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Abstract

Digital transformation will experience massive connections and massive data handling.
This will imply a growing demand for computing in communication networks due to net-
work softwarization. Moreover, digital transformation will host very sensitive verticals,
requiring high end-to-end reliability and low latency. Accordingly, the emerging concept
“in-network computing” has been arising. This means integrating the network communi-
cations with computing and also performing computations on the transport path of the
network. This can be used to deliver actionable information directly to end users instead
of raw data.

However, this change of paradigm to in-network computing raises disruptive chal-
lenges to the current communication networks. In-network computing (i) expects the
network to host general-purpose softwarized network functions and (ii) encourages the
packet payload to bemodified. Yet, today’s networks are designed to focus on packet for-
warding functions, and packet payloads should not be touched in the forwarding path,
under the current end-to-end transport mechanisms. This dissertation presents full-
stack in-network computing solutions, jointly designed fromnetwork and computing per-
spectives to accelerate data analysis applications, specifically for acoustic data analysis.

In the computing domain, two design paradigms of computational logic, namely pro-
gressive computing and traffic filtering, are proposed in this dissertation for data recon-
struction and feature extraction tasks. Two widely used practical use cases, Blind Source
Separation (BSS) and anomaly detection, are selected to demonstrate the design of com-
puting modules for data reconstruction and feature extraction tasks in the in-network
computing scheme, respectively. Following these two design paradigms of progressive
computing and traffic filtering, this dissertation designs two computing modules: progres-
sive ICA (pICA) and You only hear once (Yoho) for BSS and anomaly detection, respectively.
These lightweight computing modules can cooperatively perform computational tasks
along the forwarding path. In this way, computational virtual functions can be intro-
duced into the network, addressing the first challenge mentioned above, namely that
the network should be able to host general-purpose softwarized network functions. In
this dissertation, quantitative simulations have shown that the computing time of pICA
and Yoho in in-network computing scenarios is significantly reduced, since pICA and Yoho
are performed, simultaneously with the data forwarding. At the same time, pICA guaran-
tees the same computing accuracy, and Yoho’s computing accuracy is improved.

Furthermore, this dissertation proposes a stateful transport module in the network
domain to support in-network computing under the end-to-end transport architecture.
The stateful transport module extends the IP packet header, so that network packets carry
message-related metadata (message-based packaging). Additionally, the forwarding layer
of the network device is optimized to be able to process the packet payload based on
the computational state (state-based transport component). The second challenge posed
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by in-network computing has been tackled by supporting themodification of packet pay-
loads.

The two computational modules mentioned above and the stateful transport mod-
ule form the designed in-network computing solutions. By merging pICA and Yoho with
the stateful transport module, respectively, two emulation systems, i.e., in-network pICA
and in-network Yoho, have been implemented in the Communication Networks Emulator
(ComNetsEmu). Through quantitative emulations, the experimental results showed that
in-network pICA accelerates the overall service time of BSS by up to 32.18%. On the other
hand, using in-network Yoho accelerates the overall service time of anomaly detection by
a maximum of 30.51%. These are promising results for the design and actual realization
of future communication networks.
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Zusammenfassung

Die digitale Transformation wird eine große Anzahl von Verbindungen und eine stark
gestiegene Datenmenge mit sich bringen. Dies führt aufgrund der Softwarisierung der
Netzwerke zu einer steigenden Nachfrage nach Rechenkapazität in Kommunikations-
netzen. Darüber hinaus wird die digitale Transformation Bereiche beherbergen, die eine
hohe End-to-End-Zuverlässigkeit und geringe Latenzzeiten erfordern. Um diese Anfor-
derungen einhalten zu können, hat sich das Konzept “In-Network Computing” herausge-
bildet. Hinter dem Konzept steht die Idee dass in der Kommunikationstechnik Rechen-
kapazität bereitgestellt wird, die genutzt werden kann um Berechnungen während der
Übertragung durchzuführen. Dadurch können anstelle von Rohdaten direkt verwertbare
Informationen an die Endnutzer geliefert werden.

Dieser Paradigmenwechsel zum In-Network Computing stellt die derzeitigen Kom-
munikationsnetze jedoch vor disruptive Herausforderungen. In-Network Computing (i)
erwartet, dass das Netzwerk allgemeine softwarisierte Netzwerkfunktionen beherbergt,
und (ii) ermutigt dazu, die Paketnutzlast zu modifizieren. Heutige Netzwerke sind je-
doch auf die Übertragung von Paketen ausgelegt, und die Paketnutzlasten sollten im
Rahmen der derzeitigen End-to-End-Transportmechanismen auf demÜbertragungsweg
nichtmodifiziert werden. In dieser Dissertationwerden umfassende Lösungen für das In-
Network Computing vorgestellt, die aus Netzwerk- und Computingspektive gemeinsam
entwickelt wurden, umDatenanalyse-Anwendungen zu beschleunigen, insbesondere für
die Analyse akustischer Daten.

Auf Seite des Computings, werden in dieser Dissertation zwei Entwurfsparadig-
men der Berechnungslogik, nämlich Progressive Computing und Traffic Filtering, für
Datenrekonstruktions- und Merkmalsextraktionsaufgaben vorgeschlagen. Zwei häufig
verwendete praktische Anwendungsfälle, Blind Source Separation (BSS) und Anoma-
lieerkennung, werden ausgewählt, um die Entwicklung von Computingmodulen für
Datenrekonstruktions- und Merkmalsextraktionsaufgaben beim In-Network Computing
zu zeigen. In Anlehnung an diese beiden Entwurfsparadigmen des Progressive Compu-
tings und des Traffic Filterings werden in dieser Dissertation zwei Computingmodule ent-
worfen: progressive ICA (pICA) und You only hear once (Yoho) für die BSS bzw. die Anoma-
lieerkennung. Diese leichtgewichtigen Computingmodule können kooperativ Berech-
nungsaufgaben entlang des Übertragungsweges durchführen. Auf diese Weise können
virtualisierte Rechenfunktionen in das Netzwerk eingeführt werden, um die erste oben
genannte Herausforderung zu bewältigen, nämlich dass das Netzwerk in der Lage sein
sollte, universelle softwarisierte Netzwerkfunktionen zu beherbergen.

In dieser Dissertation haben quantitative Simulationen gezeigt, dass die Rechenzeit
von pICA und Yoho in In-Network Computing Szenarien deutlich verkürzer ist, da pICA und
Yoho gleichzeitigmit derDatenweiterleitung durchgeführt werden. Gleichzeitig garantiert
pICA die gleiche Genauigkeit, und die Genauigkeit von Yoho wird verbessert.
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Darüber hinaus wird in dieser Dissertation ein Stateful Transport Module in der
Netzwerkdomain vorgeschlagen, um In-Network Computing im Rahmen der End-to-
End-Transportarchitektur zu unterstützen. Das Stateful Transport Module erweitert den
IP-Paketheader, so dass Netzwerkpakete inhaltsbezogene Metadaten tragen (Message-
based Packaging). Darüber hinaus wird die Übertragungsschicht des Netzgeräts so opti-
miert, dass sie die Paketnutzlast anhand des Berechnungsstatus verarbeiten kann (State-
based Transport Component). Die zweite Herausforderung des In-Network Computing
wurde durch die Unterstützung der Modifizierung von Paketnutzlasten in Angriff genom-
men.

Die beiden oben genannten Computingmodule und das Stateful Transport Module
bilden die entworfenen Lösungen für das In-Network Computing. Durch die Zusammen-
führung von pICA und Yoho mit dem Stateful Transport Module wurden zwei Emulations-
systeme, d.h. In-network pICA und In-network Yoho, im Communication Networks Emula-
tor (ComNetsEmu) implementiert. Die Ergebnisse der Emulationen zeigen, dass die In-
network pICA die Gesamtdienstzeit von BSS um bis zu 32,18% beschleunigt. Zusätzlich
beschleunigt die Verwendung von In-network Yoho die Gesamtzeit der Anomalieerken-
nung um bis zu 30,51%. Dies sind vielversprechende Ergebnisse für den Entwurf und
die tatsächliche Realisierung künftiger Kommunikationsnetze.
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摘要

数字化转型将经历大规模连接和大规模数据处理。这将意味着，由于网络软化，该转型对

通信网络的计算需求不断增加。此外，数字化转型将承载非常敏感的垂直领域，需要端到

端的高可靠性和低延迟。因此，”网络内计算 ”这个概念应运而生。这意味着网络通信与计
算将被结合，在网络的传输路径上进行计算,以便直接向终端用户提供可操作的信息，而
不是原始数据。

这种网络内计算模式的转变对目前的通信网络提出了颠覆性的挑战。网络内计算首先

期望网络能承载通用的软化网络功能，其次鼓励网络修改数据包的载荷。然而，今天的网

络被设计为专注于数据包转发，在目前的端到端传输机制下，数据包的载荷在转发路径中

不应被碰触。所以,本论文提出了全栈网络内计算解决方案，从网络和计算的角度联合设
计，以加速数据分析应用，特别是声学数据分析。

在计算领域，本论文提出了两种计算逻辑的设计范式，即 “渐进计算”和 “流量过滤”，用
于数据重建和特征提取两类任务。两个广泛应用的实际用例被选择,即盲源分离和异常检
测,以分别展示网络计算方案中数据重建和特征提取任务的计算模块设计。按照渐进式计
算和流量过滤这两个设计范式，本论文设计了两个计算模块：“渐进式独立组建分析（pICA）
”和 “你只听一次（Yoho）”，分别用于盲源分离和异常检测。这些轻量级计算模块可以沿
着转发路径协同执行计算任务。通过这种方式，计算性的虚拟功能可以被引入到网络中，

解决上述的第一个挑战，即网络应该能够承载通用的软化网络功能。在这篇论文中，定量

模拟表明，在网络计算场景中，pICA和 Yoho的计算时间被明显减少，因为 pICA和 Yoho
的执行是与数据转发同时进行的。同时，pICA保证了相同的计算精度，Yoho的计算精度
得到了提高。

此外，本论文在网络领域提出了一个 “状态基传输模块”，以支持端到端传输架构下的
网络内计算。状态基传输模块扩展了互联网协议包头，使网络包携带与消息相关的元数据

（基于消息的包装）。此外，网络设备的转发层经过优化，能够根据计算状态来处理数据包

的载荷（基于状态的传输组件）。网络内计算带来的第二个挑战已经通过支持对数据包载

荷的修改而得到解决。

上面提到的两个计算模块和状态基传输模块构成了本文设计的网络内计算解决方案。

通过将 pICA和 Yoho分别与状态基传输模块结合，本文在通信网络仿真器（ComNetsEmu）
中实现了两个仿真系统，即 “网内 pICA”和 “网内 Yoho”。通过定量仿真，实验结果表明，网
内 pICA可使盲源分离的整体服务时间加快 32.18%。并且，使用网内 Yoho可使异常检测
的整体服务时间最多加速 30.51%。对于未来通信网络的设计和实际实现,这些成果均是前
途有望的。
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1.1 The Evolution of Communication Networks

With the convergence of information technology, human production and life, as well as
the rapid popularization of communication networks, global data has shown the charac-
teristics of explosive growth. It has been claimed that data is the new oil and the most
precious property in this century. Nowadays, all industries promote digitization as an im-
portant driving force to achieve innovative development and make the forward-looking
layout in technology research and development, data sharing, and security protection.

As a revolutionary change in the development of information technology, data anal-
ysis will significantly impact economic development, social organization, and the liveli-
hood of people [24]. In the wave of change, full digitalization and intelligence will be
realized through emerging technologies such as Internet of Things (IoT), Artificial Intel-
ligence (AI), and edge/cloud computing [25]. The IoT devices will act as data collectors,
together with the final actuators of computational agents, to form a closed control loop
of an intelligent system [26]. As user and application requirements evolve, data analysis
applications need to fulfill low-latency constraints [27]. With low-latency data analysis
applications, decisions and reactions can be made in a timely manner [28], thus improv-
ing operational efficiency or user experience, as well as reducing underlying costs [29].
As a result, intelligent systems rely heavily on low-latency data analysis solutions.

However, low-latency applications need to receive the requested content and/or
task execution results within their latency limits, which is not feasible when the content
and computational resources are located in remote clouds [30]. To address this chal-
lenge, edge computing has been proposed as a paradigm for moving task execution
from the remote cloud to the network’s edge (i.e., closer to the end-user) in order to
offload tasks from end-user devices to edge servers [31]. As the scale and complexity of
intelligent systems increase, the number of connected devices and the volume of data
generated grow massively [32]. This growth leads to the fact that it is not feasible to
move computational tasks from the cloud to the edge. Because these tasks are com-
putationally intensive in nature [33], edge devices cannot provide sufficient computing
power [34].

Other attempts at network beyond edge and cloud computing computing integra-
tion are ongoing to improve response times and network and compute resources utiliza-
tion. As the success of cloud and edge computing is enabled by the flexibility of mobile
devices and cloud-based software, and communication networks become the pipes that
connect the two [35], various Internet Engineering Task Force (IETF) research groups,
such as Computing in the Network Research Group (COINRG), have been exploring fur-
ther possibilities for converging computing and networking located in the middle [36].
Given that data flows along the forwarding path in the network, attention is drawn to the
use of the forwarding path for computing [37,38]. Therefore, a new concept of in-network
computing is proposed [39,40].
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In-network computing is the process of offloading general-purpose computing logic
to network devices in order to process generated data before it reaches the end-user. It
well aligns with the 3rdGeneration Partnership Project (3GPP) prospective work items for
the upcoming 5th Generation (5G) Release 18, targeting to support of AI applications and
the design of future 6th Generation (6G) networks [41]. Going back to the quote in [35]:
“The communication network connecting the two becomes a dumb pipe in the middle
. . . ”. Beyond mobile device manufacturers (e.g., Apple, Samsung, etc.) and cloud plat-
form providers (e.g., Amazon, Facebook, etc.), in-network computing creates challenges
and opportunities for network operators (e.g., Deutsche Telekom, AT&T, etc.) and net-
work equipment manufacturers (e.g., Huawei, Ericsson, etc.) across the communications
businesses. Driven by in-network computing, communication networks will evolve from
”dumb pipes” to ubiquitous service delivery platforms, especially for low-latency applica-
tions, powered by the massive and everywhere communication equipment of network
operators [35].

Traditionally, computing power is provided by communication endpoints, usually
cloud servers or clients, that is, cloud computing and edge computing. However, in-
network computing proposes to place computational capabilities into the network rather
than at the communication endpoints. This poses a significant challenge to the design
and operation of existing networks. Since the main job of network elements (e.g., net-
work routers) is to forward traffic, their resource management and forwarding mecha-
nisms should be dedicated to this purpose [36]. With the arrival of in-network computing,
two disruptive aspects in the computing and network domains should be integrated into
future communication networks [35]:

• Challenge-1: bringing computational logic into the network;
• Challenge-2: extending point-to-point data transport to a computing-supportive
communication architecture.

Our collaboration with industrial partners (i.e., Robert Bosch GmbH, Ericsson,
etc.) [4, 22] has discovered that the acoustic signal as a predictive feature is becom-
ing a matter of interest. Acoustic signals have great potential in time-sensitive control
loops [42]. Unlike traditional type of signals, such as images, which produce notice-
able information updates only after the occurrence of a behavior, acoustic signals can
represent early changes. Therefore, they can provide significant benefits to predictive
decision-making processes [43]. Accordingly, this work focuses on the application of
acoustic signals, using in-network computing schemes to accelerate the data analysis
by addressing the above-mentioned Challenge-1 and 2 so that the network can deliver
actionable information to end-users with low latency.

The remaining part of this chapter will first describe the novel scientific results of this
work in Section 1.2. After that, the structure of the dissertation is given in Section 1.3 to
allow the readers to easily locate to the part they are interested in.

30 Chapter 1 Introduction



1.2 Novel Scientific Results

Without exception, all of the topics discussed in this dissertation have been published
or are being reviewed by major IEEE journals and conferences, such as IEEE Net-
work Magzine, IEEE Internet of Things Journal, IEEE Global Communications Conference
(GlobeCom), IEEE International Conference on Communications (ICC), etc. Therefore, all
the concepts, methods, conclusions, equations, etc., presented in this dissertation are
either original or only slightly modified to fit the uniform writing style of this dissertation.
Accordingly, in this dissertation, it is noted each time where the topic under discussion
was originally published. With this in mind, this dissertation includes only the most rele-
vant parts of the published work, which are subdivided into groups of publications that
roughly correspond to the individual chapters of this dissertation.

