6 research outputs found

    Accelerating Audio Data Analysis with In-Network Computing

    Get PDF
    Digital transformation will experience massive connections and massive data handling. This will imply a growing demand for computing in communication networks due to network softwarization. Moreover, digital transformation will host very sensitive verticals, requiring high end-to-end reliability and low latency. Accordingly, the emerging concept “in-network computing” has been arising. This means integrating the network communications with computing and also performing computations on the transport path of the network. This can be used to deliver actionable information directly to end users instead of raw data. However, this change of paradigm to in-network computing raises disruptive challenges to the current communication networks. In-network computing (i) expects the network to host general-purpose softwarized network functions and (ii) encourages the packet payload to be modified. Yet, today’s networks are designed to focus on packet forwarding functions, and packet payloads should not be touched in the forwarding path, under the current end-to-end transport mechanisms. This dissertation presents fullstack in-network computing solutions, jointly designed from network and computing perspectives to accelerate data analysis applications, specifically for acoustic data analysis. In the computing domain, two design paradigms of computational logic, namely progressive computing and traffic filtering, are proposed in this dissertation for data reconstruction and feature extraction tasks. Two widely used practical use cases, Blind Source Separation (BSS) and anomaly detection, are selected to demonstrate the design of computing modules for data reconstruction and feature extraction tasks in the in-network computing scheme, respectively. Following these two design paradigms of progressive computing and traffic filtering, this dissertation designs two computing modules: progressive ICA (pICA) and You only hear once (Yoho) for BSS and anomaly detection, respectively. These lightweight computing modules can cooperatively perform computational tasks along the forwarding path. In this way, computational virtual functions can be introduced into the network, addressing the first challenge mentioned above, namely that the network should be able to host general-purpose softwarized network functions. In this dissertation, quantitative simulations have shown that the computing time of pICA and Yoho in in-network computing scenarios is significantly reduced, since pICA and Yoho are performed, simultaneously with the data forwarding. At the same time, pICA guarantees the same computing accuracy, and Yoho’s computing accuracy is improved. Furthermore, this dissertation proposes a stateful transport module in the network domain to support in-network computing under the end-to-end transport architecture. The stateful transport module extends the IP packet header, so that network packets carry message-related metadata (message-based packaging). Additionally, the forwarding layer of the network device is optimized to be able to process the packet payload based on the computational state (state-based transport component). The second challenge posed by in-network computing has been tackled by supporting the modification of packet payloads. The two computational modules mentioned above and the stateful transport module form the designed in-network computing solutions. By merging pICA and Yoho with the stateful transport module, respectively, two emulation systems, i.e., in-network pICA and in-network Yoho, have been implemented in the Communication Networks Emulator (ComNetsEmu). Through quantitative emulations, the experimental results showed that in-network pICA accelerates the overall service time of BSS by up to 32.18%. On the other hand, using in-network Yoho accelerates the overall service time of anomaly detection by a maximum of 30.51%. These are promising results for the design and actual realization of future communication networks

    Improved planning and resource management in next generation green mobile communication networks

