result [$PPRO0]
shown in [ADPROO] for the k-center problem. In [GMMOOQQ]
a similar input reduction effect is obtained via a divide and
conquer strategy. [AGKT01]
For the metric k-median problem Indyk in [Ind99] shows
that, given as a subroutine @(n?) algorithm that produces
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