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Abstract— We consider the problem of finding efficiently a high
quality k-clustering of n points in a (possibly discrete) metric
space. Many methods are known when the point are vectors
in a real vector space, and the distance function is a standard
geometric distance such asL1, L2 (Euclidean) or L2

2 (squared
Euclidean distance). In such cases efficiency is often sought via
sophisticated multidimensional search structures for speeding up
nearest neighbor queries (e.g. variants of kd-trees). Such tech-
niques usually work well in spaces of moderately high dimension
(say up to 6 or 8). Our target is a scenario in which either the
metric space cannot be mapped into a vector space, or, if this
mapping is possible, the dimension of such a space is so high
as to rule out the use of the above mentioned techniques. This
setting is rather typical in Information Retrieval applications.
We augment the well known furthest-point-first algorithm for k-
centerclustering in metric spaces with a filtering step based on the
triangular inequality and we compare this algorithm with some
recent fast variants of the classicalk-means iterative algorithm
augmented with an analogous filtering schemes. We extensively
tested the two solutions on synthetic geometric data and real data
from Information Retrieval applications. The main conclusion
we draw is that our modified furthest-point-first method attains
solutions of better or comparable quality within a fraction of the
time used by the fast k-means algorithm. Thus our algorithm is
valuable when either real time constraints or the large amount
of data highlight the poor scalability of traditional clustering
methods.

I. I NTRODUCTION

“Clustering” is an important operation in the exploratory
analysis of large data sets. Intuitively, given a data set from
some domain, data “points” that are “similar” with each
other should belong to the same cluster, as a consequence
the partition of the data set into clusters makes explicit the
structure of the “data space” so to facilitate further human or
automatic analysis.
Clustering has a wide range of applications in areas such

as data mining, text mining, pattern recognition, quantization,
and expression of genomic data. Classical textbooks (see
e.g. [JD88], [Har75], [DO74], [And73] and [Zup82] ) and
surveys (see e.g. [JMF99] and [Ber02] ) contain hundreds of
bibliographic references on the issue of clustering.
Tools for clustering results of several web search engines

have recently become a focus of attention in the research
community due to the commercial success of services pro-
vided, for example, byVivisimo, Dogpile, andKartoo (see also
[GRS04]). Real-time high quality clustering is a key ingredient
of such systems1.

Overall one can distinguish several general purpose al-
gorithms of wide applicability, as well as many domain-
specific methods developed within each discipline. In this
paper we consider mostly general purpose algorithms and
the experiments described are meant to give examples of the
effectiveness of the method mainly on data sets found in
Information Retrieval tasks.
More generally in this paper we consider the following type

of applicative scenario:

a) the input data ”points” admit a distance function that is a
metric, in particular, the triangular inequality is satisfied;

b) computing the distance function for a pair of ”points”
is expensive, thus a primary goal is to minimize the
number of distance evaluations;

c) the requirement of finding an high quality clustering is
balanced by the need to find such high quality clustering
quickly;

d) the number of data pointsn and the target number
of clusters of clustersk are both large, where ”large”
here must be considered in the context of the required
response time;

e) when the data set can be mapped in a real vector space
Rd, the dimensiond of such a space is also large.

As in many other areas of algorithmic research empirical
performance and provable complexity/quality properties are
in general difficult to pursue together. Recently, using tech-
niques from random sampling and approximation theory, new
algorithm have been produced with good performance/quality

1However a second essential ingredient, not treated here, is that of finding
significant labelling of the clusters found to convey useful information to the
user.
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guarantees in Euclidean space (e.g. [AP98] and [Mat00]) or
metric spaces [Ind99], whose value in an empirical setting
has yet to be established. On the other hand an even more
difficult task is to analyze formally the performance of well
established clustering algorithm such as the k-means algorithm
[HPS05]. Our course is an intermediate one: we start with an
algorithm that has performance guarantees and we augment it
with heuristics, based on the triangular inequality and random
sampling, so to attain good empirical performance, which is
demonstrated via carefully designed experiments.
Our algorithm is a variation of the furthest-point-heuristic

for the k-center problem [Gon85], [HS85], [DF85]. Taking as
measure of quality the minimum of the maximum diameter of
a cluster over all possible k-clustering of set ofn points in a
metric space, the solution found by the furthest-point-heuristic
is within a factor 2 of the optimum. This approximation factor
is tight for polynomial algorithms in metric spaces and almost
tight in Euclidean spaces, unless P=NP. A straightforward im-
plementation of the furthest-point-heuristic would costO(nk)
distance evaluations. In this paper we modify the furthest-
point-heuristic by using the triangular inequality to filter out
useless distance computation, thus significantly speeding up
the computation in practice with respect to the straightforward
implementation. Moreover we will show that the speed/quality
performances of our modified furthest-point-heuristic is com-
petitive with those attained by recently modified versions of
k-means described by Phillips [Phi02] that also exploit filters
based on the triangular inequality.
Clustering is such a very important but also rather vague task,
so to give rise to a very large spectrum of tools, models and
approaches. Here we restrict ourselves to consider algorithms
for which some provable guarantee in time, quality or both,
has been established and those that for their wide use are
considered the standard empirical benchmark, namely Lloyd’s
algorithm (aka. K-means algorithm), including some recent
improved variants. In the context of on-line applications in
Information Retrieval, the scatter/gather algorithm described
in [CPKT92], [CKP93], [HP96] is often used as a benchmark
algorithm. Scatter/gather is a variant of k-means with addi-
tional split/join operations on clusters intended to improve the
quality of those clusters of lower quality. The initialization and
the first refinement steps have complexityO(nk) and there
in no speed up due to the use of the triangular inequalities,
therefore scatter/gather incurs in the high time costs of the
standard k-means algorithm. For this reason we concluded that
Phillips’ variant [Phi02] is a fairer benchmark for our tests.
In Section V the experimental setting and results are described
in detail. Here we give a brief summary. Experiments with
the synthetic data set BIRCH, with 100,000 points and 100
classes in 2D, which is considered challenging for clustering
algorithms, are shown in table I. In this experiment k-center is
faster than all of the initializations of k-means we tested, and
has better quality. After ten iterations k-mans attains quality
slightly superior to k-center, but with a higher time cost by two
orders of magnitude. Experiments with the Reuters collection
of 8528 documents and 55 classes are shown in Table II. In