The aim of this work is to accelerate acoustic data analysis tasks using the in-network
computing scheme. As mentioned in Section 1.1, the scope of this work covers both the
computing and network domains. Therefore, the objectives of this work can be divided
into two:

• Objective-1: Design of the computing module. This objective focuses on Challenge-
1: bringing computational logic into networks;

• Objective-2: Design of the network module. This objective address Challenge-2:
extending point-to-point data transport to a computing-supportive communica-
tion architecture.

To achieve Objective-1, two computing design paradigms are proposed in this work
based on different types of data analysis applications:

• Progressive computing for data reconstruction applications. A popular acous-
tic data preprocessing application - Blind Source Separation (BSS) - is used to
demonstrate the progressive computing design process, and a computing mod-
ule progressive ICA (pICA) is proposed. The acceleration performance of pICA is
also evaluated. The content has been published in [1,6–8];

• Traffic filtering for feature extraction applications. This paradigm is used for
anomaly detection applications based on the acoustic signal. A computing mod-
ule You only hear once (Yoho) is proposed and evaluated. The content has been
published in [11–13].

Furthermore, to integrate AI as computational logic into the network, the principles of AI
functional splitting are also proposed and published in [3].

Aiming to meet Objective-2, this work has extended the existing User Datagram Pro-
tocol (UDP) transport protocol by proposing the stateful transport module. It consists of
the two extensions: (i) Message-based packaging, which has been published in [1,2]; and
(ii) State-based transport component, which has been presented in [1]. The stateful trans-
port module was implemented in a full-stack network emulator. Integrating with the
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Table 1.1 Scientific results.

Challenge Objective Solution Publication

Challenge-1 Objective-1
Progressive Computing [1,6–8]

Traffic Filtering [3,11–13]

Challenge-2 Objective-2 Stateful Transport Module [1,2,9,10]

computing modules, i.e., In-network pICA and In-network Yoho, the performance was eval-
uated. These results are published in [1, 10]. In addition, a demonstrator of in-network
pICA [9] was built, which is publicly accessible1.

In response to the challenges presented in Section 1.1, the contributions are or-
ganized by area of interest in Table 1.1 together with the publications for convenient
reference.

In summary, this work proposes in-network computing solutions to accelerate
acoustic data analysis tasks. These solutions cover the whole range of system per-
spectives. Specifically, horizontally, technology development covers both computing and
transport modules; for vertical applications, the proposed solutions target both data re-
construction and feature extraction. More importantly, the proposed in-network com-
puting solutions are not limited to acoustic data analysis since all designs are based on
digital signals. The proposed solutions can also be applied to medical, image, motion,
financial, and other related data analysis applications with slight alterations.

1.3 Structure of the Dissertation

This dissertation consists of six chapters grouped into four parts by the subject of each
chapter, as shown in Figure 1.1. Specifically, they are as follows.

Part I is Future Communication Networks. It discusses the demand for computing in
future communication networks (Chapter 1) and summarizes the system architectures
proposed in this dissertation to meet this demand (Chapter 2). The reader can under-
stand this dissertation’s motivation, contributions, and structure through this part.

Part II is about the design of computing. This part details how to bring computing
into networks, which corresponds to Objective-1 in Section 1.2. Chapter 3 is dedicated to
the design of the computing module for data reconstruction, i.e., progressive computing;
Chapter 4 focuses on the design of the computing module for feature extraction, i.e.,
traffic filtering.

Part III describes the network design in Chapter 5, The proposed computing-
supportive network module, i.e., stateful transport module, corresponds to Objective-2

1The in-network pICA demonstrator is accessible via https://huanzhuo.github.io/pICA-demo/
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Chapter 3

Chapter 4

Part I Part III Part IV

Chapter 5

Chapter 6

Chapter 1

Chapter 2

Section 2.2

Section 2.1

Section 2.3

Section 5.3

Section 5.4

Section 5.5

Section 6.1

Section 6.2

Figure 1.1 Structure of the Dissertation

in Section 1.2. Furthermore, Chapter 5 is linked with Chapter 3 and Chapter 4 to provide
full-stack system implementation and performance evaluation of in-network computing.

Finally, Part IV summaries this dissertation. Chapter 6 concludes the contribution of
this work and provides future perspectives on in-network computing.
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2.1 The Synergy of Network and Computing

In-network computing is still in a very early stage; therefore, there is currently no com-
monly accepted definition given by official organizations such as 3GPP, International
Telecommunication Union (ITU), etc. However, there is a general consensus in many
research communities (e.g., IETF, etc.) that in-network computing is the offloading of
general-purpose computing tasks to the network and using resources on the network
forwarding path to perform these tasks.

In-network computing focuses on computation within the network, using devices
that already exist in the network system and have been used for network processing. It
differs from the historical use of “network computing”, which refers to an entire network
system or computers located at network endpoints, such as distributed computing. In
contrast to the previous computing schemes, with in-network computing, the network
can now be seen as an important component of distributed applications and used as a
simple end-to-end connector between dependent services. In-network computing dis-
solves the boundary between the network domain and the computational domain. Thus,
the task of the network has shifted from being a pipe for data transmission to be a plat-
form for information delivery, and this shift is made possible by in-network computing.

The in-network computing [44–46] approach leverages the computation capabilities
located within networks to perform the application’s computation. By doing so, latency is
the first main advantage. Data processing occurs entirely within networks instead of be-
ing directed to a data center which is usually far away. Therefore, in-network computing
offers very low latency.

The synergy of network and computing ranges from remote computation on dis-
tant clouds (i.e., high communication and low task execution latency) to edge computing
(i.e., relatively low communication andmoderate task execution latency) [36]. In-network
computing enables flexible utilization of network and computing resources from high to
low levels. It utilizes a variety of servers that can be located one hop away from the
edge of the network that is accessible via direct links (e.g., Long-Term Evolution (LTE)/5G,
Wireless Fidelity (Wi-Fi)) or located far from the user where cloud-based processors are
interconnected via network elements (e.g., network routers).

While the common goal of these synergies of the network and computing is to bring
information delivery closer to the end-user, in-network computing extends edge and
cloud computing to further increase computing resource utilization and reduce task
completion times. More importantly, the vision for in-network computing is that it can
fuse into the computing resources on these links and perform aggregation of multi-path
computing. This can further reduce the computational demand at the edge and the
service latency in the cloud, increasing the capacity of available resources while reduc-
ing the total execution time. Next, in Section 2.2, the technologies enabling in-network
computing will be introduced.
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2.2 Enabling Technologies

Network Softwarization

Conventional Network Functions (NFs) are dedicated hardware appliances consisting of
a switching fabric and the software that implements the logic of the NF. Although the
tightened coupling between software and hardware in a device ensures an optimized
design and fine-tuned functionality with high throughput, hardware NFs introduces ven-
dor lock-in. The consequences are usually longer product development cycles and de-
creased service agility.

With network softwarization, the communication network system consists of a con-
trol plane and a data plane. The role of the control plane is access control, security,
handling service requests, policy/charging, etc.; the data plane consists of network re-
source elements that are used to deploy the network services controlled by the control
plane. Before 5G, the control and data planes were tightly coupled in vendor-specific
hardware devices. With 5G decoupling, the control and data planes can be developed
separately and flexibly.

Network Function Virtualization (NFV) [47] and Software Defined Networking
(SDN) [48] are the enablers of network softwarization. Currently, both the control plane
and the data plane’s NFs can be fully virtualized, and Service Function Chain (SFC) [49]
(consisting of interconnected NFs) can be deployed anywhere where network resources
are available. This development has opened the way for in-network computing.

An SDN decouples the control plane of switches and routers from their data plane,
enabling the control and orchestration of those devices from a central entity. NFV decou-
ples the hardware-related packet forwarding of the NF from its functionality, which can
be completely implemented in software. Extending NFV, SFC provides a chain of multiple
Virtual Network Functions (VNFs) to address typical use cases in practical deployment,
which usually needs a sequence of multiple NFs.

The data flow concatenating the NFs is decided by an SDN controller [50]. The SDN
separates the control plane, deciding the packet forwarding rules for the data plane,
which implements the packets’ actual forwarding in a router. One SDN controller can
simultaneously manage the control plane of several SDN-capable switches, simplifying
network management and administration.

The controller communicates with individual switches via standard protocols such
as OpenFlow [50], which defines, among many other guidelines, specifications on the
fields of packet headers. An application realizes the rules and their respective actions
in the flow table at switches. Then, packet flows matching those rules are processed
with defined actions. The combination of NFV and SDN is fundamental for enabling in-
network computing.

38 Chapter 2 The Age of In-network Computing



Computing with Network Devices

There is a long history of pursuing programmability on network devices. P4 – a high-
level language – is proposed to configure programmable networking devices. The P4
language is used in softwarization, and its performance is already equivalent to those
of traditional vendor-specific products. Examples can be found in model training [51],
distributed database consensus [52], etc. Thus, P4 serves as a general interface between
the SDN controller and the programmable network devices. Network nodes must be
programmable to implement application-specific processing defined by P4. There are
several other types of programmable network devices.

Initially, Protocol-Independent Switch Architecture (PISA) [53–55] enabled switches
to not link to any specific network protocol, thus protocol independence. However, even
after deployment, programmers still have the chance to reprogram to change how the
switches process packets. Furthermore, PISA enables programmers to describe packet-
processing functionality independent of the underlying packet processing fabric. Sec-
ondly, smartNICs (e.g., Netronome [55]) can perform additional packet processing with
equipped processors, transactional memory, and accelerators. When processors have
multi-threaded cores, smartNICs can boost processing performance with parallel pro-
cessing. Comprehensive studies on smartNICs performance, such as [56–58], demon-
strated that the latency is sub-millisecond on various packet processing operations.
However, to the best of our knowledge, all operations are header-related, including com-
plex network functions, such as L3 forwarding and firewall and VxLANdecapsulation [58].
Last but not least, by leveraging NetFPGA, authors in [59] proposed a firewall that stands
at the junction of the edge and the core segments of a 5G network, which can isolate
a tremendous amount of traffic effectively from multiple edge segments protecting the
5G core network from cyber-attacks. The combination of P4 and NetFPGA has received
significant interest from the research community; several interesting applications are
summarized in [60].

Even though the mentioned processing schemes based on P4 achieve very high
throughput, even at line rates, this comes at the cost of several trade-offs. For exam-
ple, all processing is on a per-packet basis, and the processing operations are minimal,
setting a tight constraint on the choice of implemented algorithms.

Favoring flexibility, NFV processes in this approach run on commodity servers inter-
connected by infrastructure networks [39, 61]. VNF runs at commodity servers in con-
tainers, virtual machines, or natively as bare-metal. There are many interconnections
between NFs, either at the hypervisor level or physical NIC or at the switch level of the
infrastructure networks.

SDN allows for creating a chain of service functions [62], which does the desired
computing at physical servers. This type of in-network computing provides a full range
of flexibility to implement various processing algorithms. However, the main concern
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is a degraded performance and an increased latency due to concatenated levels of ab-
stractions and packet routing between various interfaces. It is, however, demonstrated
via studies on practical deployments that this type of setup can achieve stringent latency
requirements as low as 1 ms Round Trip Time (RTT) [63]. Other related works in this
line of research include, e.g., image detection [64], in which the workflow decomposes
its complex functionalities into a chain of small functions. Similarly, in [65] a computer
vision task, a real-time type of line-following service is divided into several components
and deployed as network services with programmable network devices. However, these
works consider only the processing location and network transport issues without con-
sidering a processing logic suitable for the networks.

This section briefly describes different strategies to implement packet processing in-
side networks. First, P4 permits programming capability at the data plane to unleash the
great potential of programmable network devices, such as PISA, SmartNIC, and NetFPGA.
In addition, the approach allows for producing very high throughput with low latency.
However, due to the limited arithmetic operations, this approach comes at a price of a
lower level of flexibility. Second, NFV-based approaches are very flexible in the choice of
algorithms because they run on commodity servers with a wide range of computation
libraries of choices. The drawback, however, is a degraded throughput and potentially
higher latency due to packet processing in user-space.

The discussion in this section provides the basis for considering an approach to
integrating computing into the network. The next Section 2.3 will build on the foundation
of network softwarization and network device computing to derive in-network computing
solutions that accelerate acoustic data analysis.

2.3 Blueprint of the System Architecture

Given a computing system in a communication network as shown in Figure 2.1, the client
node near the data generator serves as the entry point to the system, and the data user
is located at the server node at the other end of the network. The client node and the
server node are connected by several intermediate nodes located along the forwarding
path.

Data analysis services within a network generally consist of two operations, namely
data forwarding and data computing. Thus, the total service time Ts (the RTT of the data
analysis service) is composed of forwarding time Tf and computing time Tc. When the
computational logic is executed at the end of the network while the data is not changed
on the forwarding path, it is obvious that the total service time is the sum of forwarding
time and computing time as shown in Equation (2.1):

Ts = Tf + Tc ∝
V
b
+ O , (2.1)
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Client ServerNode NodeNodeNode

Forwarding Computing

Figure 2.1 Forwarding time and computing time in a communication network.

where V is the transmitted data volume, b is the network bandwidth, and O is the com-
putational complexity.

Once the network infrastructure setup and the algorithm of data analysis are fixed,
b and O will be constant. Therefore, the only way to reduce the service time is to reduce
the data volume and/or optimize the summation method of Ts. From the perspective
of data volume, data analysis applications can be categorized into two main categories:
data reconstruction and feature extraction.

Data reconstruction is an attempt to find a certain mapping that can transform the
data into the desiredmapping space. The data in the desiredmapping space can provide
the information wanted by the user. It is characterized by the fact that the volume of the
data remains constant before and after processing, which means that V in Equation (2.1)
stays constant as well. Examples of common data reconstruction applications include vi-
sual reconstruction, data encoding, streaming media, etc. In contrast, feature extraction
seeks to find specific features from a set of data, which is the information about data,
rather than a mapping of data itself. That is, before and after feature extraction, the vol-
ume of the data is reduced, i.e., the V of Equation (2.1) becomes smaller. Typical feature
extraction applications include object/anomaly detection, pattern recognition, etc.

The system architecture was designed for each of these two types of data analysis
applications in Section 2.3.1 and Section 2.3.2. Nevertheless, recall that the following
two design blueprints are not fixed for data reconstruction and feature extraction appli-
cations only, but more importantly, their underlying guiding idea is the variation of the
volume of the data being transmitted over the forwarding path. This work focuses on
these two limiting cases, and as an extension, solutions between these two limits can
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Forwarding Computing

Figure 2.2 Forwarding time and computing time for data reconstruction.

also follow the two design blueprints, or a modest blend of both.

2.3.1 Data Reconstruction

Taking into account the constant volume of forwarded data for data reconstruction ap-
plications, the design idea of this system architecture is to offload the computation to
the network in parallel to the data forwarding, as shown in Figure 2.2.

In this system architecture, the service time Ts becomes smaller because of the par-
allelism of forwarding and computation:

Ts = Tf + Tc – (Tf ∩ Tc) . (2.2)

Since the volume of forwarded data V remains the same, i.e., Tf, does not change, the
gain in service time of the whole system is the parallel part, i.e., Tf ∩ Tc.

It is important to note that this design requires that Tc (i.e., O of computational logic)
does not change or does not become significantly larger. Otherwise, if Tc grows larger
than Tf ∩ Tc, then the gain generated by parallelism will be lost. Since network devices
do not have as much computing power as cloud servers, this parallel mechanism of
forwarding and computing needs to be designed, and a lightweight computational logic
needs to be considered. The design of this system architecture is described in detail
in Chapter 3 and Chapter 5.
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Figure 2.3 Forwarding time and computing time for feature extraction.

2.3.2 Feature Extraction

For feature extraction applications, the system design further considers the changes in
data volume. In the designed system architecture, the feature-independent redundant
data (denoted by ΔV) can be filtered out along the forwarding path so that the forwarding
time becomes smaller, as shown in Figure 2.3. In turn, the overall service time is reduced
to:

Ts = Tf – ΔTf + Tc ∝
V – ΔV

b
+ O . (2.3)

The gain in service time of the system is the ΔTf =
ΔV
b .

As in Section 2.3.1, the computational logic should be lightweight due to the com-
puting power of the network equipment. More details on the design of this system ar-
chitecture can be found in Chapter 3 and Chapter 5.

