47 research outputs found

    Machine vision detection of pests, diseases, and weeds: A review

    Get PDF
    Most of mankind’s living and workspace have been or going to be blended with smart technologies like the Internet of Things. The industrial domain has embraced automation technology, but agriculture automation is still in its infancy since the espousal has high investment costs and little commercialization of innovative technologies due to reliability issues. Machine vision is a potential technique for surveillance of crop health which can pinpoint the geolocation of crop stress in the field. Early statistics on crop health can hasten prevention strategies such as pesticide, fungicide applications to reduce the pollution impact on water, soil, and air ecosystems. This paper condenses the proposed machine vision relate research literature in agriculture to date to explore various pests, diseases, and weeds detection mechanisms

    Classification Models for Plant Diseases Diagnosis: A Review

    Get PDF
    Plants are important source of our life. Crop production in a good figure and good quality is important to us. The diagnosis of a disease in a plant can be manual or automatic. But manual detection of disease in a plant is not always correct as sometimes it can be not be seen by naked eyes so an automatic method of detection of plant diseases should be there. It can make use of various artificial intelligence based or machine learning based methods. It is a tedious task as it needs to be identified in earlier stage so that it will not affect the entire crop. Disease affects all species of plant, both cultivated and wild. Plant disease occurrence and infection severity vary seasonally, regarding the environmental circumstances, the kinds of crops cultivated, and the existence of the pathogen. This review attempts to provide an exhaustive review of various plant diseases and its types, various methods to diagnose plant diseases and various classification models used so as to help researchers to identify the areas of scope where plant pathology can be improved

    A comparative analysis of machine learning approaches for plant disease identification

    Get PDF
    Background: The problems to leaf in plants are very severe and they usually shorten the lifespan of plants. Leaf diseases are mainly caused due to three types of attacks including viral, bacterial or fungal. Diseased leaves reduce the crop production and affect the agricultural economy. Since agriculture plays a vital role in the economy, thus effective mechanism is required to detect the problem in early stages.Methods: Traditional approaches used for the identification of diseased plants are based on field visits which is time consuming and tedious. In this paper a comparative analysis of machine learning approaches has been presented for the identification of healthy and non-healthy plant leaves. For experimental purpose three different types of plant leaves have been selected namely, cabbage, citrus and sorghum. In order to classify healthy and non-healthy plant leaves color based features such as pixels, statistical features such as mean, standard deviation, min, max and descriptors such as Histogram of Oriented Gradients (HOG) have been used.Results:  382 images of cabbage, 539 images of citrus and 262 images of sorghum were used as the primary dataset. The 40% data was utilized for testing and 60% were used for training which consisted of both healthy and damaged leaves. The results showed that random forest classifier is the best machine method for classification of healthy and diseased plant leaves.Conclusion:  From the extensive experimentation it is concluded that features such as color information, statistical distribution and histogram of gradients provides sufficient clue for the classification of healthy and non-healthy plants

    Clustering analysis of human finger grasping based on SOM neural network model

    Get PDF
    SOM (Self-organizing Maps) model was introduced to cluster and analyse on the human grasping activities of GloveMAP based on data reduction of the initial grasping data.By acquiring the data reduction of the initial hand grasping data of the several objects, it will be going to be functioned as the inputs to the SOM model.After the iterative learning of net-trained, all data of the trained network will be simulated and finally self-organized.The output results of models’ are farthest approached to the reality in 3-dimensional grasping features.The experimental result of the simulation signal will generate the simulate result of the grasping features from the selected object.The whole experiment of grasping features is derived into three features/groups and the results are satisfactory

    Multi-sensor and data fusion approach for determining yield limiting factors and for in-situ measurement of yellow rust and fusarium head blight in cereals

    Get PDF
    The world’s population is increasing and along with it, the demand for food. A novel parametric model (Volterra Non-linear Regressive with eXogenous inputs (VNRX)) is introduced for quantifying influences of individual and multiple soil properties on crop yield and normalised difference vegetation Index. The performance was compared to a random forest method over two consecutive years, with the best results of 55.6% and 52%, respectively. The VNRX was then implemented using high sampling resolution soil data collected with an on-line visible and near infrared (vis-NIR) spectroscopy sensor predicting yield variation of 23.21%. A hyperspectral imager coupled with partial least squares regression was successfully applied in the detection of fusarium head blight and yellow rust infection in winter wheat and barley canopies, under laboratory and on-line measurement conditions. Maps of the two diseases were developed for four fields. Spectral indices of the standard deviation between 500 to 650 nm, and the squared difference between 650 and 700 nm, were found to be useful in differentiating between the two diseases, in the two crops, under variable water stress. The optimisation of the hyperspectral imager for field measurement was based on signal-to-noise ratio, and considered; camera angle and distance, integration time, and light source angle and distance from the crop canopy. The study summarises in the proposal of a new method of disease management through suggested selective harvest and fungicide applications, for winter wheat and barley which theoretically reduced fungicide rate by an average of 24% and offers a combined saving of the two methods of £83 per hectare

    Classification and severity prediction of maize leaf diseases using Deep Learning CNN approaches