this experiment k-center achieves quality levels comparable
to those attained by k-means after ten iterations, but uses
substantially less time. Among the initializations of k-means
only one based on sampling is as fast as k-center but yields
a lower quality in F-measure. In experiments with collections
of snippets generated on-line by querying a large directory
of web pages (ODP) results of comparable and often better
quality are attained by k-center while the gain in time is of a
factor ranging from 5 to 10. Although more experiments are
surely needed to fine tune the technique these findings give us
a fair confidence on the validity of the proposed algorithm
The paper is organized as follows. We introduce formalism and
notation in Section II. The main algorithms are described in
Section III and our heuristic modifications in Section IV. The
experimental setting and the results are described in Section
V. A survey of the main results on clustering is in Sections
VI and VII.

II. FORMALISM AND NOTATION

A. Internal and external quality criteria

The quality of the output of a clustering algorithm can be
evaluated in several ways, but a basic distinction can be made
betweeninternal end external criteria. An external criterion
is one in which the outcome of the algorithm is compared
against the hidden classification of the input points that the
algorithm is supposed to find out, also called theground truth.
In an unsupervised learning setting the algorithm has no (or
very little) a priori information on the structure of the ground
truth, and only the general soundness of the overall data model
in association with a well designed algorithm can lead to a
clustering of high quality.
On the other hand aninternal criterion is one in which the
outcome of the algorithm is compared against a functional
that is in principle computable (for example via exhaustive
enumeration) from the same input data that are fed to the
clustering algorithm. In general, the form of the functional
is one of the ingredients that are used on the design of the
clustering algorithm. When inner criteria are used the initial
data modelling phase has little impact and the main item being
gouged is the clustering algorithm itself.
Formal proofs of cluster quality can be made only with

respect to internal criteria, since these are formal objects,
while external criteria are not formalized (and often, indeed,
not formalizable). While it is fair to use internal criteria to
compare different algorithms provided these are designed for
the same internal criterion, no such restriction applies if the
external criterion is used. Besides external criteria are closer
to the notion of ”user satisfaction” which is rather informal
but very important in Information Retrieval applications.
Since we compare two algorithms developed for different

internal criteria, we shall use in our tests an external criterion
comparison. In the next section we formalize these concepts.



B. Formalization of the problem

We have a finite or infinite class of objectsC and finite subset
S ⊆ C, where we denote withn the cardinality ofS. We
stipulate the existence of a labelling functionfS : S → L
associating to each element ofS a label form a denumerable
set L of labels. To simplify2 our setting we identifyL with
the set of natural numbersN . Note that generallyf depends
on S. On the other hand, whenf does not depend onS, it is
just the restriction toS of a functionF : C → L. This would
be a restricted and simpler case.3

Given S, determinefS is our goal, or, more precisely,
determine the partition ofS into equivalence classes induced
by f−1; we denote this partition withP (S, FS):

P (S, fS) = {A ∈ 2S |∃l ∈ L : A = f−1
S (l)}.

Note that this second formulation relieves us from the burden
of determining exactly the nature of the label setL or from
the temptation of using special properties of clever labelling
schemes.
What is known, provided a computational cost is paid in its

point-wise evaluation, is a distance functionD : S×S → R≥0

associating a non negative real number to a pair of elements of
S. A proper modelling of the problem aims at the devising a
distanceD that, for everyS, is related to the partitionP (S, fS)
and is computable.
It is a natural step forward to interpretD as a metric (thus

imposing or assuming) that satisfies the three axioms (for every
s, p ∈ S, D(s, s) = 0, D(s, p) = D(p, s) and the triangular
inequality (metric case).
A more elaborated model requires a mapping of the elements

of S to points in a Real Vector SpaceV , mV : S → V , while
the distanceD is a normed distance in such space. The use of
vector space model introduces a large quantity of possibilities,
in particular it is possible to generate new points in a vector
space as a linear combination of other points. Note that points
so constructed are not necessarily in relations to elements of
S (or of C), thus properties ofD defined for points inmV (S)
might not hold for other points inV .
In many applications the Vector space model is an obvious

one or at least a simple one to conceive. For example protein
expression data inµ-arrays are naturally modelled as a two-
dimensional matrix, thus suggesting to consider the columns
as dimensions of the real vector space and the rows as point
in such space (or viceversa). For information retrieval appli-
cations mapping a text as point in an high dimensional vector
space using the TF-IDF model is by now a standard tool.
Is some other areas such as clustering of proteins based on
similarity of their DNA encoding strings, instead the mapping
to a vector space is more problematic, since there is little

2In some application areas, such as clustering of results from web searching
engines the labelling task is not a trivial one.