In summary, the Part II and Part III of this dissertation, Computational Design and
Network Design, are devoted to realizing the system architecture blueprints of Sec-
tion 2.3.1 and Section 2.3.2. They focus on the design of that computational logic on
network devices and the mechanisms for providing data for that computational logic,
while taking into account the current end-to-end network protocol stack.
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3.1 Introduction

The convergence of IoT, intelligent networks, and cloud technologies has enabled the
digitalization of various vertical industries, among which the smart factory plays an inte-
gral part [25, 66, 67]. In smart factories, one typical data engineering operation is data
reconstruction, which serves as data pre-processing for further applications. In particu-
lar, themost promising type of data is acoustic data because acoustic data can reflect the
internal state of the production system, which cannot be obtained from other sources,
such as video [5, 43]. In addition, audio equipment is much cheaper than professional
cameras and therefore more budget friendly. Because of these factors, data reconstruc-
tion based on acoustic data is a promising data pre-processing technique that will play
an important role in the future of smart factory operations [22].

However, acoustic data interferes naturally, unlike video or motion data, which are
by nature separated. Therefore, in intelligent system operations, such as natural lan-
guage processing [68], acoustic detection [69], etc., reconstruction of the original signal
data is necessary. This data reconstruction problem is called Blind Source Separation
(BSS) [70]. As with other data reconstruction problems, BSS is characterized by the data
producer and the data user being exposed to the same sized data. These data producers
and users can be understood as the client and server-side of a network. The intelligent
system aims to find a mapping relationship for reconstructing the data generated by the
producer for industrial production.

The natural idea is to transfer all the data to a centralized node; when all the data is
received, a BSS algorithm is applied to separate the mixed data. Candidate methods for
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BSS include Independent Component Analysis (ICA)-based methods [7,71,72] or neural
network-based methods [13, 73]. However, due to: (i) the potentially long waiting time
for transmission of data, and (ii) the long execution time for running the algorithm on
a single node, forwarding and analyzing can delay the critical decision making process.
Implementing data analysis reconstruction based on acoustic data requires a better so-
lution.

This chapter addresses this issue differently. Instead of sending all the data and
waiting for the separation result, the whole task can be accelerated by distributing the
data separationwork on intermediate network nodes [1]. Therefore, the centralized data
separation approach is transformed into an in-network computing approach. Intelligent
networks can parallelize data transmission and processing using SDN and NFV to speed
up the overall work.

Specifically, a progressive computing design paradigm was proposed in [1,6], which
follows the greedy and growth strategies. In accordance with this design diagram, a
computing module progressive ICA (pICA) was proposed for network nodes so that each
network node utilizes the maximum computational resources. A matrix of optimal re-
construction solutions with sufficient accuracy can finally be given at the final destination.
The key contributions of this chapter can be summarized as follows:

• A design paradigm progressive computing was proposed, as a guideline of how
data reconstruction can be accelerated by utilizing intermediate computing re-
sources in the network;

• An in-network computing module pICA was proposed for acoustic data sepa-
ration, which is a modified ICA algorithm called “progressive ICA (pICA)”, making
the acoustic data separation executable in a distributed manner as VNFs, which
would yield faster computational speeds;

• Theoretical upper and lower bounds were derived for the optimal number of in-
termediate nodes required to achieve the maximal acceleration. Given a specific
processing job, this result not only determines if an existing network can achieve
the best in-network computing performance but also guides network planning;

• Comprehensive simulations were conducted with the numerical results that
proved the proposed computing module’s effectiveness.

pICA was built with nodes in the network, and the results showed that it accelerates
the computing time for mixture data separation by up to 43.75%. Technically, this was
the first work that studied how to transform a BSS algorithm into an in-network comput-
ing scheme, overcoming a key constraint where traditional BSS can be mainly executed
on a centralized node. Parts of this chapter have been published in [6–8], and parts are
under review in [1] at the time of submission of this dissertation.

Next, a state-of-the-art investigation on BSS is given in Section 3.2. Then, Section 3.3
introduces the new method, namely progressive ICA (pICA), which functions as the key
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Figure 3.1 Setup of Blind Source Separation problem in a communication
network [1,6].

component in solving the problem BSS. The theoretical results of our proposed solution
are presented in Section 3.4. Finally, the comprehensive evaluation results are presented
in Section 3.5. Section 3.6 concludes this chapter.

3.2 Background

Firstly, Section 3.2.1 describes the BSS setup, followed by Section 3.2.2 describing the
problem that needs to be solved, and Section 3.2.3 introduces the recent related work
on this topic. The content of this section was presented in [1, 6]. The discussion on the
State-of-the-Art techniques was also partially introduced in [1,6–8].

3.2.1 System Model

This chapter focuses on an IoT audio data analysis system to solve BSS in a factory hall.
This system comprises IoT acoustic sensors and a client node linked to a server node in
the cloud via a multi-hop forwarding path. Every IoT sensor, in particular, collects sound
data from the machine “source” to which it is attached, and this interferes with sounds
from other machines (considered as noise). Every IoT sensor sends collected data to a
client node continuously. A WiFi Access Point (AP) or a cellular base station of a (non-
public) network can serve as the client node. This client node continues to send data
(from all sensors) to the backend server node via a forwarding path. The forwarding
path can be dynamically determined or statically configured depending on the routing
mechanism. The forwarding path includes various intermediate “Node i” and “Node i+1”.

A BSS system, in its most basic form, has n working machines. The machines are
indexed by i. si is the original data generated from the ith working machine. Due to
mutual interference, the original signal data si will be distorted to imperfect data xi. At m
time points, the collected data at the client node is aggregated to form a data matrix X.
In this sense, the original counterpart of X is a source matrix S. This mutual interference
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effect can be formulated as the operation in Equation (3.1):

X = A× S , (3.1)

where distorting the source data S to X is modeled by introducing a mixing matrix A. As
a mathematical concept, BSS problems are inverse operations of Equation (3.1):

Ŝ = A–1 × X = W× X , (3.2)

where original data Ŝ is estimated by calculating a matrix W that will be applied to the
input data X for data reconstruction.

3.2.2 Problem Statement

In reality, both the interference coefficient, the mixing matrix A, and the original signal
S are unknown, making the receiver blind to the source signal. Hence, a critical step of
anomaly detection is to solve the BSS problem. It aims to find an estimated W that can
make an inverse operation of Equation (3.1) possible. The estimated signal Ŝ is consid-
ered optimal, when the matrix W is optimized. In the following discussions, the optimal
W matrix is called a separation matrix of the problem in Equation (3.2).

In this chapter, the target is to solve the problem of Equation (3.2) with an in-network
computing approach. In this case, the problem can be stated as follows::

• How the full dataset X shall be partitioned on every intermediate node for its local
processing;

• How the entire data processing task (i.e., estimating Ŝ) can be done across multi-
ple nodes so that the solution matrix W can be optimized progressively.

In the following sections, the use of “intermediate node” and “node”, “separation” and
“estimation” are interchangeable.

3.2.3 Related Work

As a general BSS problem, original data is blindly retrieved from mixture data X without
any prior knowledge of what they are and how they are mixed. When it comes to BSS,
two candidate options are available.

One possibility is Machine Learning (ML) based onNeural Networks (NNs), such as Y-
Net [13], Conv-TasNet [73], Wava-U-Net [74], etc. However, in the context of in-network
computing, ML-based solutions are less attractive because:

1. It is hard to obtain enough representative training data;
2. It is time-consuming and resource-intensive to train NN models; and
3. Once deployed on network nodes, NN models are difficult to update.
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Additionally, ML-based solutions require special hardware (e.g., GPUs) to maximize their
performance, which barely appears on a network device.

Another alternative is ICA algorithms [70], working directly with input data and re-
quiring only average hardware capability. Typical ICA algorithms are Fast Independent
Component Analysis (FastICA) [71], InfoMax [72], Compressible ICA [14], etc. And low
processing time algorithms based on FastICA are, for example Component-Dependent
Independent Component Analysis (CdICA) [7], and Adaptive Extraction-Based Indepen-
dent Component Analysis (AeICA) [8]. The ICA algorithms have the potential to fit a dis-
tributed computing scheme because they are free from the three ML-based limitations
mentioned in last paragraph, whichmakes thema goodmatch for in-network computing.
Therefore, the ICA algorithms are used as the state-of-the-art study.

Fast Independent Component Analysis

FastICA [71] is one of the most popular ICA algorithms. It maximizes the non-Gaussianity
of the observed data to estimate the source data if the source data is (i) statistically inde-
pendent and (ii) non-Gaussian distributed. The negentropy of the data usually measures
non-Gaussianity. Though the precise form of negentropy is complicated (unfriendly for
computation), its approximation proposed in [75] is concise and considerably accurate
in practice. In the simplest case, these new approximations to negentropy JG(W) are of
the form:

JG(X,W) ∝ [E{G(WTX)} – E{G(v)}]2 , (3.3)

where E{·} represents the expected value of a random variable, G(·) is practically any
non-quadratic function, and v is a random variable with a standard Gaussian distribution.

Three choice of the contrast function is given in [71]:





g1(u) = tanh(a1u)

g2(u) = u exp(–a2u2
2 )

g3(u) = u3,

(3.4)

where 1 ≤ a1 ≤ 2, a2 ≈ 1. [71] has summarized the benefits of the different contrast
functions:

• g1(u) is a good general-purpose contrast function;
• g2(u) works better on highly super-Gaussian components or when high robust-
ness is required; and

• g3(u) works better on sub-Gaussian components.

The contrast functionG1(u) =
1
a1 log cosh a1 · u, (a1 ∈ [1, 2]) is chosen in this chapter,

because it is a good general-purpose contrast function as discussed in [71]. There are
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other options but irrelevant to our problem for different situations. The readers are
referred to [71] for more details about the pros and cons of different contrast functions.

To maximize the non-Gaussianity JG(·), ICA in [71] transforms JG into the summa-
tion of the approximated negentropy in terms of every row vector Wi and defined the
optimization problem as follows:

max
W

n∑

i=1

JG(X,Wi) i = 1, · · · ,n (3.5)

s.t. W2
= 1 , (3.6)

where the constraint (Equation (3.6)) is required if the data X is pre-whitened (normal-
ized).

A Newton’s approximation is used to solve the above optimization problem, where
the solution matrix W is optimized with the iteration rules below:





W(l)
= W – E{Xg(WTX)}–βW

E{g′(WTX)}–β ,

W(l∗)
=

W(l)

W(l) ,
(3.7)

where

β = E{WTX · g(WTX)} . (3.8)

The first iteration rule in Equation (3.7) actually updates w.r.t. the gradient of the objec-
tive function Equation (3.5) at the value of W; after that the second iteration rule in Equa-
tion (3.7) normalizes the updated W.

According to the Kuhn–Tucker conditions [76], an optimal value of JG is obtained at
a point W∗ where the gradient of JG diminishes. This means that the change from W(l–1)

to W(l) disappears, which gives a stoppage condition:

JG(X,W) = E{Xg(WTX)} – βW→ 0 . (3.9)

In practice, W(l) is optimized until the difference Δl between two consecutive iterations is
smaller than a desirable tolerance Tol (i.e., Δl ≤ Tol), wherein Δl is defined by:

Δl = W(l) × [W(l–1)]T – I, l ∈ Z
+ , (3.10)

where Δl is an n× n matrix and I is an identity matrix with the same size.

Theoretically, the stoppage condition will be every element δij in the matrix Δl equal
to 0. This condition is, however, hard to achieve in reality. Hence, a practical stoppage
condition is that the biggest element δ̂ ∈ Δl should not be bigger than a pre-defined
threshold Tol (i.e., δ̂ ≤ Tol).
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In [77], an eighth-order Newton’s approximation is proposed, making it possible to
use less number of iterations. [78] applied this approach to FastICA and proposed an
improved algorithm. Different from FastICA, the main improvement of this algorithm
is to measure the negentropy JG(W) in an efficient way, instead of using Equation (3.3).
Besides, [79] proposed an improved FastICA method for ECG extraction; it introduced
an over-relaxation factor to accelerate the convergence speed of Equation (3.3). [80]
improved the FastICA by using five or six-order Newton’s approximation. A third-order
convergence of FastICA is introduced in [81]. These methods improve the separation
accuracy of Equation (3.3) in a centralized manner, which requires all the input data X.

Component-Dependent Independent Component Analysis

CdICA [7] is proposed, which aims to accelerate BSS from another angle instead of im-
proving the performance of Newton’s approximation as in the studies as mentioned
above. The main idea of CdICA is to give Equation (3.3) of FastICA a rough-estimated
initial separation matrix W0, which can reduce the iteration number of ICA.

Based on the correlation of the mixing matrix A and the mixed signals X, CdICA first
generates a rough-estimated initial mixing matrix A0 using Equation (3.11):

a0i,l =
ai,l
al,l
≈ E(ˆxli)

E(ˆxl
l)
, l = 1, · · · ,n , (3.11)

where âi,l is the element of A0. ˆXl is the subset of observed mixed signals X, which is
derived following:

ˆXl ⊆ X l, k = 1, · · · , k ̸= l , (3.12)

s.t. xl
l,j > |xl

k,j| . (3.13)

Next, the rough-estimated initial separation matrix can be derived from A0 follows:

W0
= (A0)–1 . (3.14)

Since W0 of CdICA is much closer to the final separation matrix W than a random ini-
tial matrix, CdICA can thus achieve the desired convergence with fewer iterations. How-
ever, the scenario for CdICA is limited because Equation (3.11) is only available when each
IoT sensor is close to one source machine, which is not suitable for practical application.

Short Summary

As noted above, existing works only provide a centralized representation of ICA algo-
rithms. A monolithic algorithm can hardly benefit from an in-network computing frame-
work since the algorithms require the entire dataset to calculate the result. Conse-
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quently, executing the same algorithm (iterations) across multiple nodes means repeat-
ing the same procedure multiple times, not contributing to the ultimate convergence of
the algorithm. Therefore, several attempts were undertaken to convert the centralized
ICA into a distributed one.

Adaptive Extraction-Based Independent Component Analysis

The first attempt is AeICA in [8], where a very basic growing size of subsets of X is
used to estimate the separation matrix W distributively on multiple nodes. Unlike other
approaches, AeICA does not focus on accelerating the convergence of Equation (3.3).
Specifically, AeICA takes carefully chosen initial parameters so that the algorithm can
use a smaller size of data to get an equivalent solution quality as FastICA.

With AeICA, each round of Newton’s approximation Equation (3.7) works on taking
a subset of the sensed data rather than the entire data set. Based on this idea AeICA ac-
celerates BSS by two main enhancements, while guaranteeing the high accuracy of ICA.
First, AeICA extracts a subset of data for each iteration and uses an adjusted convergence
tolerance to avoid excessive computation. Second, AeICA uses adaptive extraction dis-
tances to increase the extracted data after each iteration, ensuring reliable separation
quality.

In AeICA, a subset μkX is extracted by a constant interval μk from the mixture X in the
kth iteration. The subset data μkX is built from X following:

μkX =




x1,1 x1,1+μk x1,1+2×μk x1,1+3×μk ......
x2,1 x2,1+μk x2,1+2×μk x2,1+3×μk ......
...... ...... ...... ...... ......
xn,1 xn,1+μk xn,1+2×μk xn,1+3×μk ......



, k ∈ N . (3.15)

For such subset data μkX, an adjusted tolerance μkTol based on the origin Tol of Equa-
tion (3.10) is generated following:

μkTol =
√
μkTol, k ∈ N . (3.16)

Note that each iteration of AeICA is essentially a FastICA algorithm but with a specifically
chosen subset of input data and its adapted convergence tolerance.

Then the extraction interval for the next round of Newton’s approximation μk+1 is
updated based on the convergence result μkΔ:

μk+1 = max(1, ⌊(μkΔ

Tol
)2⌋) . (3.17)

Although AeICA can be performed on networks, it is fairly sensitive to the initial con-
figurations of parameters, which are heavily dependent on knowledge of the input data
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in advance. Furthermore, results from AeICA can be heterogeneous due to the param-
eter, which controls the sampling distance of data subsets. This parameter is selected
according to an ideal assumption where data features are uniform.

Unfortunately, this assumption does not hold in reality because prior knowledge on
X is usually not given. This means that the sampled subset data are not always represen-
tative, which leads to inconsistent separation results. According to the results, in some
extreme cases, processing time would instead increase. Its heterogeneous performance
fails to fulfill our goal. Also, considering the nature of data forwarding in networks, the
partial data μkX is extracted by interval, while most data is sent sequentially in practice.

In summary, effectively offloading BSS computation to in-network computing is still
an open problem, especially minimizing processing delay.

3.3 Solution: pICA

In this section, Section 3.3.1 gives the general principles of algorithm design. Subse-
quently, the details of the algorithm design are presented in Section 3.3.2, Section 3.3.3,
and Section 3.3.4. The implications of the algorithm for solving similar problems using
the in-network computing scheme are given in Section 3.3.5. The content of this section
was published in [1,6].