    Get PDF
    In upcoming years, mobile communication networks will experience a disruptive reinventing process through the deployment of post 5th Generation (5G) mobile networks. Profound impacts are expected on network planning processes, maintenance and operations, on mobile services, subscribers with major changes in their data consumption and generation behaviours, as well as on devices itself, with a myriad of different equipment communicating over such networks. Post 5G will be characterized by a profound transformation of several aspects: processes, technology, economic, social, but also environmental aspects, with energy efficiency and carbon neutrality playing an important role. It will represent a network of networks: where different types of access networks will coexist, an increasing diversity of devices of different nature, massive cloud computing utilization and subscribers with unprecedented data-consuming behaviours. All at greater throughput and quality of service, as unseen in previous generations. The present research work uses 5G new radio (NR) latest release as baseline for developing the research activities, with future networks post 5G NR in focus. Two approaches were followed: i) method re-engineering, to propose new mechanisms and overcome existing or predictably existing limitations and ii) concept design and innovation, to propose and present innovative methods or mechanisms to enhance and improve the design, planning, operation, maintenance and optimization of 5G networks. Four main research areas were addressed, focusing on optimization and enhancement of 5G NR future networks, the usage of edge virtualized functions, subscriber’s behavior towards the generation of data and a carbon sequestering model aiming to achieve carbon neutrality. Several contributions have been made and demonstrated, either through models of methodologies that will, on each of the research areas, provide significant improvements and enhancements from the planning phase to the operational phase, always focusing on optimizing resource management. All the contributions are retro compatible with 5G NR and can also be applied to what starts being foreseen as future mobile networks. From the subscriber’s perspective and the ultimate goal of providing the best quality of experience possible, still considering the mobile network operator’s (MNO) perspective, the different proposed or developed approaches resulted in optimization methods for the numerous problems identified throughout the work. Overall, all of such contributed individually but aggregately as a whole to improve and enhance globally future mobile networks. Therefore, an answer to the main question was provided: how to further optimize a next-generation network - developed with optimization in mind - making it even more efficient while, simultaneously, becoming neutral concerning carbon emissions. The developed model for MNOs which aimed to achieve carbon neutrality through CO2 sequestration together with the subscriber’s behaviour model - topics still not deeply focused nowadays – are two of the main contributions of this thesis and of utmost importance for post-5G networks.Nos próximos anos espera-se que as redes de comunicações móveis se reinventem para lá da 5ª Geração (5G), com impactos profundos ao nível da forma como são planeadas, mantidas e operacionalizadas, ao nível do comportamento dos subscritores de serviços móveis, e através de uma miríade de dispositivos a comunicar através das mesmas. Estas redes serão profundamente transformadoras em termos tecnológicos, económicos, sociais, mas também ambientais, sendo a eficiência energética e a neutralidade carbónica aspetos que sofrem uma profunda melhoria. Paradoxalmente, numa rede em que coexistirão diferentes tipos de redes de acesso, mais dispositivos, utilização massiva de sistema de computação em nuvem, e subscritores com comportamentos de consumo de serviços inéditos nas gerações anteriores. O trabalho desenvolvido utiliza como base a release mais recente das redes 5G NR (New Radio), sendo o principal focus as redes pós-5G. Foi adotada uma abordagem de "reengenharia de métodos” (com o objetivo de propor mecanismos para resolver limitações existentes ou previsíveis) e de “inovação e design de conceitos”, em que são apresentadas técnicas e metodologias inovadoras, com o principal objetivo de contribuir para um desenho e operação otimizadas desta geração de redes celulares. Quatro grandes áreas de investigação foram endereçadas, contribuindo individualmente para um todo: melhorias e otimização generalizada de redes pós-5G, a utilização de virtualização de funções de rede, a análise comportamental dos subscritores no respeitante à geração e consumo de tráfego e finalmente, um modelo de sequestro de carbono com o objetivo de compensar as emissões produzidas por esse tipo de redes que se prevê ser massiva, almejando atingir a neutralidade carbónica. Como resultado deste trabalho, foram feitas e demonstradas várias contribuições, através de modelos ou metodologias, representando em cada área de investigação melhorias e otimizações, que, todas contribuindo para o mesmo objetivo, tiveram em consideração a retro compatibilidade e aplicabilidade ao que se prevê que sejam as futuras redes pós 5G. Focando sempre na perspetiva do subscritor da melhor experiência possível, mas também no lado do operador de serviço móvel – que pretende otimizar as suas redes, reduzir custos e maximizar o nível de qualidade de serviço prestado - as diferentes abordagens que foram desenvolvidas ou propostas, tiveram como resultado a resolução ou otimização dos diferentes problemas identificados, contribuindo de forma agregada para a melhoria do sistema no seu todo, respondendo à questão principal de como otimizar ainda mais uma rede desenvolvida para ser extremamente eficiente, tornando-a, simultaneamente, neutra em termos de emissões de carbono. Das principais contribuições deste trabalho relevam-se precisamente o modelo de compensação das emissões de CO2, com vista à neutralidade carbónica e um modelo de análise comportamental dos subscritores, dois temas ainda pouco explorados e extremamente importantes em contexto de redes futuras pós-5G

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed

    Security and defence research in the European Union: a landscape review

    Get PDF
    This landscape report describes the state of play of the European Union’s policies and activities in security and defence and the EU-funded research aimed at supporting them, with an exclusive focus on intentional harm. It is organised around several thematic building blocks under the umbrella of the three core priorities defined in the European agenda on security. The report reviews the current main risks and threats but also those that may emerge within the next 5 years, the policy and operational means developed to combat them, the main active stakeholders and the EU legislation in force. In this context, a short history of EU research on security and defence is presented, followed by an inventory of relevant research and development projects funded under the Horizon 2020 framework programme during the period 2014-2018. The specific contributions of the Joint Research Centre to security research are also highlighted. Finally, future avenues for security and defence research and development are discussed. Please note that the executive summary of this landscape report has been published simultaneously as a companion document.JRC.E.7-Knowledge for Security and Migratio
    corecore