3In the second case we have a universal labelling, in the first a local one.
In certain application the local model might be more appropriate, in some the
universal model is more appropriate.

biological significance to be attached to a linear combination
of encoding strings. In this case a metric model is more natural.
One feature to be considered in the choice of the clustering

algorithm is the role of transitivity. That is, ifa is close tob
andb is close toc is this sufficient to conclude thata, b, c might
be in the same cluster, or it must also holda close toc? In a
2-dimensional example with points, the first choice allows the
formation of arbitrary shaped clusters, while the second choice
forces the creation of ball-like clusters. The first choice might
lead to discovering new and unexpected associations, but is
also less robust to noise and spurious chaining effects.

Since determining automatically the correct number of
clusters is a difficult problem in itself, we simplify the setting
of the comparison by passing to our algorithm as a parameter
the number of clusters in the ground truth.

C. Problems: k-center, k-medians, k-means

The following are some classical internal functionals to be
minimized.

1) The k-center problem:Given S a point set in vector
spaceV , endowed with a distance functionD, andk, partition
S into subsetsC1, ..Ck and determine pointsµ1, ..µk ∈ V so
that the maximum cluster radius is minimized :

minmax
j

max
x∈Cj

D(x, µj)

A second equivalent definition is as follows. For a pointp
and a set of pointsX, we setD(p, X) = minq∈X D(p, q),
thus extending the notion if distance from point-to-point to
point-to-set. Given the input setS and a set of centersX the
partition of S is implicit. We can define the k-center problem
as the problem of finding a setX of k points so to find:

min
X

max
p∈S

D(p,X)

2) The k-medians problem:GivenS andk, partitionS into
subsetsC1, ..Ck and determine pointsµ1, ..µk ∈ V so that the
sum of all the point-center distances is minimized:

min
∑

j

∑

x∈Cj

D(x, µj).

In the more compact notation this becomes the problem of
finding:

min
X

∑

p∈S

D(p,X).

The 1-median problem (finding a point minimizing the sum of
distances from all other points in the set) is also known as the
Fermat-Weber problem and does not have a closed formula
solution.

3) The k-means problem:Given S andk, partition S into
subsetsC1, ..Ck and determine pointsµ1, ..µk ∈ V so that so
that sum of squares of inter-cluster point-center distances is
minimized:

min
∑

j

∑

x∈Cj

(D(x, µj))2.



In the more compact notation this becomes the problem of
finding:

min
X

∑

p∈S

(D(p, X))2

The value of this functional for a given clustering is also called
the squared error distortionof the clustering.

4) The generalized k-means problem:Sometimes a more
general objective function is used, defined as:

min
∑

j

|Cj |α
∑

x∈Cj

(D(x, µj))2

where forα = 0 one gets the previous formula, forα = 1
one gets the sum of average point center distances. This
more general formulation is used for example in [IKI94].
Since in the continuous case it can be shown thatµj =
(1/|Cj |)

∑
p∈Cj

p that is the optimal center of a cluster is the
centroid of the cluster, simple algebraic manipulations show
that for α = 2 one gets the sum of squares of all pairwise
distances of points in clusters.

D. Variants

If we impose that alsoµ1, ..µk ∈ S we have a ”combinatorial”
version of the above problems. A continuous version of the
above problem is one in which the set of points is not discrete
(while the set of centers is discrete) [FMW00].

E. Graph based measures

The classical k-center, k-median and k-mean formulations
for the clustering problem are very popular but by no means
the only one. Recently in [DFK+99], [KVV00], [CKVW03],
[Dhi01], clustering criteria based on the notion of the conduc-
tance of a cut in a graph have been proposed together with
approximation algorithms based on Singular Value Decompo-
sition computations. Other classical graph-based clustering are
obtained via the construction of Minimum (and maximum)
Spanning Trees of the distance graph of the input points
[ABKY88].

III. A LGORITHMS

A. The furthest-point-first method

In [Gon85] it is shown an algorithm called APPROX in that
paper that finds a solution within a constant factor of the
optimum for thek-center problem when only the metric space
model is assumed. Basically the same solution called furthest-
point-traversal has been found also by Hochbaum and Shmoys
[HS85], although in the context of clustering of a graph.

In [FG88] the same algorithm is christened ”Furthest point
algorithm” and described in a slightly different language.
Given the setS of points, and a setT ⊂ S of centers. We
keep for every pointp ∈ S \ T the center inT closest top,
such point is calledneigbour(p), and the value of the distance
D(p, neighbour(p)) is dist(p).
This description of the algorithm concentrate on building
the setT of the heads of the clusters. Most of the time is

Algorithm 1 Feder and Greene version of furthest-point-
heuristic

T = ∅;
dist(p) = ∞ ∀p ∈ S;
while |T | ≤ k do

q = η arg max{dist(p)|p ∈ S \ T};
add q to T;
updateneighbour(p), dist(p) ∀p ∈ S \ T

end while

actually spent in updating the invariants, if this is done in a
straightforward manner it takesO(n) time per iteration, so in
total O(nk) time.
The main result of [FG88] is an efficient way of updating

the invariantsneighbour(p) anddist(p) when the problem is
cast in ad-dimensional Real space and the distance is anLq

metric. In this case overall the furthest point algorithms can
be made to run inO(n log k) time. This result is achieved via
the application of hierarchies of bounding boxes inspired by
the method of Vaidya for the all-nearest-neighbors problem
[Vai89]. Such scheme is rather complex and at the best of my
knowledge it has not been implemented.
Sariel Har-Peled in [HP01] solves the Euclideank-center

problem, within an approximation factor 2, fork =
O( 3
√

n/ log n) in expected timeO(n) provided the computa-
tional model allows for constant time hashing and floor func-
tion. This algorithm uses a clever mix of random sampling,
fast point location and the furthest point heuristic.