Among numerous ICA candidate algorithms, in this work, we select their common
ancestor FastICA (detailed in Section 3.2.3) and transform it to a distributed version from
that makes up the in-network computing solution. Our main considerations are as fol-
lows.

Firstly, recent variants of FastICA, in essence, still follow the core of FastICA. Although
these variants added various refinement steps during the past decade, their core still
relies on Newton’s approximations. Therefore, if a recent variant is chosen, the spe-
cific transformation designs based on that may not be compatible with other variants,
thus narrowing the compatibility of our solution, which the in-network computing should
avoid. In contrast, any strategy treating on FastICA will be widely applicable because even
the latest variant will share similar centralized Newton’s approximation steps as FastICA
has, for example, modifying the second-order Newton’s approximations used in FastICA
to fifth or sixth-order, and extending it to eighth-order. All thesemodifications do not es-
cape from using Newton’s approximation. Therefore, the largest common denominator
among ICA algorithms is chosen to maintain generality.

Secondly, the main focus of this work aims to present a network design that trans-
forms a monolithic algorithm that is centralized to be decentralized. In this sense, which
specific ICA algorithm is selected is neutral. In other words, even if the targeted algo-
rithm is replacedwith a newone, the acceleration to the new algorithmwill proportionally
change; therefore, the result in this work still holds.
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Figure 3.2 An in-network computing architecture of pICA [1,6].

In light of the above, FastICA is chosen as an example, which can be widely accepted
in the community, for transforming a centralized model into a decentralized one.

3.3.1 Design Principle

The details of the centralized ICA, i.e., FastICA, are given in Section 3.2.3. The idea of ICA
is to maximize the non-Gaussianity JG(X,W) of observed data X with the separation matrix
W to estimate the source data Ŝ. Newton’s approximation can solve the non-Gaussianity
maximization. Since Newton’s approximation is on X, the centralized ICA requires all data
X to be available on a single node. Thus, it works in a centralized manner.

There aremainly two factors that limit the performance of a centralized ICA. The first
one is the time spent transferring all the data. The algorithm suspends before all data
has been received, as the optimization problem (Equation (3.5) and Equation (3.6)) re-
quires that all data X to be available, which causes unnecessary wait times. Note that this
does not yet account for unreliable network conditions such as packet loss and network
congestion in realistic situations. In other words, the waiting time for receiving complete
data could be even longer. The second one is the execution time spent on running with
iteration rules in Equation (3.7). At nearly the point of convergence, the marginal gain
often becomes pretty minor. In other words, in essence they are spending more time in
the later phases with minimal improvement.

In this chapter, an in-network computing scheme introduces a new processing logic
pICA on every intermediate node (shown as gears in Figure 3.2). With pICA, while for-
warding the collected data X, node i will start processing with a subset of data sampled
from X. It aims to roughly but quickly calculate a temporal separation matrix Wi, then
passes Wi to node i + 1. Node i + 1 will evolve the temporal solution to a better separa-
tion matrix Wi+1 with a larger size of subset data. It will be seen that such a progressive
manner yields a faster-converging speed without sacrificing the precision on the final
solution W.

The main idea of pICA is to start calculating the separation matrix W earlier on inter-
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mediate nodes but with only caching a subset of data. The early result on one node i does
not have to be final. Instead, the early result will be further optimized with more data on
the following nodes towards the final destination (i.e., Remote Server node). Specifically,
two new strategies are introduced as follows:

1. Greedy Strategy: Once a node finds that the improvement from gradient-descent
iterations gets slower, it stops and hands over the temporal result to the next
hop;

2. Growing Strategy: The size of the subset data cached on every node progres-
sively increases along the forwarding path approaching the end.

Only the first strategy (i.e., simply relaying the temporal results) brings no acceler-
ation. The second strategy is needed to make early nodes spend less time processing
with fewer data. With more input data, the following nodes can better improve the result
from the previous nodes. The synthetic effect is that every node takes a roughly calcu-
lated solution from the previous node as the initial point of its local iterations. Still, the
size of cached data will be increased. Hence, it can derive an even better solution for the
next hop.

The main idea, which is translated into the pICA algorithm, will be described in this
section. The two new strategies correspond to two new algorithmic parts:

1. a sampling method instructing data caching on every node;
2. a stoppage condition to tell if a node should stop its local iterations.

pICA on an intermediate node i generally works as follows: First, it keeps forwarding the
data to the next node i + 1; Second, it starts with the temporal result (i.e., a separation
matrixWi–1) provided by node i–1 and further improves the result for the next node i+1 by
executing pICA. Before introducing the technical solution, key notations are summarized
in Table 3.1.

In summary, the two strategies convert the centralized ICA to a distributed version.
The size of the cached data progressively increases on subsequent nodes to progres-
sively improve the quality of the separation matrix W. The greedy and growing strategies
and the pICA process logic that underlies these strategies are described in detail in the
next sections.

3.3.2 Greedy Strategy

Asmentioned in Section 3.2.3, the quality of the separationmatrixW is determined in ICA
based on the convergence of Newton’s approximation (Equation (3.7)). The convergence
is defined according to Equation (3.10). In the in-network computing scheme, to perform
Newton’s approximation in advance at intermediate nodes using a subset of X, is limited
by two factors.
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Table 3.1 Key notations of pICA [1,6].

Notation Meaning

si Source data of the ith machine.

S Source data matrix from all machines.

xi Noised data of the ith sensor.

X Noised data matrix received by the client node.

m Total time span.

n Total number of IoT sensors.

A Mixing matrix mimicing mutual interference.

W Separation matrix estimating S with X.

Wi Temporal separation matrix on the ith node.

ŝi The ith estimated source signal.

Ŝ Estimated source data matrix.

Tol Precision convergence threshold.

Δi Difference of the separation matrix Wi on the ith node.

αi Sampling step on the ith node.

βi Cached subset data for X on the ith IoT sensor.

γi Gradient of Newton’s approximation on the ith node.

θ̂g Gradient quality threshold.

The first limitation is the decreasing speed of the iteration’s difference Δl

in Equation (3.10). Newton’s approximation is a quadratic convergence optimization
method [82], which means that as the number of Newton’s approximations increases,
the rate of Δl decreases. In other words, a minor optimization of W requires a large
computing power at the later iterations.

The second limitation is utilizing a subset of X, since only partial data is used for
Newton’s approximation on network nodes instead of the full set of X. As a result of
this operation, the input data of Newton’s approximation deviates significantly, making it
harder to perform each iteration and eventually consuming more computing power or
even preventing Newton’s approximation from converging. For these two reasons, pICA
needs a new strategy to determine the convergence of Newton’s approximation.

Therefore, as the in-network computing scheme, multiple network nodes can col-
laborate in the computation, and the available data for them aremutually exclusive, pICA
uses a new stopping strategy, greedy strategy, to determine the convergence of Newton’s
approximation on ith node.
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Let the subset of X on the node k be βiX. The difference of each iteration based on βiX
is Δi. When Δi satisfies either of the following two conditions, the node i stops the current
Newton’s approximation and hands over the current estimated Wi to the node i + 1 as a
temporary separation matrix. The stoppage conditions are explained below.

The first condition is to measure if the local marginal gain of iterations becomes too
small, called greedy stoppage. In pICA, the local marginal gain is defined as γi, by the
gradient descent of Δi in Equation (3.18):

γi =
i× (Δmax + Δi)

2
∑i

1 Δi
, (3.18)

where Δmax is the largest difference of all Newton’s approximation on the node i. Recall
that with the greedy strategy, node i continues only if the gradient value γi of Newton’s
approximation is still large enough so that further iterations are worthy. Specifically, if
the current γi appears too small:

γi < θ̂g , (3.19)

where θ̂g is a defined gradient quality threshold, further iterations will not substantially
improve the separation matrix Wi anymore.

The amount of computation on each node can be defined by adjusting the θ̂g. The
greedy stoppage following Equation (3.19) has several advantages, the first being that
this condition makes it possible to stop the computation when the rate of convergence
decreases. Secondly, it is more stable than measuring a single gradient of one iteration
step because it measures an average gradient of several results. Thirdly, the greedy
stoppage also stops the computation for the cases where the iterations fail to converge.

The second condition is the local convergence tolerance Tol similar to the centralized
version in Equation (3.10). If Wi is seen to arrive at the required precision:

Δi < Tol , (3.20)

the Newton’s approximation on node i can stop. Note that this does not mean that Wi is
globally optimal because it is calculated based on a cached subset data βiX.

However, AeICA introduced in Section 3.2.3, its stoppage criteria only employs a
convergence tolerance based on μk without considering the marginal gain. This may
lead AeICA to waste execution time doing trivial work (small marginal gain) on one node.

3.3.3 Growing Strategy

In Section 3.3.2, the determination of Newton’s approximation convergence to W at each
network node is given. Recall from Section 3.3.1, another remaining open subject to be
solved is how the size βi of the subset of data βiX used for Newton’s approximation is
determined.
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It is evident that an overly large βi of subset data leads to excessive data caching
time in the in-network computing scheme and increases the computational effort of a
single iteration unit of Newton’s approximation. On the contrary, an excessively small βi

of subset data may lead to an increase in the number of iteration units, or it may also
result in irrelevant Newton’s approximation on the network nodes that fail to provide a
substantial contribution to the optimization of W . Therefore, in pICA’s growing strategy,
the network node manages the size βi of the data subset dynamically concerning the
stoppage condition of the greedy strategy on the previous network node: either greedy
stoppage or normal stoppage.

pICA introduces a controlling parameter αi to control the column size βi of the sam-
pled data. αi acts as a coefficient applied to the subset data size βi–1 cached on the last
hop node i – 1:

βi ← αi · βi–1 . (3.21)

Specifically, increasing the value of αi leads to a larger size of the sampled data. For
example, αi = 2 means the size of the sampled data is doubled on node i. The sampled
data can be denoted in terms of column size βi as βiX ∈ R

βi×n.

With a triggered greedy stoppage defined by Equation (3.19), this indicates that Wi

does not satisfy the accuracy requirement on node i. In other words, Newton’s approxi-
mation does not achieve the desired Tol. It is rather that the optimization of Wi becomes
increasingly difficult. In this case, node i + 1 is expected to enlarge the size βi+1 of the
data subset with a small rate. Therefore, αi+1 is updated as follows:

αi+1 = max(2,
αi

2
) , (3.22)

which means that the control parameters slow down the enlargement of a subset of
data.

Different from Equation (3.22), with a triggered normal stoppage defined by Equa-
tion (3.20), this means that Wi on node i meets the accuracy requirement, meaning that
the Newton’s approximation reached the desired Tol. One can infer that the difficulty of
optimizing Wi is within a reasonable level. In such a case, node i+1 is capable of growing
the size βi+1 of the data subset with a larger rate. On node i + 1, the size of the subset of
data will increase according to the parameter αi+1:

αi+1 = αi × 2 . (3.23)

Thus, Wi will be further improved with more data if possible.

On node i, the parameters αi and βi will also be sent to the next node as intermediate
temporal results.

Of course, the data set size should not be increased too slowly, which would take
many network nodes to compute before pICA could use the whole data set to remove
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the sample bias at the server or the last node. But on the other hand, too many nodes
would also consume a significant amount of computational resources. The parameter
αi is used to adjust the speed of which the data size is changing. When the value of αi

becomes larger, the size of the data set will also change more quickly.
So pICA dynamically adjusts the size of the data set to be used on the next node.

According to the triggered stoppage conditions, the size of the used data subset can be
adjusted on the next node. When the overall computational efficiency of the previous
node is low, i.e., a greedy stoppage is triggered, the following network node increases
the size of the data set slightly. As a result, the deviation between the data subset used
by the preceding node i, βiX, and following the following node i + 1, βi+1X, only change a
little bit. When the overall computational efficiency of the previous nodes is high, i.e., a
normal stoppage is triggered, the size of the used data set is increased significantly on
the next network node. It can keep the overall computational efficiency at a high level
while preventing each node from performing trivial jobs.

3.3.4 Computing Module

The combination of greedy and growing strategies results in a more efficient ICA com-
puting at the network node. This ICA processing logic makes it possible to perform only
progressive ICA computations on each node.

Applying the two strategies in pICA, node i continueswith the temporal result relayed
from node i – 1. This defines a local optimization problem similar to Equation (3.5) but
taking the sampled data βiX and an initial solution Wi–1 as follows:

Wi ← argmax
Wi

JG(βiX,Wi–1) . (3.24)

If a node (e.g., remote server node as the last hop) sees that all data has been used
on the last node k (i.e., βk == m), this node knows that it is the last node following the
growing strategy because the size cannot be increased anymore. The default action is
to use all full data X to derive a recovered source data Ŝ by estimating the global optimal
separation matrix W.

On the final destination (i.e., remote server node), the separationmatrixW is applied
to the input data X to estimate original data Ŝ:

Ŝ = W× X. (3.25)

Note that most of the jobs for optimizing W have been done on previous nodes. Thus,
the last step only requires a little extra effort. The algorithm of the computing module
of node i is shown in Algorithm 1.

The whole process can be explained according to Figure 3.2. While forwarding the
collected data X, node i caches a subset data βiX and starts to quickly calculate a rough
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Algorithm 1 : pICA computing module on node i [1].
input : X ∈ R

n×m, Wi–1 ∈ R
n×n, αi, βi.

output : Wi ∈ R
n×n, αi+1, βi+1 or Ŝ

1 Sample subset of the sensed data βiX;
2 if βi < m then // Intermediate node of computing.
3 while True do
4 Wi ← argmaxWi JG(βiX,Wi–1) ;
5 if Δi < Tol then // Normal stoppage.
6 αi+1 = αi × 2;
7 break;
8 else if γi < θ̂g then // Greedy stoppage.
9 αi+1 = max(2, αi

2 );
10 break;
11 end
12 Update stepping parameter βi+1 ← αi+1 × βi ;
13 i + +;
14 end
15 else // Last node of computing.
16 while True do
17 W← argmaxW JG(X,Wi–1) ;
18 if Δi < Tol then
19 Ŝ = W× X;
20 break;
21 end
22 end
23 end

separation matrix Wi (i.e., solving Equation (3.24)), then passes Wi to node i + 1 (recall
the greedy strategy). Node i + 1 further optimizes the temporal solution to a better
separationmatrixWi+1 with a larger size of subset data (recall the growing strategy). Later
it will be shown that such a progressive manner yields a faster-converging speed without
sacrificing the precision on the final solution W with evaluation results in Section 3.5.
Clearly, how much the intermediate resource is available will influence the achievable
acceleration. The evaluation results on this aspect will also be shown in Section 3.5.

3.3.5 Remarks

It is a non-trivial problem to leverage in-network computing for BSS. First, one cannot sim-
ply decompose a monolithic ICA algorithm into multiple equivalent sub-tasks for offload-
ing. Second, it is also very challenging to map a distributed version of the ICA algorithms
to unleash the full potential of the distributed environment of in-network processing.

Note that variants of the centralized ICA version (in Section 3.2.3) already exist. In
contrast to centralized ICA-based algorithms (e.g., FastICA) and AeICA, the proposed pICA
makes two substantial modifications. The first is a new sampling method to sample sub-
set data, which is adaptive on every node. This eliminates the dependence on the prior
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knowledge of input data X. The second is a new set of stopping criteria that node i uses
to determine whether the local iteration should continue. This prevents each network
node from doing unnecessary computation on the limited available data itself, which
leads to additional computation time and blocking for the next node.

These two policies together form pICA, which takes advantage of the fact that the
data on the forwarding path of the network is packaged to pass through several network
nodes successively. This allows the separation matrix of BSS to be progressively opti-
mized by in-network computing during data transmission to achieve the desired optimal
value.

3.4 Theoretical Analysis of pICA

The goal in this section is to derive the theoretical lower and upper limits of nodes on
the network to achieve maximum acceleration for pICA. The main result is given by The-
orem 1. The analysis helps to plan the settings of the network. The theoretical analysis
of pICA was also presented in [1].

Theorem 1. The number of intermediate nodes k to achieve the maximum acceleration is
bounded between:

⌈√1 + 4 log2
m
β1
+ 1

2

⌉
⩽ k ⩽

⌈
log2

m
β1

+ 1
⌉

(3.26)

where m and n specify the size of input data X ∈ R
n×m and β1 is the initial sampling step

parameter.

Lemma 1. The acceleration of pICA is the maximum, if and only if the residual computing
time on the server node tserver

c is minimum.