    Get PDF
    No key words availableMaize (zea mays) is the staple food of Southern Africa and most of the African regions. This staple food has been threatened by a lot of diseases in terms of its yield and existence. Within this domain, it is important for researchers to develop technologies that will ensure its average yield by classifying or predicting such diseases at an early stage. The prediction, and to some degree classifying, of such diseases, with much reference to Southern Africa staple food (Maize), will result in a reduction of hunger and increased affordability among families. Reference is made to the three diseases which are Common Rust (CR), Grey Leaf Spot (GLS) and Northern Corn Leaf Blight (NCLB) (this study will mainly focus on these). With increasing drought conditions prevailing across Southern Africa and by extension across Africa, it is very vital that necessary mitigation measures are put in place to prevent additional loss of crop yield through diseases. This study introduces the development of Deep Learning (DL) Convolutional Neural Networks (CNNs) (note that in this thesis deep learning or convolution neural network or the combination of both will be used interchangeably to mean one thing) in order to classify the disease types and predict the severity of such diseases. The study focuses primarily on the CNNs, which are one of the tools that can be used for classifying images of various maize leaf diseases and in the severity prediction of Common Rust (CR) and Northern Corn Leaf Blight (NCLB). In essence the objectives of this study are: i. To create and test a CNN model that can classify various types of maize leaf diseases. ii. To set up and test a CNN model that can predict the severities of a maize leaf disease known as the maize CR. The model is to be a hybrid model because fuzzy logic rules are intended to be used with a CNN model. iii. To build and test a CNN model that can predict the severities of a maize leaf disease known as the NCLB by analysing lesion colour and sporulation patterns. This study follows a quantitative study of designing and developing CNN algorithms that will classify and predict the severities of maize leaf diseases. For instance, in Chapter 3 of this study, the CNN model for classifying various types of maize leaf diseases was set up on a Java Neuroph GUI (general user interface) framework. The CNN in this chapter achieved an average validation accuracy of 92.85% and accuracies of 87% to 99. 9% on separate class tests. In Chapter 4, the CNN model for the prediction of CR severities was based on fuzzy rules and thresholding methods. It achieved a validation accuracy of 95.63% and an accuracy 89% when tested on separate images of CR to make severity predictions among 4 classes of CR with various stages of the disease’ severities. Finally, in Chapter 5, the CNN that was set up to predict the severities of NCLB achieved 100% of validation accuracy in classification of the two NCLB severity stages. The model also passed the robustness test that was set up to test its ability of classifying the two NCLB stages as both stages were trained on images that had a cigar-shaped like lesions. The three objectives of this study are met in three separate chapters based on published journal papers. Finally, the research objectives were evaluated against the results obtained in these three separate chapters to summarize key research contributions made in this work.College of Engineering, Science and TechnologyPh. D. (Science, Engineering and Technology

    Host organelles and transporters in underground plant-pathogen interactions

    Get PDF
    This thesis covers studies of three different soilborne plant pathogens, the two fungi, Rhizoctonia solani and Verticillium longisporum, and the protist Plasmodiophora brassicae, as well as their host responses. Based on genome sequence analysis of the pathogens and their plant hosts, different effectors and plant defence factors were predicted. Follow-up molecular studies revealed the following: In sugar beets, two genes encoding major latex protein-like (MLP) family members, MLP1 and MLP3, contribute to the defence against R. solani. The small cysteine-rich effector RsRCP1 was highly induced in the fungus upon infection. RsRCP1 was localized to chloroplasts and mitochondria in the leaves of Nicotiana benthamiana. An additional MLP gene in oilseed rape, MLP6, was found to provide elevated levels of defence to V. longisporum together with a nitrate/peptide transporter family protein (NPF5.12). Recognition of the fungus triggered nitrate starvation and MLP-mediated defence, together reducing the lipophilic suberin barrier in the endodermal cell walls. In the genome of the clubroot pathogen P. brassicae, a consensus sequence led to the identification of peroxisomal targeting effectors. Arabidopsis mutants with impaired peroxisomal biogenesis demonstrated the importance of the plant peroxisomal transport proteins for P. brassicae establishment in the root. Host peroxisomal proteins embodied in the resting spores were also identified using a transgenic peroxisomal marker line of Arabidopsis. New technological advances and possibilities for genetic engineering of these three pathogens would greatly contribute to a deeper understanding of these different pathological systems

    Wheat Improvement

    Get PDF
    This open-access textbook provides a comprehensive, up-to-date guide for students and practitioners wishing to access in a single volume the key disciplines and principles of wheat breeding. Wheat is a cornerstone of food security: it is the most widely grown of any crop and provides 20% of all human calories and protein. The authorship of this book includes world class researchers and breeders whose expertise spans cutting-edge academic science all the way to impacts in farmers’ fields. The book’s themes and authors were selected to provide a didactic work that considers the background to wheat improvement, current mainstream breeding approaches, and translational research and avant garde technologies that enable new breakthroughs in science to impact productivity. While the volume provides an overview for professionals interested in wheat, many of the ideas and methods presented are equally relevant to small grain cereals and crop improvement in general. The book is affordable, and because it is open access, can be readily shared and translated -- in whole or in part -- to university classes, members of breeding teams (from directors to technicians), conference participants, extension agents and farmers. Given the challenges currently faced by academia, industry and national wheat programs to produce higher crop yields --- often with less inputs and under increasingly harsher climates -- this volume is a timely addition to their toolkit

    28th Fungal Genetics Conference

    Get PDF
    Full abstracts from the 28th Fungal Genetics Conference Asilomar, March 17-22, 2015
    corecore