A version of the algorithm that produces a hierarchy of clusters
is described in [Das02].

B. The k-means algorithm (aka Lloyd’s algorithm)

Lloyd’s algorithm (see [Har75], [For65], [Llo57]) can be seen
as an iterative cluster quality booster. It takes as input a
rough k-clustering (or more precisely k candidate centers) and
produces as output another k-clustering (hopefully of better
quality). It is had been shown in [SI84] that the using the sum
of squared Euclidean distances as internal quality criterion,
the procedure converges to a local minimum for the objective
function within a finite number of iterations. Its main building
blocks are:

1) Generation of the initial selection ofk points;
2) Main iteration loop;
3) Termination condition.

In the main iteration loop, given a set of centroid points,
each input point is associated to its closest centroid, and
the collection of points associated to a centroid is a cluster.
For each cluster a new centroid that is a (weighted) linear
combination of the cluster points is recomputed. Thus a new
iteration can start.
Given the importance of this algorithm there is a vast literature
discussing several shortcomings and improvements to the basic
framework. In particular, one well known shortcoming is that
some clusters may become empty during the computation.



To overcome this behavior, following [Phi02], we adopt the
ISODATA [TG77] technique that splits one of the ”largest”
clusters so to maintain the number of clusters unchanged.

There exists two basic versions Lloyd’s algorithm (also
batch k-means) [Llo57] and MacQueen’s algorithm (adaptive
k-means) [Mac67]. In this second method uses an on-line
approach, in which points are added one by one. The centroids
are recomputed for each new point that is assigned to a cluster,
however points already assigned to clusters do not change
when the centroids moves.
It is well known, and our experiments confirm this, that the

quality of the initialization has a deep impact on the output
quality. Initialization of k-means is a delicate step and several
methods are compared in [PLL99], [BF98].

IV. OUR CONTRIBUTION

We have produced an upgraded version of the ”furthest point
algorithm” that exploits the triangular inequality to filter out
useless distance computations. This modified algorithm works
in any metric space.
Consider in Feder and Greene’s algorithm a centerc ∈ T

and its associated set of closest pointsN(c) = {p ∈ S \
T | neigbour(p) = c}. Store such set of pointN(c) by
decreasing distance toc. When a new centerq is selected we
scanN(c) in decreasing order of distance and we stop the scan
when for a pointp ∈ N(c), we haveD(p, c) ≤ D(q, c)/2.
By the triangular inequality, any pointp that satisfies this
condition cannot be closer toq than to c. This rule filters
out form the scan points for whichq cannot possibly be
an associated center, thus speeding up the update of the
invariants. Note that all mutual distances of centers inT
must be available, thus, there is a costO(k2) to compute and
maintain this information. The gain is that potentially fewer
thann points need to be scanned at each iteration.
We consider a standard model in which all data reside in

main memory. In our scenario the scalability issue arises
not because of the need to access slow secondary memories,
but because of an excessive number of expensive distance
computations. In this context algorithms that as a first step
compute allΘ(n2) pairwise distances among the input points
are ruled out as too expensive4. Also methods that perform
Θ(nk) distance computations are too slow except whenk
is a very small number (e.g. 2 or 3). Using our filtering
step within the furthest-point-first algorithms, in terms of
asymptotic complexity we could not prove any better bound
than the naiveO(nk), however experiment have shown that
under several different scenarios the speed gain is substantial
and this improvement makes the ”furthest point algorithm”
truly scalable.

4Many variants of HAC: Hierarchical Agglomerative Clustering pay this
initial high cost

V. EXPERIMENTS

A. Algorithms and Variants

We made experiments with two variants of the k-center
algorithm and three variants of the k-means algorithm. We
chose the three initialization methods for k-means that have
been amply cited in literature and are relatively simple. More
advanced and complex initializations have been ruled out
since the possible boost in quality is paid immediately in an
excessive time for the initialization, thus falling immediately
out of the trade-off region of interest for this study.
KC This is the k-center algorithm described in Section III-A

together with the triangle inequality filtering.
RS This is the same algorithm as KC but applied to a

Random Sample of the input points of sizen′ =
√

nk,
since k ≤ n we haven′ ≤ n always. Afterwards the
remainingn−n′ input points are associated to the closest
center.

PTS This is the k-means described in section III-B where
initial centers are randomly chosen among the input data
and the rest of elements are assigned to the closest center
[For65].

RP This is the k-means described in section III-B with
an initialization based on Random perturbation of the
global centroid point. Points are considered as a dis-
tribution with meanµ and standard deviationσ. Cen-
troids are then obtained by generating points along a
two-dimensional Gaussian distribution of meanµ and
standard deviationσ.

MQ This is the k-means described in section III-B where
seeds are randomly chosen among the input data. The
remaining points are assigned one per time to the nearest
centroid that must be recomputed [Mac67].