Proof of Lemma 1. The total computing time Tc of executing pICA computing part with k
intermediate nodes is given as follows:

Tc =

k∑

i=1

ti
c + tserver

c . (3.27)

where ti
c is the computing time on a node i and tserver

c is the residual computing time on
the server node.

With a centralized method (like running FastICA on the server node completely), the
overall service time Ts is the sum of the forwarding time Tf and the computing time Tc.
With the in-network computing scheme, computing tasks on intermediate nodes and
data forwarding are parallelized; hence the computing time spent on all intermediate
nodes overlaps with end-to-end (E2E) data forwarding time. Whoever is longer deter-
mines the time cost of the in-network processing part. This allows the data computing
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to be partially or completely offloaded from the server node to the network nodes, par-
allel to the data transmission.

Thus, the overall service time Ts with an in-network computing approach is deter-
mined as follows:

Ts = max {
k∑

i=1

ti
c, Tf} + tserver

c , (3.28)

where Tf is fixed if the networking condition and network setup do not change. The
data forwarding time Tf is approximately proportional to the amount of data transmitted.
Therefore, the E2E forwarding time Tf to transmit the full dataset X from the client node
to the server node is constant.

Therefore, the acceleration of pICA ismaximized if and only if the residual computing
time on the server node tserver

c is minimized.

Since the node’s computing power is also set, the computing time Tc is proportional
to the computing complexity. Accordingly, the tserver

c can be minimized by analyzing its
computing complexity.

Lemma 2. The computing time of pICA on k network nodes
∑k

i=1 ti
c is

O(
k∑

i=1

ti
c) ∝ [O(2k–1β1(n + 1)), O(2

k2–k
2 β1(n + 1))] . (3.29)

Proof of Lemma 2. First, the time complexity of computing tasks on all intermediate
nodes is derived. To perform separation on full data X ∈ R

n×m, according to the re-
sult from [83], performing separation on full data X ∈ R

n×m has a time complexity as
follows:

O(Tc) ∝ O(2m(n + 1)) . (3.30)

In pICA, every node caches a subset of data from X, and the size of the cached data is
n× βi. By observing Equation (3.30), to determine the total length of cached data

∑k
i=1 li

of k network nodes, one can determine the computing complexity in the network.

Since pICA uses two stoppage criteria (i.e., normal and greedy stoppage conditions)
to determine if a node should exit its local iterations, different triggered stoppage condi-
tions further determine the column size of the subset of data required on the next node.
For example, if the initial column size of cached data is β1, there are two extreme cases
of the total number of columns of the cached data on all k nodes:

k∑

i=1

li =




α1

k2–k
2 β1, all using normal stoppage ;

α1
k–1β1, all using greedy stoppage ,

(3.31)

where a common value of the growing step α1 = 2.
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According to Equation (3.30) and Equation (3.31), the time complexity of pICA with k
node is bounded between:

O(
k∑

i=1

ti
c) ∝O(

k∑

i=1

βi(n + 1))

=[O(2k–1β1(n + 1)) , O(2
k2–k
2 β1(n + 1))] .

(3.32)

Lemma 3. The residual computing time of pICA on the server node tserver
c is

O(tserver
c ) ∝ [O((m – 2

k2–k
2 β1)(n + 1)),O((m – 2k–1β1)(n + 1))] . (3.33)

Proof of Lemma 3. The residual computing time tserver
c is the total data computing time Tc

excluding the computing time offloaded into the network according to Equation (3.27).
Therefore, tserver

c can be given as follows:

tserver
c = Tc –

k∑

i=1

ti
c , (3.34)

since, the total computing complexity is defined by Equation (3.30), and the computing
offloaded into the k network nodes is determined by Equation (3.29) in Lemma 2. The
total complexity is defined by Equation (3.30), and the computing offloaded into the k
network nodes is determined by Equation (3.29).

Given the result from Equation (3.30) and Equation (3.29), the time complexity of
the residual computing tasks left on the server node is bounded between:

O(tserver
c ) ∝O

(
m –

k∑

i=1

βi(n + 1)
)

=

[
O
(
m(n + 1) – (2

k2–k
2 β1)(n + 1)

)
,O
(
m(n + 1) – 2k–1β1(n + 1)

)]

=

[
O
(
(m – 2

k2–k
2 β1)(n + 1)

)
,O
(
(m – 2k–1β1)(n + 1)

)]
.

(3.35)

Proof of Theorem 1. The acceleration is maximized (Ts is minimized) when all computing
tasks are done during the time of Tf so that no residual computing load is left to the
server node making tserver

c = 0. The maximum acceleration of pICA means the minimum
service time Ts of pICA. Therefore, for Ts to be minimized, the number of network nodes
k is to be derived:

k∗ ← argmin
k

Ts . (3.36)
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Because of Lemma 1, minimizing Ts is to achieve minimum tserver
c , hence

k∗ ← argmin
k

tserver
c . (3.37)

The possible minimum value of tserver
c is 0, since it is a value of time, thus, the optimal

case of Ts occurs when tserver
c = 0. According to Equation (3.35), tserver

c = 0 is equivalent to
the condition that the column size of cached data becomes 0. Thus, it can be concluded
that: 




k̄∗ =

√
1+4 log2

m
β1
+1

2 (m – 2
k2–k
2 β1 = 0);

k∗ = log2
m
β1
+ 1 (m – 2k–1β1 = 0).

(3.38)

This proves the theorem.

With Theorem 1, once the input data X and the parameter β1 are known, the optimal
number of required network nodes k can be determined to guarantee the minimum
service time Ts of pICA. This helps to plan the network in advance and is useful to verify
if the existing network performs in the best way. For example, when there are n = 4
original sources, each with m = 160000 sampled data. Let β1 = 1280, it is known that
4 ⩽ k ⩽ 8 network nodes are required to achieve the maximum acceleration. This
theorem is also confirmed in Section 3.5, where the maximum acceleration is achieved
when k = 7 network nodes, which agrees with the theoretical result here.

3.5 Evaluation of pICA

This section covers the evaluation setups, measurement results, and related discussion.
First, the design of the experiments is introduced, including the used dataset, evalua-
tion scenarios, and the metric for evaluating the performance of pICA. Then, the perfor-
mance of the proposed pICA is compared with the other state-of-the-art methods, and
the improvement in separation time and accuracy is evaluated. Lastly, a dive-in in the
intermediate execution is given, to show the performance of pICA in detail. The content
of this section was published in [1,6].

3.5.1 Experiment Design

Dataset

A published data set from [84] for industrial acoustic investigation was picked up for
evaluations, called Sound Dataset for Malfunctioning Industrial Machine Investigation
and Inspection (MIMII). It collects normal and anomalous operating sound data of n = 4
types ofmachines (including valves, pumps, fans, and slide rails). Every segment has a 10-
second audio (single-channel with a sample rate of 16 kHz). The size of one data source
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si is m = 160000 (sample rate × duration). Since there are 4 types of data sources, the
original data S is a 4× 160000 matrix.

Using a standard distribution as a basis, a mixing matrix A of 4 × 4 was generated,
which was applied on the original data matrix S according to Equation (3.1) to simulate
the effect of mutual interference among all data sources. Therefore, at the client node,
it would receive the data matrix X having the same size of S.

Scenarios

The experiment considered five network settings: k intermediate nodes (k = 0, 3, 7, 10
and 15, respectively), which range in resource availability from low to high. For compar-
ison, two state-of-the-art methods FastICA [71] and AeICA [8] discussed in Section 3.2
were chosen. All three comparison system are listed below:

• FastICA: Centralized ICA-based algorithm, which lacks in-network computing ca-
pabilities and progressive computing capabilities.

• AeICA: Distributed ICA-based algorithm, which is capable of in-network comput-
ing but is lacking progressive computing capabilities.

• pICA: Distributed ICA-based algorithm, which is capable of in-network computing
and progressive computing.

In particular, when the number of nodes k = 0 (i.e., no intermediate node available),
the in-network computing strategy reduces to single-node execution for all candidates
(FastICA, AeICA, and pICA). Note that FastICA can only be executed on a single node, the
computation is thus done on the server node in all network settings.

For each given number of intermediate nodes k, the experiment was run 50 times
to exhibit the randomness of the mixing matrix A and the source data S. All bench-
marks were realized in Python with same implementations of the Netwon’s approxima-
tion, which can be directly deployed as microservices. Multi-node network configura-
tions are done virtually on a Commercial Off-The-Shelf (COTS) server with an i7-6700T
CPU with 16GB RAM using Ubuntu 18.04 LTS.

Measured Metrics

Two metrics were used in the experiment in order to qualify the separation speed and
separation accuracy:

• Computing Time Tc: Tc covers the entire data computing time in the network sys-
tem, i.e., as soon as the data enters the network, until the estimated original data
Ŝ is derived at the last server node. The Python module time is used to measure
Tc (with 1 microsecond (μs) precision).
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Figure 3.3 Computing time comparison with different number of network nodes [6].

• Source-to-Distortion Ratio (SDR): A SDR metric from [85] is used to quantify the
precision of the estimated original data Ŝ. Its definition is given in Equation (3.39):

SDR = 10 · log10
struth

2

einterf + enoise + eartif
2 , (3.39)

where struth is the ground-truth of the picked dataset, einterf, enoise, and eartif are the
errors of interference, noise, and artifacts errors, respectively. SDR is the most
widely used metric nowadays to evaluate the output of any separation algorithm
(like our Ŝ), because different types of errors are comprehensively considered.
An open-source BSS Eval Toolbox [86] is used to calculate the SDR of the experi-
ments.

3.5.2 Computing Time and Accuracy

Computing Time

First, the performance of pICA designed for in-network computing in terms of computing
time is discussed. In the context of in-network computing, the scale of the network plays
a crucial role. Therefore, Figure 3.3 provides a comparison of the computing time Tc of
selected benchmarks with five different network settings. It can be observed that pICA
gained much more speed-ups with an increasing number of intermediate nodes k. The
computing time of pICA decreased from ca. 80 ms to ca. 45 ms (43.75% faster). As the
network size grew, i.e., the number of network nodes increased, the acceleration of pICA
turned out to be increasing.

Specifically, when k = 0, non-surprisingly, the three comparison systems showed
similar performances because of no acceleration with intermediate network nodes. In
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Figure 3.4 Computing time with different initial cached data size, k = 15 nodes [6].

this case, pICA, AeICA, and FastICA were equivalent, since no network resources were
available for in-network computing. When k = 3, pICA started outperforming the other
two with at least 25% acceleration. The gap became larger when k = 7 increasing to
k = 15. This proved that pICA can accelerate more with intermediate resources com-
pared with others. Additionally, such gains tended to be deterministic, i.e., smaller vari-
ances, while the other two candidates, i.e., FastICA and AeICA, did not show good stabil-
ity. For k = 7 the network computational capability was already sufficient to complete all
processing tasks of pICA.

In summary, this showed that the proposed pICA can make full use of the network
resources to accelerate the data processing. It leaded to a computing time acceleration.
In contrast, AeICA and FastICA can barely utilize the network computing resources to
reduce the computing time.

Second, the requirements of the computational logic for data caching are also cru-
cial. Therefore, Figure 3.4 further presents the impact of the cached subset data size βi

on computing time. The result showed that the proposed pICA preferred to start with
a small subset of data (i.e., smaller values of β1), which means that pICA is able to start
computing when a network node only caches a small amount of data.

For example, when β1 = 16000 (meaning with all data), pICA did not yield any ac-
celeration at all, because pICA was only offloaded one node regardless of the network’s
computational capability, the subsequent update of β2 stayed constant, whichwas equiv-
alent to no computing in the network. However, picking smaller β1 for pICA quickly im-
proved the acceleration performance. With β1 = 53333, the computing time declined
from 65 ms to 53 ms; with β1 < 7619, the computing time constantly reduced to around
45 ms. On the other hand, as introduced, since AeICA was very sensitive to this param-
eter, which was closely relevant to the dataset, its performance could become worse.
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Figure 3.5 Computing accuracy comparison with different network nodes [6].

Consequently, it cannot always take advantage of available intermediate nodes. This yet
justified the growing strategy proposed in Section 3.3.3.

These results showed that the proposed pICA can start processing with a small initial
cache subset of data while ensuring faster overall computation time. In the context of
in-network computing, this small initial cache subset of data can reduce the data caching
time of network nodes and increase the overlap of transmission and computation, thus
increasing the advantage of progressive computing.

Separation Accuracy

Figure 3.5 compares the achieved separation accuracy (SDR) with different methods. All
three methods achieved the same SDR with almost 27 dB, except the SDR of FastICA was
slightly lower. Meantime. the three methods had similar confidential intervals. It proves
that the pICA did not compromise its accuracy for acceleration but yielded an equivalent
accuracy as the other two methods to restore the original data. It again proved the
benefits of the progressive and greedy strategies when pICA was executed along the
data forwarding path..

This is because, in progressive computing, each network node aims to quickly ap-
proach the convergence point, whiles the Tol remains original, the correctness of the
separation matrix W can be guaranteed. In detail, although the ith network node uses a
subset of data to quickly construct an inaccurate separation matrix Wi, the (i – 1)th net-
work node will use the Wi as a starting point to obtain a more accurate Wi+1 with more
data, until the separation matrix reaches the Tol with all data. Through the progressive
computing of these network nodes, the whole separation task can reach the original con-
vergence point and achieve an equally accurate solutionmatrix, which in turn guarantees
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Figure 3.6 Intermediate execution costs of pICA with k = 7 nodes [6].

the processing accuracy.

3.5.3 Progressive Computing Dive-in

In this section, a specific network setting scenario k = 7was chosen and the intermediate
execution of pICA in such a scenario was focused on. It is helpful that (i) more details
of pICA’s execution can be revealed and (ii) the strategies proposed are verified and
understood how they contribute to the final speed-up.

Progressive Computing

The intermediate procedure is revealed by showing the execution costs of pICA on in-
dividual nodes. In Figure 3.6, the amount of cached data, the computing time, and the
accuracy, as a percentage of the final result, are shown for each network device. The
result showed that 60% of processing tasks were finished on intermediate nodes and
only 40% of the jobs were left to the last server node. Meanwhile, the accuracy of the es-
timated original data Ŝ improved quickly (> 60% after the 4th node’s processing) with the
growing size of the data subset. It revealed that with small amounts of data, a separation
matrix with relatively high accuracy can be derived. This again justified the effectiveness
of the strategies of introducing progressive computing on multiple network hops.

As the intermediate nodes in the network are involved in the computing, the previ-
ous nodes get a small amount of data to quickly guess a low-precision result. For exam-
ple, Node 3 took about 1% of all data, spent about 4% of the computing time, obtained
a separation matrix with 50% accuracy, and then passed this result to Node 4. On top
of that, Node 4 took more data, consumed only about 5% of the computing time, and
increased the accuracy of the separation matrix to 65%. This was repeated on each in-
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Figure 3.7 Details on the execution states of pICA with k = 7 nodes [1].

termediate node, and by the last intermediate node, Node 7, the network can already
provide a separation matrix with an accuracy of over 95%. The server node only needed
to complete the remaining tasks. And the computing time of each intermediate node
did not exceed 20% of the total time consumed.

This progressive computing can make full use of the computational power of net-
work devices on the data transmission link and reduce the computational load on the
end devices. Also, a distinctive processing logic is designed for intermediate network de-
vices to avoid their excessive consumption of resources to achieve high accuracy results
but instead cooperate with other network devices to ensure processing accuracy.

Computing Time and Cached Data Size

First of all, recall that the proposed pICA in Section 3.3.3 employs a growing strategy that
every intermediate node caches only a subset of data from X while the size of the cached
data will progressively increase on the following nodes. It is interested in howmuch data
is cached on every node and how the separation accuracy is improved locally over time
(from node 1 to 7) before arriving at the server node. The result is shown in Figure 3.7.

It can be clearly observed in Figure 3.7 that the proportion of cached data on inter-
mediate nodes gradually increased (see dark blue triangle dot-plots). Meanwhile, shown
by the dark blue curve with square markers, the separation accuracy has been already
improved to 20% with small amounts of data cached on the first intermediate node and
progressively achieves 50% halfway. Again, since intermediate nodes on the forwarding
path have done most of the processing jobs (after Node 7), the final destination (server
Node) often left with no job but can directly produce the final solution, i.e., without the
remaining computing tasks.
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Figure 3.8 Unit iteration time and required iteration number for different sizes of
cached data βkX of pICA with k = 7 nodes [1].

In addition, the size values of cached data are linked to their corresponding comput-
ing time spent on every node (see the connection between triangle and circle dot-plots).
When more data was cached on later nodes (like on Node 5, 6 and 7), the time taken
to process the cached data also steadily increased, as shown by the distribution of the
circle dots. Because of the randomness of the selected data X from the dataset MIMII,
although the cached sizes were similar, the actual computing time could be different.