B. Quality measures

As mentioned in section II-A, there are two fundamentally
different ways for evaluating the clustering quality: the internal
and the external criterion. The first one is based on the evalu-
ation of how the output clustering approx a certain objective
function, while the second is based on the comparison between
the output clustering and the ground truth. In our experiments
the ground truth is always available, so we will use the external
measure for evaluating clustering quality.

We denote withP (S, fS) = {C1, ..., Ck} the ground
truth partition formed by a collection ofclasses; and with
O = {O1, .., Ok} the outcome of the clustering algorithm
that is a collection ofclusters. We use three well known
quality measure:F-measure, Entropy and Accuracy that has
been widely used in information retrieval, (see e.g. [SKK00]
[CKVW03] and references therein).

1) F-measure:The F-measure was introduced in [LA99]
and is based on theprecisionandrecall that are concepts well
known in the information retrieval literature [Kow97], [vR79].
Given a clusterOj and a classCi we have:

precision(i, j) =
|Ci ∩Oj |
|Oj | recall(i, j) =

|Ci ∩Oj |
|Ci| ,



where || denotes the cardinality of a set. Note that precision
and recall are real numbers in the range[0, 1]. Intuitively
precision measures the probability that an element of the class
i falls in the clusterj while recall is the probability that an
element of the clusterj is also an element of the classi. The
F-measureF (i, j) of a clusterj and a classi is the harmonic
mean of precision and recall:

F (i, j) = 2
precision(i, j)recall(i, j)

precision(i, j) + recall(i, j)

The F-measure of an entire clustering is computed by the
following formula:

F =
∑

i

|Ci|
n

max
j

(F (i, j)),

wheren is the sum of the cardinality of all the classes. The
value ofF is in the range[0..1] and a higher value indicates
better quality.

2) Entropy: Entropy is a widely used measure in infor-
mation theory. In a nutshell we can use the relative entropy
to measure the amount of uncertainty that we have about
the ground truth provided the available information is the
computed clustering. Given a clusterOj and a classCi, we
can define

pi,j =
|Ci ∩Oj |
|Ci| ,

Ej =
∑

i

pi,j log pi,j ,

E =
∑

j

|Oj |
n

Ej ,

wheren is the number of elements of the whole clustering.
The value ofE is in the range[0.. log n] and a lower value
indicates better quality.

3) Accuracy: While the entropy of a clustering is an
average of the entropy of single clusters, a notion of accuracy
is obtained using simply the maximum operator:

Aj = max
i

pi,j

A =
∑

j

|Oj |
n

Aj .

The accuracyA is in the range[0..1] and a higher value
indicates better quality. We report results on the F-measure,
Entropy and Accuracy in our experiments. In general they are
all rather consistent. Occasionally when quality indicators give
diverging results, we take the F-measure as the most significant
one since it balances better the need to attain simultaneously
good precision and recall.
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Fig. 1. A graphical representation of BIRCH data set

C. Dataset description

For our experiments we employed two types of data sets:
synthetic and real data. Synthetic data consist in a collection
of points in the bi-dimensional Cartesian space generated
according to the BIRCH [HE02] experiment described in
details in section V-D. As real data we used the well known
Reuters data set and the resulting snippets of a set of query
made to ODP [Pro] (Open Directory Project).
Experiments of synthetic data show that our algorithm is faster
than the accelerated K-means [Phi02] and even more accurate.
Experiments using real data sets show that both algorithms
have comparable quality, but the time cost of k-means is far
larger than that of k-center. Especially for on-line snippet
clustering, where response time is a crucial parameter this
feature could determine the success or failure of the clustering
system.

D. Synthetic data

We build synthetic data according to the BIRCH experiment
as described in [HE02]. In this experiments the data set is
constituted of 10,000 points in a bi-dimensional space. In order
to build the clusters we build a 10 x 10 uniform grid in the
bi-dimensional space. Each cell of the grid is a square of size
4
√

2. The bottom-left vertex of the first cell have coordinates
0,0. The center of each cell is also the center of each cluster. A
cluster is populated by inserting 100 points according to a bi-
dimensional Gaussian distribution with mean the coordinate
of its center and variance 1. Note that according with the
Gaussian distribution some points of a cluster can fall in a
different cell respect to the one containing its center. In figure
1 we show a graphical representation of the BIRCH data set.
Clearly, a distribution like that in the BIRCH experiment
(see Figure 1) is not a realistic one, but it is considered a
challenging input for clustering algorithms. This experiment
gives a hint that the k-center algorithm algorithm can indeed
be more competitive than k-means in metric spaces in which
the distance function is well defined and there is a high degree
of locality.
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Fig. 2. BIRCH experiment with 10,000 points, 100 clusters. F-measure
versus number of distance computations.

In Figures 2, 3 and 4 we show the correlation of the number
of inter-point distance computations (x-axis) and the quality of
the resulting clustering (y-axis), at each iteration of the k-mean
method. Each curve represents the evolution of a variant of
the k-means algorithm for each different initialization method.
Since k-center is not an iterative algorithm, each variant is
represented by a single point.

Algorithm # Dist. F-measure Entropy Accuracy

K-center 95831 0.792 0.502 0.798
K-center RS 107555 0.884 0.317 0.884

Init. MQ 990000 0.825 0.403 0.837
Init. PTS 176264 0.675 0.680 0.672
Init. RP 149081 0.629 0.834 0.612

K-means MQ 2424365 0.910 0.203 0.915
K-means PTS 1628974 0.883 0.242 0.888
K-means RP 1309060 0.886 0.238 0.888

TABLE I

DATA SET BIRCH WITH 10000POINTS AND 100 CLUSTERS.

E. Text data

Since the pioneering work of Salton [SM86] it is known that
text corpora can be embedded in high dimensional real vector
spaces so that properly defined similarity measures for pairs of
vectors (e.g. the cosine similarity) approximate well the notion
of “similarity of topic” of the two corresponding documents.
We tested our algorithm on one quite large static collection of
news, the Reuters collection, which is often used as benchmark
in the Information Retrieval literature. Also, we tested our
algorithm on on-line generated collections of snippets resulting
from queries to the ODP (Open Directory Project) hierarchy
of topics.

1) Reuters: Reuters is one of the most used data sets
in information retrieval [NIS05]. After an initial cleaning to
remove multi-labelled documents, we obtain a corpus of 8538
documents of various length organized in 65 mutually exclu-
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Fig. 3. BIRCH experiment with 10,000 points, 100 clusters. Entropy versus
number of distance computations.
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Fig. 4. BIRCH experiment with 10,000 points, 100 clusters. Accuracy versus
number of distance computations.

sive classes. We further remove 10 classes each containing
only a document.

In Table II it is shown for each variant of k-center and
k-mean (after 10 iterations) the time cost in seconds, the
number of distance computations and the quality of the final
clustering (using three quality criteria). In terms of number
of comparisons there is one order of magnitude difference
between k-center and k-means, however in terms of time there
is a two orders of magnitude gap. This is due to the fact that the
auxiliary operations of book keeping and centroid computation
have a large impact.

The evolution of the trade off quality/time at each iteration
of k-means is shown in figures 5, 6, and 7.

Table II shows that in terms of time RP and MQ are more
expensive k-means initializations than PTS. This is due to the
computation of new centroids. In the MQ case we were able
to save significantly in time by an incremental computation of
new centroids. K-center KC and RS have a cost in time that



Algorithm # Dist. Time F-measure Entropy Accuracy

K-center 470782 212 0.340 1.398 0.594
K-center RS 499593 190 0.441 1.240 0.650

Init. MQ 466565 3656 0.479 0.963 0.698
Init. PTS 455365 225 0.263 1.258 0.639
Init. RP 471075 54687 0.182 1.642 0.515

K-means MQ 4630184 44248 0.433 0.948 0.708
K-means PTS 4561664 41868 0.296 0.901 0.742
K-means RP 4483178 97018 0.298 0.924 0.735

TABLE II

DATA SET REUTERS WITH 8528DOCUMENTS AND 55 CLUSTERS. (TIME

IS MEASURED IN SECONDS)
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Fig. 5. F-measure of Reuters versus time (in secs) on a logarithmic scale

is two orders of magnitude less than that of K-means MQ and
RP. In terms of time cost KC and RS are at a par with PTS,
however the quality in terms ofF -measure is significantly
better than that attained by PTS. After iterating ten times k-
means only slightly improves the quality. Note that, in the
case of MQ, the F-measure decreases at each iteration of k-
means. This is a rare event but a possible one since k-means is
guaranteed for certain metrics to reach a local minimum only
for the interior quality criterion, not for the exterior one.

2) Web snippets:We made a series of experiments using
as input the snippets resulting from a query to the web-
based directory ”The Open Directory Project” [Pro]. The Open
Directory Project (ODP for short) is a pre-classified collection
of a few millions of web pages (on December 3, 2003,
ODP reached 4M entries) pre-classified into more than 590K
categories by a wide group of volunteer human experts. The
classification induced by the ODP labelling scheme gives us an
objective ”ground truth” against which we can compare our
clustering. In ODP documents are organized according with
a hierarchical ontology. For any snippet we obtain a label
for its class by considering only the first two levels of the
path on the ODP category tree. For example, if we have two
documents, the first one in categoryGames→ Puzzles→
Anagrams and the second in categoryGames → Puzzles
→ Crosswords, they are both considered in classGames→

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 100  1000  10000  100000

E
nt

ro
py

Time in seconds

K-mean MQ
K-mean PTS
K-center KC
K-center RS

Fig. 6. Entropy of Reuters versus time (in secs) on a logarithmic scale

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 100  1000  10000  100000

A
cc

ur
ac

y

Time (in seconds)

K-mean MQ
K-mean PTS
K-center KC
K-center RS
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Puzzles. This coarsification is needed in order to balance the
number of classes and the number of snippets returned by
a query. In ODP the textual quality of the snippets is quite
variable, therefore to filter out noise in our tests we first
collect at most 400 snippets returned from a query process,
then we discard snippets that are shorter than 40 characters
and containing less then 3 words.
Clustering of snippets is used as an on-line support to web
browsing, therefore real-time response is a critical parameter.
A clustering phase that introduces a delay comparable to the
time needed for just downloading the snippets, thus in effect
doubling the user latency, is not acceptable for most users. For
this reason, instead of setting a fixed number of iteration to
the k-means algorithm, we decided a reasonable time deadline
(in our experiments of 5 seconds) and we halt the iterative
algorithms at the end of the first iteration that is passed the
deadline. We count only the clustering time needed