Note that there were two extreme cases observed on the server node, where the
size of the subset data on the server node was either 100% or 0% (the triangle dot-plots
for the server node). The reason behind this was also the randomness and variety of the
selected test data from the dataset MIMII. In every test, the selected input data X may or
may not be fully processed on the intermediate nodes. If fully processed, then on the
server node there is no remaining computing task, so no data needs to be cached at all,
i.e., 0% data X. In fact, for some cases, 0% data is cached on Node 7 already. If not fully
processed, this means that the separation accuracy is not 100% yet after Node 7. This
makes the server node believe that it has to further increase the data size and continue
the processing. Since the server node knows it is already the last hop, it then uses full
data X as the input for its pICA, i.e., 100% data X.

This confirmed the idea of the growing strategy proposed for the computing part of
pICA in Section 3.3.3. This also confirms the feasibility that the classical BSS problem can
be tailored to distributed processing fitting to an in-network computing scheme.
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Computing Time and Stoppage Conditions

The result showed in Figure 3.7 already confirmed that the larger the subset size of data is
cached, the longer the node’s total computing time will be. However, how the size of the
subset of data influences the computing time was yet unclear, which could be attributed
to two factors: (i) longer single unit execution time, i.e., the line 4 in Algorithm 1; and/or
(ii) more numbers of iterations, i.e., the iterations of ‘while-loop’ in Algorithm 1. In order
to reveal the fact, the impact of the cached size of a subset data was further studied in
detail, e.g., the required iteration numbers and single unit iteration time. The result is
presented in Figure 3.8.

On the one hand, the single unit iteration time (see box-plots together with diamond
dot-plots in dark blue) does increase when the size of cached data becomes larger. For
example, 1.6% data took less than 1 ms, but when larger than 12.8% data, it took >
10 ms. But on the other hand, a larger size of cached data does not necessarily lead to
more number of iterations (see box-plots together with circle dot-plots in yellow). For
example, when the size of cached data was doubled every time from 0.8% to 100% data,
the median values of the iteration numbers actually slightly decreased from 5 to 3 times.

This first indicates that pICA computing part indeed takes a long time to improve
the temporal separation matrix Wi in one step when the size of the input data becomes
larger. This could be the reason that calculating a gradient becomes more computation-
ally difficult in each iteration (refer Equation (3.7)). In addition, this confirms again that the
temporal solution Wi, i.e., the separation precision in Figure 3.7, has been progressively
optimized before arriving to the server node. Therefore, fewer iterations are further re-
quired to achieve the ultimate solution. This explained why the iteration numbers do not
increase although the size of the cached data grows. The conclusion is that the single
unit iteration time is the main reason why the node’s computing time increases with the
growing size of the cached data.

In summary, the two groups of results verified the effectiveness of the growing strat-
egy introduced to the pICA. The growing strategy enables beginning nodes to roughly
but quickly improve the solution with a shorter single unit iteration time. Although later
nodes take longer unit iteration time with a larger size of cached data, since the tem-
poral solution provided from previous nodes gives a better initial point, the iteration
numbers do not obviously increase. Therefore, the growing strategy effectively balances
the computing loads along the forwarding path and positively contributes to the E2E
acceleration.

Secondly, recall that in Section 3.3.2 the pICA introduces the greedy strategy that
every node will stop its local iterations if the marginal improvement is less than a pre-
defined threshold, besides the normal convergence stoppage condition. It was to be
verified whether or not such a greedy stoppage condition is helpful in reality. Therefore,
two measurements were conducted which were the total times and the proportion of
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Figure 3.9 The proportion of greedy stoppage conditions triggered on intermediate
nodes with k = 7 nodes [1].

the greedy stoppage condition that was triggered on all intermediate nodes, respectively.
The result is shown in Figure 3.9. Specifically, the bar chart gives the total numbers of
triggered greedy and normal stoppages on every node in total 50 times’ running tests
(shown by a blue backslash and yellow slash bars respectively). The concrete proportion
values are given on the left side of the bars.

Note that because of the randomness and variety of selected data X, not all 50 tests
were done on the seven intermediate nodes. There were almost half cases (24/50 times)
of the processing continuing on the server node, so the total number of stoppage times
on Node 7 were not 50. Unsurprisingly, the triggered stoppage conditions were all be-
cause of convergence (i.e., normal stoppage), corresponding to the separation precision
SDR reached at 100%.

The first observation is that the greedy strategy does play an important role in the
pICA. It can be seen that on the first 5 nodes, more than 70% stoppages were triggered
by the greedy strategy. On Node 6, there were 52% of stoppages triggered by the greedy
strategy. This proportion further decreased to 28% on Node 7.

This confirmed the intuition in Section 3.3 that there are higher chances that a node
will be in a situation where the marginal gain becomes very small while the convergence
is still not yet met. Pursuing the convergence of the local solution is not worthy especially
when early nodes only cache a small subset of data from X, which probably leads to a
locally optimal solution. This also confirms that the greedy strategy also contributes to
the acceleration because it helps to save time by preventing a node from spending too
much time but for little gain.

With these sets of results, the effectiveness and the influence of the two introduced
strategies for pICA were verified. In fact, just because of the two strategies it enables the
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possibility to distribute the BSS tasks into an in-network computing environment. The
growing strategy eliminates the constraint where the algorithm needs a full dataset and
the greedy strategy further takes care of the special situation when every node can only
work with an incomplete dataset.

3.6 Summary of pICA

Data reconstruction is time-consuming for both data transfer and data processing per-
spectives. In particular for the audio data separation task due to its high sample rate
and high computational complexity. The problem is usually solved in a centralized way
by sending all data to a central cloud server and then reconstructing it for the separation
result.

This chapter has tackled this problem from a different perspective: the whole task
can be accelerated by distributing the data separation work on intermediate forward-
ing nodes. In other words, the centralized approach is transformed into an in-network
computing approach to speed up the whole task. The key idea is sketched as follows: A
new processing logic was proposed and deployed on every intermediate network node
running with local left over computational resources as VNFs; Every node best-effort
computes a temporal result, i.e., a separation matrix roughly estimated to restore the
original data; The processing logic will progressively optimize this temporal result (i.e.,
the separation matrix) along the forwarding path. Specifically, an improved ICA algo-
rithm, the progressive ICA (pICA) algorithm, is proposed to maximize the improvement
on each node to fit such a progressive computing scheme. At the final destination (i.e.,
the server node), an optimal separation matrix will be prepared with sufficient accuracy.

pICA ismadewith in-network computing, and the experimental results proved that it
can accelerate the total separation time of themixture audio data by amaximum43.75%.
With the greedy and growing strategies designs, pICA gives a new representative use
case for data reconstruction algorithm design in the in-network computing scheme and
a method for how sparing resources can be better utilized for low-latency tasks [1,6–8].
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4.1 Introduction

Through deeply integrated emerging technologies such as IoT, AI, and cloud computing,
the intelligent network is taking manufacturing to a new level: the level of the smart fac-
tory [30]. An important use case for smart factories is predictive maintenance through
anomaly detection. From a data processing perspective, anomaly detection is a feature
extraction operation, i.e., extracting information related to anomalies from the massive
amount of data generated by daily production. Because of its predictive nature, success-
ful predictive anomaly detection can prevent production downtime and economic loss.
However, this results in strict latency constraints for such applications.

Many general anomaly detection techniques have been developed to enable auto-
matic supervision of machine conditions, such as temperature, humidity, and video [42].
And in the specific area of predictive maintenance, acoustic anomaly detection in indus-
trial environments allows for early detection of potential failures, providing a tremen-
dous benefit in predicting exactly when maintenance work will be required in advance.
Unlike traditional industrial signals such as temperature and humidity, acoustic signals
are often distorted before an abnormal event occurs. Compared to other image analysis
techniques, this audio-based detection method avoids blocking and angular distortion
problems. Therefore, real-time analysis of audio signals in industrial environments has
great potential for Industry 4.0 and intelligent cyber-physical systems for Industrial Inter-
net of Things (IIoT) applications.

However, as the number of sensor connections increases, the raw data collected
becomes progressively larger, more diverse, and more varied, thus increasing the stress
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on communication networks and analysis systems. As a result, traditional data analysis
techniques can no longer guarantee real-time analysis of audio signals, making predictive
acoustic anomaly detection impractical.

This chapter considers an acoustic anomaly detection application [24] that uses an
in-network computing scheme for predictive maintenance by integrating artificial intelli-
gence. A fundamental motivation for combining in-network computing capabilities with
an acoustic anomaly detection application is that the performance of the detection sys-
tem is limited by the time required to acquire large amounts of data from IoT devices.
Therefore, a lightweight computing module is needed as VNF. The sensed IoT data can
be processed on-the-fly while forwarding, thus reducing the load on the network and
improving the user experience [87].

This chapter introduces a design paradigm of traffic filtering for in-network intelli-
gence, which empowers multi-object acoustic anomaly detection while ensuring suffi-
cient accuracy. Guided by traffic filtering, a lightweight computing module called You
only hear once (Yoho) is designed based on Convolutional Neural Network (CNN). The
critical technical contributions were summarized as follows:

• A design paradigm traffic filtering was proposed as a guideline for how feature
extraction can be accelerated by utilizing intermediate computing resources in
the network;

• A novel end-to-end Convolutional Neural Network (CNN) method, called Yoho,
was proposed, which enables the filtering of redundant information and trans-
mission of the relevant data only (the acoustic deviation);

• A lightweight Dual-Path backbone was designed to reduce the computational
complexity and to guarantee the detection accuracy of Yoho;

• Functional split principles were proposed for the AI model so that the AI model
can be distributedly deployed in the network to reach the optimal filtering ability
and lightweight performance;

• The entire solution was implemented, and comprehensive performance evalua-
tions were conducted with the professional industrial dataset. Results confirmed
the feasibility of the proposed solution and the expected lightweight demand.

With the help of traffic filtering, Yoho can separate the anomaly features of each source
machine from the mixture. Extensive numerical evaluations of the implementations
proved that Yoho reduced the computing time by up to 77.71% and reached a detec-
tion accuracy of 0.925. This was the first work that discussed a solution to accelerate
multi-object anomalous sound detection with in-network computing, to the best of our
knowledge. The content of this entire chapter has been partially published in [11–13]
and is partially being reviewed in [3] at the time of submission of this dissertation.

The rest of the chapter is organized as follows. An introduction to Multi-Object
Anomalous SoundDetection System (MOASD) is given in Section 4.2. Then, the proposed

82 Chapter 4 Traffic Filtering



ServerSensor Client Node NodeNode Node

Forwarding Path

Figure 4.1 System setup of the multi-object anomaly detection system [10,12].

computingmodule is described in Section 4.3—namely You only hear once (Yoho), which
functions as the critical component solving the MOASD problem. Three functional split
principles of the proposed Yoho are presented in Section 4.4. Finally, comprehensive
evaluation results are presented in Section 4.5. Section 4.6 concludes this chapter.

4.2 Background

This section describes the system model of the Multi-Object Anomalous Sound Detec-
tion System in Section 4.2.1. Following, the problem that needs to be solved is stated
in Section 4.2.2. Section 4.2.3 introduces the related works on this topic. The content is
published in [11,12].

4.2.1 System Model

A network system for detecting anomalies in a manufacturing facility is examined, de-
noted as DA. The system consists of n machines with the working state on (i.e., all n ma-
chines are turned on and performing tasks related to the production), as shown in Fig-
ure 4.1. Typically, several machines (objects) are deployed at a production site, which
creates a MOASD. This system consists of one IoT acoustic sensor and a client node
connected to a server node over a multi-hop forwarding path in between. Specifically,
the IoT sensor collects sound data from the “source” machine it attaches to, which is
interferes in the air with sounds from other machines (considered as noise). The IoT
sensor constantly sends collected data to the client node. In a (non-public) network, the
client node could be a Wi-Fi access point or a cellular base station. Over a forwarding
path, the sensed data keeps being forwarded by the client node to the backend server
node. This path can be dynamically determined based on a routing mechanism or stati-
cally configured. The forwarding path consists of some intermediate “Node i” and “Node
i + 1”.

Within m time slots, the machines produce acoustic signals independently and si-
multaneously, denoted as {s1, s2, · · · , sn} = S ∈ R

n×m. The acoustic data S is assumed
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to be captured by the IoT device with appropriate sensors and can be used to identify
whether the sounds emitted from a target machine are normal or abnormal, i.e., acous-
tic anomaly detection. Due to the presence of multiple objects, the MOASD observes a
mixed acoustic signal X ∈ R

1×m from the n sources, which is denoted as:

X = B · S =

n∑

1

bi × si , (4.1)

where bi is the mixing weight for each source si in the mixing matrix B. The observed
mixed-signal X is, in turn, is the input of the MOASD, which determines irregularities (or
anomalies) related to the n objects found in the system.

The difference between X and its reference Sr – which is the standard acoustic signal
without any anomaly – is used to determine irregularities related to the n objects. Such
a difference is defined by the anomaly score {a1, a2, · · · , an} = A ∈ R

n×1:

A = DA(X, Sr) . (4.2)

When A exceeds a predefined acceptable threshold value {θ1, θ2, · · · , θn} = Θ ∈ R
n×1:

anomaly← ai > θi , (4.3)

the corresponding object is declared as an anomaly. Otherwise, this slight difference will
be ignored without doing further investigation.

4.2.2 Problem Statement

As mentioned in Section 4.1, it is considered providing in-network intelligence by (re-
)deploying artificial intelligence onto the data plane of a programmable network. The
MOASD should therefore obtain A via Equation (4.2).

This chapter targets the solution of Equation (4.2) with the computingmodule design
paradigm traffic filtering approach. The problem statement can be stated as follows:

1. Filtering out the anomalies unrelated data from the mixed acoustic data of multi-
ple sources;

2. Reducing the computational complexity while ensuring accuracy.

The two together aim to achieve a lightweight design capable of multi-object anomalous
sound detection with the much desired low computational complexity and high detection
accuracy.
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4.2.3 Related Work

Two-stage Model

Traditionally, multi-object anomalous sound detection is solved with a two-stage ap-
proach, which can be decomposed into two problems, i.e., Separation-and-Detection
(Sep-Det): (i) identifying objects sounds and (ii) detecting actual anomalies on each
source object.

In the first stage of Sep-Det, the acoustic signal of each individual object is recovered
by BSS techniques, as original data {ŝ1, ŝ2, · · · , ŝn} = Ŝ ∈ R

n×m to eliminate interference
and noise:

Ŝ = W · X = B–1 · X , (4.4)

where W is a recovery matrix and equals the inverse of the mixing matrix B.

Typically, in BSS, the acoustic signal of each object is separated from the mixed data
using ICA-based methods [70]. In the last decade, Deep Learning (DL)-based methods
have achieved great success in mono acoustic signal separation [88]. Conv-TasNet [73]
is designed as an end-to-end method to process the mixed signal in the time domain.
To enhance the performance of the separation, a dual-path CNNmethod Y-Net [13] was
proposed. All these separation algorithms allow deriving each source si from the mixed
signal. However, meantime the accuracy of the system depends on the performance
of the detection algorithm in the second stage, which is actually the core of the overall
system.

The second stage involves anomaly detection techniques used to detect abnormal-
ities for each object individually, such as Support Vector Machine (SVM) [89], Autoen-
coder [90], Dereverberation-Extraction-based method [91], etc. Nowadays, most acous-
tic anomaly detection algorithms are based on the Autoencoder [90], a deviation-based
method. It consists of two parts, namely the encoder Er and the decoder Dr. They are
trained by using the reference Sr. The function of the encoder is to encode the input
signal ŝi to an abstract feature Er(ŝi) = ŝen

i by using machine learning-based models. The
decoder then, on the contrary, to recover the abstract feature ŝen

i : Dr(ŝen
i ) = ŝde

i . The
detection system determines the anomaly score ai of each source si by measuring the

4.2 Background 85



reconstruction error using Euclidean distance (l2 distance) between the separated signal
ŝi and the decoded ŝde

i in Equation (4.5):

ai = DA(ŝi, ŝde
i ) ∝ |ŝi – Dr(Er(ŝi))|2 . (4.5)

However, since only normal data Sr is fed into the model during the training proce-
dure, the model can reconstruct the normal data well. When the distribution of the data
changes, the anomaly score {a1, a2, ..., an} will lose the detection accuracy due to the ex-
istence of reconstruction error from separation and encoding/decoding. Moreover, after
receiving n separated signal ŝi from the separation system, the separated signal can be
regarded as the single-object acoustics signal. Therefore, the Sep-Det often deploys n
independent anomaly detection systems to detect corresponding sources.