We planed a set of queries according with the method used
in [GDGL05], by dividing queries in three broad families:
ambiguous queries, generic queries and specific queries. For



each query we indicate the numbern of snippets found, the
number ofk of ODP classes, and the time in seconds used to
build the TF-IDF model. For each query and each algorithm
we indicated the time used for clustering and the quality of
the outcome. These results are shown in tables III IV V where
we highlight in bold the two best values in each column. We
noticed that the quality of the clustering is very dependent on
the single query. Moreover, different results could be returned
for the same query at different times because of updates made
by the ODP team.5 In terms of time k-center is 5 to 10 times
faster than k-means with a quality that is often better than that
attained by the k-means variants

Algorithm Time F-measure Entropy Accuracy
Query = “armstrong”n = 175 k = 52 Build time = 0.692

KC 1.258 0.406 0.885 0.582
RS 1.451 0.416 0.874 0.577
RP 64.980 0.319 1.154 0.434
MQ 5.808 0.420 0.868 0.571
PTS 5.759 0.377 0.958 0.525

Query = “jaguar”n = 177 k = 26 Build time = 0.707
KC 0.637 0.414 1.042 0.553
RS 0.691 0.382 1.022 0.564
RP 25.982 0.250 1.344 0.389
MQ 6.464 0.384 0.914 0.604
PTS 6.214 0.316 1.113 0.536
Query = “mandrake”n = 137 k = 31 Build time = 0.599

KC 0.609 0.377 0.832 0.693
RS 0.725 0.404 0.669 0.722
RP 29.564 0.246 0.878 0.576
MQ 5.454 0.318 0.755 0.664
PTS 5.131 0.299 0.881 0.642

Query = “java” n = 171 k = 46 Build time = 0.783
KC 1.188 0.336 1.111 0.532
RS 1.347 0.371 1.042 0.520
RP 60.716 0.267 1.167 0.426
MQ 10.241 0.343 0.984 0.520
PTS 9.999 0.338 0.975 0.520

TABLE III

CLUSTERING OFSNIPPETS RETURNED BY QUERIES TO THEODP

DIRECTORY FORambuguous queries.

VI. PREVIOUS WORK: ALGORITHMS

In most settings problems listed in Section (II-C) are NP-
hard for non constant number of clustersk. Thus one usually
resorts to heuristics or to approximation algorithms. In this
context an approximation algorithm is an algorithm whose
output’s value is within a bounded multiplicative factor from
the value of the optimal value of the corresponding functional.
When k is part of the input parameters, Feder and Greene

[FG88] (see also [BE96]) proved that it is NP-hard to approx-
imate the Euclidean k-center problem in 2d within an approx-
imation ratio smaller than 1.822 (for the diameter k-center,
smaller than 1.969). Moreover it is NP-hard to approximate
theL1-metric k-center problem in 2d within an approximation
ratio smaller than 2.

5For sake of replicating the experiments, when we make a new query we
also cache its results.

Algorithm Time F-measure Entropy Accuracy
Query = “health”n = 154 k = 47 Build time = 0.788

KC 1.255 0.377 0.915 0.551
RS 1.422 0.365 0.880 0.551
RP 53.634 0.292 0.971 0.493
MQ 6.958 0.343 0.918 0.519
PTS 5.135 0.334 0.925 0.519

Query = “language”n = 185 k = 33 Build time = 1.022
KC 0.956 0.263 1.321 0.410
RS 1.029 0.298 1.301 0.432
RP 44.458 0.255 1.408 0.367
MQ 6.479 0.280 1.298 0.432
PTS 6.038 0.276 1.310 0.421

Query = “machine”n = 186 k = 52 Build time = 0.876
KC 1.531 0.408 1.137 0.483
RS 1.689 0.363 1.125 0.467

RP 83.725 0.322 1.169 0.397
MQ 9.4684 0.420 1.018 0.483
PTS 9.214 0.398 1.068 0.467

Query = “music”n = 188 k = 44 Build time = 0.807
KC 1.254 0.326 0.830 0.617
RS 1.428 0.300 0.852 0.585

RP 57.248 0.239 1.038 0.510
MQ 6.461 0.314 0.895 0.595
PTS 6.609 0.287 1.004 0.558

Query = “clusters”n = 194 k = 34 Build time = 0.956
KC 1.048 0.525 0.825 0.644
RS 1.128 0.519 0.812 0.649
RP 45.496 0.291 1.335 0.391
MQ 6.458 0.465 0.830 0.634
PTS 5.992 0.430 0.872 0.608

TABLE IV

CLUSTERING OFSNIPPETS RETURNED BY QUERIES TO THEODP

DIRECTORY FORgeneric queries.

When k is fixed in [CRW91], [HS91] when the objective
function to be optimized is a monotone function of the clusters
Euclidean radii (or diameters) then there is a polynomial time
algorithm in general with timeO(n6k). For some special value
of k and specific functionals better results can be obtained,
e.g. for k = 2 the 2-center problem in 2D is solved in
time O(n log n). Inaba, Katoh and Imai [IKI94] observed
that for the extended k-means problem one could enumerate
all possible decompositions induced byk centers in time
O(nkd+1) and find thus the optimal solution can be found
in polynomial time for fixedk.
A (1+ε)-approximation algorithm by Agarwal and Procopiuc
[AP98] for the Euclidean k-center problem inRd runs in time

O(n log k + (k/ε)O(k
d−1

d )), for fixed d andk.
Kalliopoulos and Rao [KR99], improving on previous results
of Arora, Raghavan and Rao, give a(1 + ε)-approximation
algorithm fork-median clustering of points inRd using time
O(21/εd

n log n log k), for fixed d andk.
Matoǔsek in [Mat00] give a(1 + ε)-approximation algorithm
for k-mean clustering inRd using timeO(n(log n)k(1/ε)2k2d)
for fixed d andk.
Har-Peled and Mazudar [HPM04] have improved the results
for k-median and k-means by algorithms with complexity
linear in n.



Algorithm Time F-measure Entropy Accuracy
Query = “mickey mouse”n = 66 k = 26 Build time = 0.328

KC 0.284 0.549 0.806 0.606
RS 0.354 0.609 0.666 0.666
RP 7.516 0.473 0.816 0.530
MQ 5.267 0.437 0.833 0.530
PTS 3.403 0.466 0.760 0.575
Query = “olympic games”n = 183 k = 41 Build time = 0.939
KC 1.206 0.335 1.028 0.568
RS 1.334 0.331 0.971 0.551
RP 40.537 0.258 1.088 0.502
MQ 10.695 0.291 1.006 0.519
PTS 10.516 0.301 0.967 0.535
Query = “steven spielberg”n = 73 k = 11 Build time = 0.262
KC 0.119 0.646 0.670 0.753
RS 0.130 0.652 0.639 0.726
RP 3.665 0.387 1.109 0.493
MQ 1.428 0.513 0.673 0.726
PTS 1.357 0.515 0.809 0.657

TABLE V

CLUSTERING OFSNIPPETS RETURNED BY QUERIES TO THEODP

DIRECTORY FORspecific queries.

A second approach to the problem is to develop algorithms
with some theoretical guarantee but also simple enough to
be of practical value. In [KMN+02b] it is shown a(9 +
ε)-approximation for the k-means problem in Euclideand-
dimensional space, based on local search for moves improving
the value of the objective function. An hybrid algorithm
merging Lloyd’s algorithm with the the local search technique
is also tested for assessing empirical performance. This local
search technique has been applied to the Euclidean k-median
problem in [KPR98], [CG99], [AGK+01], and to the metric
k-means problem in [MP02].
Associating points to clusters via nearest-neighbor compu-

tations is the most expensive task in Lloyd’s algorithm and
number of speedup techniques have been proposed recently
[ARS98], [KMN+02a], [PM99], [PM00], [Phi02]. Some are
based on using kd-trees for speeding up nearest neighbor
search [ARS98], [PM99], [KMN+02a] and these can be used
in Euclidean spaces of low dimension (say up to 5 or 6).
Others like [Phi02], [PM00], [Elk03] are based on using the
triangular inequality and work in metric spaces.
Other approaches which we will not cover use simulated an-

nealing, branch-and-bound searching, gradient descent, genetic
algorithms for which no provable approximation bounds are
known.
Mishra et al. [MOP01] show that, for the k-median problem

(both in the discrete and continuous setting), when feeding a
clustering algorithm with a random sample of the input data,
the obtained solutions is of comparable quality with respect
to using all of the input data. A similar sample-based result is
shown in [ADPR00] for the k-center problem. In [GMMO00]
a similar input reduction effect is obtained via a divide and
conquer strategy.
For the metric k-median problem Indyk in [Ind99] shows

that, given as a subroutine aO(n2) algorithm that produces

βk clusters within a factorα of the cost of the optimal k-
clustering, it is possible via appropriate sampling to attain an
O(kn) expected time algorithm producing2β clusters within
a factor3(2 + α) of the cost of the optimal k-clustering, with
high probability.
Sometimes the problem is cast in a specific computational

model such as: the incremental setting, with points added one
by one to the data structure [CCFM97], [Can93], the parallel
setting [Dat94], the data stream setting .
In Model based clustering one assumes that the data are

generated by sampling a mixture of density functions from
a given class. The objective is to find the parameters of these
functions that better fit the data.

VII. PREVIOUS WORK: INFORMATION RETRIEVAL

One of the applicative areas fields in which the model we refer
to finds a natural example is that of Information retrieval, in
particular in regarding problem of clustering documents that
are mapped to points in a very high dimensional vector space
[SM86][DS05] [DFG01].
Often in the context of IR application the clustering problem

is reformulated in terms of ”similarity” functions instead of
distance functions [DM01][DGK02].
Texts related to the WWW (pages, snippets) have recently

received much attention [SGM00], [FG04], [HGKI02]. Often
in this context techniques based on text are combined with
techniques based on the hyper-textual graph structure of the
WWW [MS00].
Clustering techniques have been used to improve the quality

of wide-topic searching on the web [CPKT92], [CKP93],
[HP96], [HGI00], [ZE98] .

VIII. C ONCLUSIONS

The K-means algorithm (Lloyd’s algorithm) is the a well
known method for clustering, used in a wide range of appli-
cations, whose pros and cons are well known. In contrast, the
furthest-point-first method for k-clustering has been consid-
ered so far only of theoretical interest. In this paper we show
the result of experiments in the area of Information Retrieval
indicating that the furthest-point-first method, with additional
filtering steps, is capable of producing high quality clusters
within a fraction of the time used by improved versions of
k-means. In particular we dispense with the need to compute
centroids, thus we can deal easily with situations where the
notion of a centroid is not a natural or well defined one, or it
is expensive to compute and update.
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