In summary, solving the two sub-problems sequentially has two critical and in-
evitable limits. Firstly, the computational complexity is intrinsically high at the first stage
of the BSS. It increases along with the growing number of acoustic signal sources ex-
pected to be detected in the system. Secondly, the anomaly detection in the second
stage depends only on the output of the first stage with limited separation accuracy.
This means the anomaly detection can only use the inaccurate separated data instead
of the original observed data as input for the later operations. Thus the sequential be-
havior impairs the overall accuracy.

Feature extraction

To give a different perspective on this issue, one can observe the fact that in the case of
multi-object anomalous sound detection, detecting deviating sound occurrences ismore
productive than getting the actual sound according to Equation (4.4). Whatmatters is not
the exact sounds made by the machinery but the information on whether these sounds
are abnormal or not. This observation relaxes the problem to some extent.

As a result, instead of solving Equation (4.2) in a two-step sequence of solving Equa-
tion (4.4) and Equation (4.5), the first separation stage can be skipped. Unlike the two-
stage Sep-Det approach, this avoids the separation’s computational overhead and accu-
racy loss. Thus, MOASD can be viewed as a system for identifying abnormal correlation
features from mixed acoustic data.

At present, there have been various NN-based feature extraction methods pro-
posed. In [92], ResNet-50 was proposed to extract the desired features. How-
ever, ResNet-50 is unsuitable for programmable network devices, so a computation-
ally lightweight design is needed. ResNet-50 can be modified to ResNet-18 [92] by us-
ing smaller convolutional layers instead to reduce model complexity while diminishing
the accuracy to an acceptable level. MobileNet [93, 94], which is often used for two-
dimensional image processing, can be modified to detect 1D sounds as well, but the
performance in terms of detection accuracy is poor.
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The following section presents the solution – Yoho – with a dual-path backbone,
which follows the design paradigm “traffic filtering” to fill the void in lightweight designs
with high detection accuracy.

4.3 Solution: Yoho

In this section, the general design principle of Yoho is given in Section 4.3.1, followed by a
detailed description of Yoho with the dual-path backbone in Section 4.3.2, Section 4.3.4,
and Section 4.3.3, which enables the integration of the computing module into the in-
network computing scheme. The ability of filtering network traffic using the in-network
computing scheme is also given in Section 4.3.5. The content introduced in this section
has been published in [11–13]

4.3.1 Design Principle

Traffic filtering is intended to reduce the volume of transmitted data by dropping re-
dundant data that are not relevant to the desired features as they pass through the
forwarding path in the network. Following this design paradigm, in anomaly detection
scenarios, the data that are not related to the anomaly should be filtered. Hence, greater
focus should be placed on the deviation between the detected object and the reference
object in anomaly detection systems than to the detected object itself.

Consequently, only the anomaly score of each object needs to be extracted from
the observedmixture to enable multi-object acoustic anomaly detection, rather than the
recovery of each object’s acoustic signal from the multiple-object environment. Based
on this intuition, a CNN-based one-stage method, called Yoho, is proposed to separate
and measure the anomaly score of each object. The method was first proposed under
the name Information Abstraction Neural Network (IA-Net) and was published in [12].
Later, [11] presented its lightweight design, and it was renamed to Yoho.

Contrary to typical two-stagemulti-object anomaly detectionmethods, with BSS and
anomaly detection, the proposed Yoho employs a novel end-to-end approach. Themain
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Figure 4.4 The structure of Yoho.

idea is to focus only on the abnormal features in the input mixed data X and localize such
features instead of separating the original sources from X and then performing anomaly
detection on each of these original signals.

In the process of extracting abnormal features from X, a dual-path backbone is
proposed, which allows Yoho to simultaneously observe the correlation between each
source and its characteristics (published in [11]). This way, the complexity of the model
can be minimized while the detection accuracy is guaranteed.

As Yoho avoids large computation complexity to separate the sources and degrade
detection accuracy due to the loss of separation accuracy, it becomes lightweight enough
to meet industrial low latency detection requirements.

4.3.2 Yoho with Dual-Path Backbone

Yoho – depicted in Figure 4.4 – consists of three distinct operations: encoder, extractor,
and decoder. Their workflow is as follows. The encoder converts the input mixed acous-
tic data X into a high-dimensional representation Y. Then the extraction filters redundant
information and retrieves the features Z related to anomalies. Finally, the decoder pairs
Z to each ith machine, as filtered anomalous feature {f1, f2, · · · , fn} = F ∈ R

n×256. The
anomaly score of n source machines A is directly obtained based on the filtered anoma-
lous feature. The design details of these three operations are described below.

Encoder

The encoder CE transforms the one-dimensional input data X into a higher dimensional
representation Y to provide more detailed information for subsequent operations:

Y← CE(X,Conve) , (4.6)
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Figure 4.5 1D-residual convolution (1D-R-Conv) [10,13].

where Conve is a 1D convolutional layer with stride σ, it consists ϕ filters with length λ.
Yoho down-samples and maps the mixed input data X with m samples in a high-

dimensional Short-Time Fourier Transform (STFT)-like feature space Y ∈ R
ϕ×m

σ by the
encoder CE. In the lightweight design of this operation, only one convolutional layer is
used to minimize computation and storage resources.

Extractor

The extractor TE retrieves the features related to anomalies and directly extracts the
anomaly information from the above high-dimensional representation Y. A new dual-
path backbone is proposed to balance the trade-off between accuracy and complex-
ity [11]. It consists of a stack of 1D-residual convolution blocks (1D-R-Conv).

Aiming to balance the trade-off between accuracy and complexity, the design of the
1D-residual convolution block follows the three strategies:

1. A dual path [13] structure to obtain enriched semantic and temporal-domain in-
formation, so that correlation between sources and the individual source’s se-
mantics can be taken care of simultaneously;

2. A large kernel size in the convolutional layer tends to extract more high-level se-
mantic features about the correlation of sources, and a convolutional layer with a
small kernel size can extract more low-level temporal information within a single
source;

3. Two parallel depth-wise residual block [93] to form a residual bottleneck, to re-
duce the model complexity.

This structure is shown in Figure 4.5.
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In particular, the high-dimensional representation Y from the encoder CE is pro-
cessed by two depth-wise residual blocks in the dual-path structure. A large down-
sampling rate of four (a typical down-sampling rate is two) squeezes the input data and
accelerates computation. To avoid information loss with this down-sampling rate, large
convolutional kernels of 7× 1 and 5× 1 are used by the two depth-wise residual blocks
since such choices of kernel size can also increase the receptive field:

Z1 ← (Y, 5× 1- D. Conv)⊙ (Y, 7× 1- D. Conv) . (4.7)

Meanwhile, the outputs of the two depth-wise residual blocks are merged with the
high-dimensional representation Y, by following the residual bottleneck:

Z2 ← Z1 ⊕ Y . (4.8)

A non-linearity layer (ReLU) and a batch normalization (BN) are attached after each
residual bottleneck:

Z← BN(Relu(Z2)) . (4.9)

In the structure of Yoho, the extractor TE consists of several stacked 1D-R-Conv
blocks. It is possible to choose other numbers of 1D-R-Conv to be stacked; however,
this would lead to a trade-off between model lightweight and accuracy. In this disserta-
tion, seven 1D-R-Conv are stacked to form the extractor, which gives the best trade-off
through experiments.

Benefiting from the dual-path backbone, Yoho can decrease the number of convo-
lutional layers and the number of filters of each convolutional layer simultaneously. It
reduces the feature size and model parameters to filter out the redundant information
and achieves a lightweight design.

Decoder

The decoder CD uses an average pooling layer (Avg.) to squeeze the temporal information
to one, and use a 1× 1 convolutional layer (Convd) to reassign the anomalous represen-
tations to n objects as filtered features F ∈ R

n×256:

F← CD((Avg(Z),Convd),n) . (4.10)

From the statistical perspective, given a mixed signal X, the ith row of F, fi ∈ R
1×256, is

the feature of the ith source object si ∈ R
1×m. It refers to the feature of conditional prob-

ability distribution when the source object si is under the given mixed multiple objects
X:

fi = P(si|X) . (4.11)
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4.3.3 Siamese Training

Taking into account the practical application scenarios of anomaly detection, it is usually
difficult to collect all types of abnormal signals in real industrial scenarios. Therefore,
it is impractical to introduce abnormal signals in the training process. Moreover, since
the output of the proposed Yoho is an abstracted feature fi of the detected object, the
traditional Sep-Det for themulti-object acoustic anomaly detection approach is no longer
needed.

To improve the Yoho’s generalization, an unsupervised training approach is pro-
posed based on Siamese neural networks [95] that employ only normal signals to com-
plete the training. The key to model training is to split the training data set without
anomalies into two sets, which are partially different, to mimic anomaly scenarios.

The training setup is illustrated in Figure 4.6 and consists of two Yohos: Reference
Yoho (R-Yoho) and Comparison Yoho (C-Yoho). R-Yoho and C-Yoho share parameters
but use different groups of the input data from the training dataset S ∈ R

l×m: reference
objects sr

i and comparison objects sc
i . One input data is n reference objects Sr ∈ R

n×m ⊆
S ∈ R

l×m from l sources, and another is n comparison objects Sc ∈ R
n×m ⊆ S ∈ R

l×m,
which should be partially different from Sr:

Sr ∩ Sc ̸= ∅ and Sr ̸= Sc . (4.12)

The two groups of objects are fed into the model to obtain different features of several
identical or different sources.

The output of R-Yoho and C-Yoho are Fr and Fc, respectively. Obviously, when sr
i = sc

i ,
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the features fr
i and fc

i should be similar, while by sr
i ̸= sc

i the features fr
i and fc

i should be
dissimilar. Euclidean distance (l2-Dis) is used during the training phase to measure the
similarity.

The objective of the Yoho training is to minimize the similarity and to maximize the
dissimilarity of fr

i and fc
i , respectively:

l2-Dis =




|fr

i – fc
i |2 ≈ 0 s.t. sr

i = sc
i ⊆ Sr ∩ Sc ;

|fr
i – fc

i |2 ≈ ∞ s.t. sr
i ̸= sc

i ⊆ Sr ∪ Sc .
(4.13)

In this case, the abnormal fr
i and fc

i will be abstracted in detail, while normal fr
i and fc

i will
be suppressed. This results in the anomaly being highlighted in the abstract features fr

i

and fc
i .

The contrastive loss function is used to achieve our training objective by minimizing
L =

∑n
i=1 Li in Equation (4.14):

Li = γ|fr
i – fc

i |2 + (1 – γ)max(m – |fr
i – fc

i |2, 0) , (4.14)

where γ specifies whether the given features fr
i and fc

i are similar (γ = 1) or dissimilar
(γ = 0), and m is a hyperparameter “margin”, a minimal distance of dissimilar features
that need to kept.

Thus, considering a multi-object system with n sources, the overall loss function L of
the system is:

L =
1
n

n∑

1

Li . (4.15)

The loss can beminimized by applying the gradient descent algorithm [96] in the training
procedure.

Using the Siamese training procedure and loss function described above, Yoho is
able to obtain n abstracted features fi ∈ R

1×256 for n source objects si from the mixed
data X. The pseudo-code of the Siamese training procedure is listed in Algorithm 2. Note
that Algorithm2 is a different kind of presentation than text and figures, and that a similar
edition of it also appeared in [?], which work was carried out under my supervision.

The input sources S as the training dataset are grouped to the reference objects
Sr, and the comparison objects Sc (line 3), They are mixed as input Xr and Xc for R-Yoho
and C-Yoho, respectively (line 4). R-Yoho and C-Yoho share the same parameters while
working parallel on the two inputs Xr and Xc to extract features Fr and Fc (lines 5 and 6).
For each of the n reference objects sr

i and the n comparison objects sc
i , the l2-Dis of the

similar features fr
i = fc

i isminimized in line 8-10, in contrast the l2-Dis of dissimilar features
fr
i ̸= fc

i is maximized in line 11-13. The overall loss from the n sources are calculated in
line 15. In line 17, the loss is minimized. The output of the training procedure is the
trained Yoho model.
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Algorithm 2 : Siamese training procedure for Yoho [?].
Input : The training dataset S ∈ R

n×m;
output : The trained Yoho model;

1 Initialize the loss L and the weights of R-Yoho and C-Yoho;
2 Generate the mixing matrix B;
3 Sr, Sc ⊆ S, s.t. Sr ∩ Sc ̸= ∅ and Sr ̸= Sc;
4 Xr

= B× Sr, Xc
= B× Sc, Xr, Xc ∈ R

1×m;
5 Fr from R-Yoho;
6 Fc from C-Yoho;
7 for i = 1; i ≤ n; i + + do // Calculate loss
8 if sr

i = sc
i ⊆ Sr ∩ Sc then // Minimize the similarity

9 γ = 1;
10 Li = |fr

i – fc
i |2;

11 else if sr
i ̸= sc

i ⊆ Sr ∪ Sc then // Maximize the dissimilarity
12 γ = 0;
13 Li = max(m – |fr

i – fc
i |2, 0);

14 end
15 L = L + Li;
16 end
17 Minimize loss;

4.3.4 Model Inference

During inference, for mixed signals containing normal and abnormal objects, the ex-
tracted feature of each object is fi. The Euclidean distance (l2-Dis) is used to measure
the anomaly score of the ith object, shown as follows:

ai = |fi – fr
i|2 , (4.16)

where fr
i is the feature of the standard reference Sr without any anomaly. The anomaly

score ai should be close to zero for a normal object; otherwise, it is significantly larger
for an anomaly.

Anomaly detection systems typically require a threshold value θi to represent
anomaly boundaries in practical deployments. For source si, when its corresponding
anomaly score exceeds the set threshold, it is determined as an abnormal signal (y = 0),
and vice versa. The entire process is denoted as follows:

y =




0 if ai > θi

1 if ai ≤ θi.
(4.17)

The threshold θi often depends on the abnormal scores of all normal samples col-
lected during the training procedure. For example, after the training has been com-
pleted, for n numbers of source si, there are n collected anomaly scores ai, The top 95%
anomaly score is selected as the threshold to rank the abnormal scores from smallest to
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Table 4.1 Operation blocks and the filter rate of Yoho [10].

Operation Block Input Output Filter Rate

Encoder: Conve 1×m 32× m
4 r0 = 8

Layer 1: 1D-R-Conv×1 32× m
4 16× m

4 r1 = 4

Layer 2: 1D-R-Conv×2 16× m
4 24× m

16 r2 = 1.5

Layer 3: 1D-R-Conv×3 24× m
16 32× m

64 r3 = 0.5

Layer 4: 1D-R-Conv×4 32× m
64 64× m

256 r4 = 0.25

Layer 5: 1D-R-Conv×3 64× m
256 96× m

256 r5 = 0.375

Layer 6: 1D-R-Conv×3 96× m
256 160× m

1024 r6 = 0.156

Layer 7: 1D-R-Conv×1 160× m
1024 320× m

1024 r7 = 0.313

Layer 8: Conv1D 320× m
1024 1280× m

1024 r8 = 1.25

Decoder: Avg. Convd 1280× m
1024 n× 256 r9 =

n
256×m

largest. Here 95% means that the accuracy of the abnormal detection can be ensured
by sacrificing 5% of the prediction. The threshold value selection is highly related to the
actual scenarios and is not discussed in this work.

4.3.5 Remarks on Filter Rate

This section discusses the traffic filtering capabilities of Yoho. To better understand the
effectiveness of traffic filtering, filter rate ri of ith filter is defined [10], which is the ratio of
the output data size Vout

i to the input data size Vin
0 of the system as follows:

ri =
Vout

i
Vin
0

. (4.18)

ri measures the filtering ability, which indicates how much data has been filtered out by
the filter. An 0 < ri < 1 makes the filtering meaningful.

Since Yoho is based on a convolutional neural network, the entire Yoho model is
divided into ten operational blocks with the convolutional layer as the basic unit, and
they are the smallest divisible units of Yoho. In Table 4.1, the different operation block
outputs concerning the input data (filter rate) for Yoho are listed. It is worth noting that
Layer 1 to Layer 8 all belong to the Extractor.

As can be seen from Table 4.1, the final filtering rate of Yoho is n
256×m . Given the

anomaly detection application scenario, the original data volume m is often much larger
than the number of sources n, so the overall filtering rate of Yoho is low (ryoho ≪ 1),
meaning that Yoho can filter out most of the redundant data.

However, despite the overall filtering power of Yoho, there is a phenomenon of en-
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Figure 4.7 Functional split of Yoho [10].

larging the data volume of individual operation blocks, such as Encoder, Layer 1, Layer 2,
and Layer 8, which is referred to as “data explosion”. Also, because the complexity of the
convolutional layers differs among the operation blocks, this affects the computing time
spent by the network device to execute them. Therefore, in order to achieve the dis-
tributed deployment of Yoho across multiple network devices along the forwarding path
in Figure 4.3, it is also crucial to split the model functions, both in terms of computational
workload and traffic filtering ability.

This section described the design of Yoho in detail and analyzes the overall
lightweight design and traffic filtering ability of Yoho. In order to avoid data explosion
and excessive computational complexity on network devices, it is therefore essential to
study how themodel functions of the deep neural network should be split. The principles
of functional split will be presented in Section 4.4.

4.4 Functional Split

Trivially embedding a DeepNeural Network (DNN) (Yoho in this dissertation) is unrealistic
because DL is computationally demanding. It often requires a complex computing archi-
tecture, such as dedicated hardware (like GPU and large memory). Although future net-
work devices will be programmable with computing-oriented resources onboard, their
computational power shall still be much less than COTS server nodes. Nevertheless, the
size of a DNN is usually huge [97]. Hence, a central challenge is how to split a DNN into
pieces that are network element-suitable.

Considering this challenge, the following three principles are proposed when a DNN
needs to be split and embedded into several network nodes along a forwarding path.
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This content was also published in [3].

• Principle-1 proportionally splitting a model: Currently, popular DNNs easily have
millions or more parametrics with dozens of network layers [98]. Unlike the
server, a network node cannot offload the entire model. Splitting a model pro-
portionally can assure that a network node will not be overloaded;

• Principle-2 avoiding inter-node traffic explosion: A DNN transforms raw data into
high-dimensional feature representations by convolution or other operations.
This process usually accompanies temporal variations of data volume transmit-
ted between layers, e.g., eight-time data explosion of Yoho’s Encoder in Table 4.1.
To avoid the data explosion between two network nodes, it is necessary to split a
DNN at the layers of which the filter rate is smaller than one. Achieving this objec-
tive often contradicts the first one. Therefore, a joint consideration is needed;

• Principle-3 parallelizing local processing and forwarding: Local DL on a network
node requires data and temporal outputs of the last layer of a DNN’s operation
block delivered from the previous network node. Caching and waiting for the re-
quired inputs take time, especially when the path length increases. Hence, par-
allelizing the underlying forwarding strategy and efficient inter-node interactions
should be considered.

Bearingwith the three principles above, a generic way to split the CNN-based Yohomodel
can follow the procedures below:

The first step is to analyze the parameter size distribution of Yoho. Then, following
the first principle, the Yoho is divided intomultiple filters proportional to the capacities of
allocated network nodes. An investigation of the parameter size of Yoho is given in Sec-
tion 4.5.2.

According to the second principle, the second step is to adjust the splitting result
from the first step and to avoid data explosion splitting points as much as possible
located in between two consecutive network nodes. The saddle point of filter rate ri

(see Equation (4.18)) is used in [10] to determine splitting points where the amount of
the temporal data is smaller. This tells which layer should or should not be a splitting
point. The saddle point of the ri-curve is represented by the last operation of the contin-
uous data reduction. As a result of splitting before this saddle point, the filtering effect
of the traffic filtering paradigm is not maximized, however, splitting after this point dete-
riorates the filtering effect.

The third step is to analyze the computing logic of operation blocks to avoid wait-
ing for other operation blocks’ processing, thus wasting the network node’s computing
resources. For example, the low-complexity shortcut path of a residual bottleneck block
must wait for data from the high-complexity path. Following the third principle, such
processing and forwarding must be parallelized to avoid caching and waiting. Therefore,
the splitting result may be further revised.
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Giving a set of anomaly detection scenarios with n = 4 sources and the input data
length m = 64000, there are three nodes involved in in-network computing on the for-
warding path. According to the three functional split principles given above, the ten
operation blocks of Yoho can be partitioned into three filters, i.e., Filter ♯0, Filter ♯1, and
Filter ♯2, as shown in Figure 4.7. These three filters are used to integrate into the network
in Section 5.5.

4.5 Evaluation of Yoho

This section covers the experimental results and the discussion. First, the experimental
design is introduced in Section 4.5.1. Then, in Section 4.5.2 the proposed Yoho is com-
pared with the two-stage method Sep-Det in terms of model complexity and detection
accuracy. Later, Section 4.5.3 evaluates the trade-off of the Yoho’s backbones. Lastly,
Section 4.5.4 dives into the details of traffic filtering execution. The content of the eval-
uation is also published in [10–12].

4.5.1 Experiment Design

Dataset

A public dataset MIMII [84] was used in the evaluation. MIMII is an acoustic data set
for malfunctioning industrial machine inspection, containing more than 20000 normal
and abnormal operating acoustic segments from four types of real machines: valves
(V), pumps (P), fans (F), and slide rails (S). Each acoustic segment is a single-channel 10-
second-long acoustic segment with a sampling rate of 16000 Hz.

In the experiments, due to the limit of hardware, each type of the acoustic segment
was randomly cropped to four seconds as source objects S ∈ R

n×64000 to generate
the input data as the mixture X ∈ R

1×64000. 80% of the normal segments were ran-
domly picked from each machine type for training to exclude abnormal data. Please
refer to Section 4.3.3 for more details about model training. All abnormal segments and
the rest of the normal segments were used as the testing dataset. In the testing proce-
dure, abnormal and normal segments from the testing dataset were randomly used to
mix the input mixture X to evaluate the performance of different methods.

Scenarios

Two groups of experiments were designed to evaluate the lightweight design of Yoho
and the performance of the different backbones of Yoho, respectively.

The first group of experiments used two systems for comparison, they are:

• Sep-Det: It is the state-of-the-art two-stage model. First, the input mixture data
is separated by Conv-TasNet [73], one of the most advanced high-accuracy sepa-
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Table 4.2 Experimental setups with all possible source machine combinations for
Sep-Det and Yoho-ResNet-50 [12].

Combination Setup Source

Pump/Slider S-1 n = 2

Pump/Fan S-2 n = 2

Pump/Valve S-3 n = 2

Slider/Fan S-4 n = 2

Slider/Valve S-5 n = 2

Fan/Valve S-6 n = 2

Pump/Slider/Fan S-7 n = 3

Pump/Slider/Valve S-9 n = 3

Slider/Fan/Valve S-10 n = 3

Pump/Slider/Fan/Valve S-11 n = 4

ration methods based on CNN. Second, the abnormal is detected on every sepa-
rated source data using Autoencoder [90].

• Yoho-ResNet-50: Yoho with the state-of-the-art ResNet-50 [92] as the backbone.

A total of eleven experimental setups were created to evaluate all possible combinations
of the four types of source machines, which are listed in Table 4.2.

For each setup (i.e., S-1 to S-11) of Sep-Det, a Conv-Tasnet [73] was trained based
on the source number n, to separate the mixture signal X as n reconstructed sources
ŝi. To detect anomalies on all n separated sources, n independent Autoencoder-based
anomaly detectors were trained following the settings of the MIMII dataset [99]. Thus,
the total model number for each experimental setup of Sep-Det is 1 + n.

The second group of experiments compares the four backbones of the Yoho system:

• Yoho-ResNet-50: Yoho with ResNet-50 [92] as the backbone.
• Yoho-ResNet-18: Yoho with ResNet-18 [92], a lightweight variant of ResNet-50 to
save computation.

• Yoho-1D-MobileNet: A modified MobileNet [93] for one-dimensional input data
(1D-MobileNet) as the backbone for Yoho.

• Yoho-Dual-Path: The benchmark uses the dual path as the backbone for Yoho,
which is presented in this chapter.

The second experimental group used the maximum number of source machines n =

4, i.e., a mixture of four different types of sources from the dataset. Since Yoho does
not require different separation configurations for a different number of sources, the
performance of other source combinations should be similar to that of n = 4.

98 Chapter 4 Traffic Filtering



The same training strategy was used to train all models, including the Yoho with
four backbones and the Sep-Det. Each model was trained 100 epochs with the initial
learning rate of 1e – 4 and decay rate β1 = 0.9, β2 = 0.999. Models were trained in 16-
size batches and an initial learning rate of 1e – 3 for 200 epochs. Adam optimizer [100]
and the early stop strategy were used to avoid over-fitting. 2000 times tests were run
on each experimental setup. All experiments were done with Pytorch 1.6.0 [101], CUDA
10.1, CUDNN 7.5.1, and trained on NVIDIA RTX2080 with Intel I7-9700k.

Measured Metrics

Fivemetrics were employed tomeasure the computational complexity and the detection
accuracy. They are listed as follows:

• Param: The computational complexity of an NN model during inference can be
defined by the memory required to process the input data, which is mathemati-
cally formulated by the number of the parameters Param.

• Multiply-Add Operation (MAdd): The computational complexity of an NN model
during inference can be defined by the computing operations required to pro-
cess the input data, which is mathematically formulated by the number of the
operations MAdd.

• Computing Time Tc: Computing time indicates the run time of the anomaly detec-
tion systems in the inference phase. The computing time was measured using
the python module time with a precision of 0.1 ms during the inference phase
for each evaluation round in a CPU-only environment.

• Area Under the receiver operating characteristic Curve (AUC): For measuring the de-
tection accuracy, the AUC [99, 102] was used to indicate the probability that the
detection system makes correct decisions, which is defined by Equation (4.19).

AUCi =
1

n–n+

n∑ n+∑
H(A(s+i ) –A(s

–
i )), (4.19)

whereH(x) returns 1 when x > 0 and zero otherwise. The anomaly score A(si)
measures the l2 distance of one source object. The {s–i }n– and {s+i }n+ are normal
and anomalous test samples, respectively. A higher AUC value means a higher
accuracy rate for the detection system.

• mean-AUC (mAUC): The systems aim to detect multiple source machines, there-
fore, in order to evaluate the global detection accuracy of the system, the metric
of mAUC is proposed as follows:

mAUC =

∑n
i=1 AUCi

n
. (4.20)

Similar to the AUC, the overall detection accuracy of the system performs well
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Table 4.3 Detection accuracy AUC/mAUC of Yoho-ResNet-50 and Sep-Det [12].

Setup
AUC mAUC

Yoho-ResNet-50 Sep-Det Yoho-ResNet-50 Sep-Det

S-1 0.88 / 0.91 0.73 / 0.87 0.89 0.80

S-2 0.92 / 0.97 0.70 / 0.88 0.95 0.79

S-3 0.93 / 0.87 0.79 / 0.83 0.90 0.81

S-4 0.99 / 0.80 0.82 / 0.74 0.90 0.78

S-5 0.79 / 0.85 0.75 / 0.79 0.82 0.77

S-6 0.93 / 0.91 0.82 / 0.76 0.92 0.79

S-7 0.88 / 0.94 / 0.84 0.67 / 0.59 / 0.74 0.89 0.66

S-8 0.89 / 0.96 / 0.89 0.71 / 0.66 / 0.69 0.91 0.69

S-9 0.87 / 0.95 / 0.86 0.67 / 0.76 / 0.69 0.90 0.72

S-10 0.99 / 0.75 / 0.96 0.67 / 0.78 / 0.63 0.90 0.69

S-11 0.86 / 0.97 / 0.85
/ 0.90

0.62 / 0.53 / 0.61
/ 0.69 0.90 0.61

when the value of mAUC is close to 1.

4.5.2 Accuracy and Complexity

Table 4.3 compares the detection accuracy AUC andmAUC of Sep-Det and Yoho-ResNet-
50 in all eleven experimental setups. As shown in Table 4.3, the detection accuracy of
the proposed Yoho-ResNet-50 outperformed the baseline Sep-Det in all experimental
setups. The highest mean detection accuracy (mAUC) of Yoho-ResNet-50 was 0.95 in
the S-2 evaluation setup, while the Sep-Det was 0.81 in the S-3. Compared to the Sep-
Det, Yoho-ResNet-50 improved the detection accuracy from 6.49% (S-5) to 47.54% (S-
11) over the baseline Sep-Det. For combinations where the source number n = 2, i.e.,
S-1, 2, · · · , 6, the proposed Yoho-ResNet-50 maximized mAUC from 0.79 to 0.95 with
20.25% enhancement, when the mixture was from pump and fan (S-2). Meanwhile,
mAUC boosted minimal from 0.77 to 0.82, improving 6.49% with the setup S-5.

It is noteworthy that the accuracy of Yoho-ResNet-50 remained stable even as the
number of sources increased (i.e., 2→ 4). On the contrary, the accuracy of the Sep-Det
decreased significantly with a growing number of sources. When the mixture was from
all available four machines (i.e., S-11), the improvement of mAUC with Yoho-ResNet-50
achieved 47.54%.

The one-stage method Yoho exceeded the two-stage method Sep-Det by a large
margin. This result is due to the fact that the separation as a reconstruction process
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Figure 4.8 System detection accuracy (mAUC) and computing time (Tc) of the
Yoho-ResNet-50 and the Sep-Det for n = 2, 3, 4 source machines [12].

of an object produces information that is still low-level in the time domain. Most of it is
useless for anomaly detection. Moreover, the error of the Sep-Det is made up of the sep-
aration error on the source-object recovery (S) and the error detection when comparing
the separated source objects to the reference. In turn, the separation error increases
the detection error. First of all, in contrast, Yoho-ResNet-50 performs both separation
and detection simultaneously, thus reducing the influence of separation errors. Fur-
thermore, Yoho-ResNet-50 extracts abnormal features, which reduces the interference
of normal data in the subsequent separationmodule, thereby achieving higher detection
accuracy.

Moreover, in the Sep-Det, the separation performance degraded significantly as the
number of sources increases since the separation performance degrades significantly
for industrial acoustic signals close to Gaussian white noise as the number of objects
increases. The noise introduced during the separation phase also affected the accuracy
of the detection. However, instead of recovering the source objects by a separation
system in the Sep-Det, the Yoho-ResNet-50 extracts abnormal features (fi) in the one-
stage design to avoid introducing a large separation error. The one-stage Yoho-ResNet-
50 is based on the traffic filtering design paradigm and hardly affects the number of
source objects. The high-level correlation of each object is extracted directly from the
mixture to detect anomaly objects. Therefore, Yoho can improve the accuracy of big
data systems’ multi-object acoustic anomaly detection. The evaluation results were also
published in [12].

To evaluate the computational complexity of Yoho-ResNet-50, it was compared with
the Sep-Det by computing time Tc and the detection accuracy mAUC in the inference
phase, as shown in Figure 4.8. Comparing with the baseline Sep-Det, it can be observed

4.5 Evaluation of Yoho 101



Table 4.4 Parameter size and computational cost of Yoho-ResNet-50 and Sep-Det [?].

Setup Source
Param MAdd

Yoho-ResNet-50 Sep-Det Yoho-ResNet-50 Sep-Det

S-1, 2, · · · , 6 n = 2 18.17M 23.70M 9.08G 24.11G

S-7, 8, 9, 10 n = 3 18.69M 26.23M 9.08G 25.69G

S-11 n = 4 19.22M 28.76M 9.08G 27.27G

that Yoho-ResNet-50 reduces computing time by 45.0% to 49.7% in the eleven experi-
mental setups with n = 2, 3, 4 source objects. At the same time, the detection accuracy
was also improved. Figure 4.8 shows the continual growth of the computing time by the
Sep-Det as the number of sources rises; however, the computing time of the proposed
Yoho-ResNet-50 remains constant. As a result of the computing time growth, to detect
the mixture of n sources, the Sep-Det method needed to train one separation model
and n Autoencoders, as mentioned in Section 4.5.1.

These reductions in computing time showed that Yoho-ResNet-50’s computational
complexity significantly decreased compared to the Sep-Det. For the same number of
sources – e.g., Yoho-ResNet-50 vs. Sep-Det with two sources – Yoho-ResNet-50 did not
focus on recovering all source objects but only on their anomaly-related features (F),
which lead to a reduction in the computational complexity. Furthermore, the anomaly
score can be easily derived from these anomaly-related features without requiring a ded-
icated detection module, such as the Audoencoder in the baseline Sep-Det. See Equa-
tion (4.16) for an illustration of this.

The stable computing time of Yoho-ResNet-50 for different sources is an effect that
Yoho-ResNet-50 only needs a one-time l2-distance calculation to get the anomaly scores
of all n objects based on the extracted anomaly-related feature. The Sep-Det, however,
has to forward each separated object data separately to one Autoencoder for detec-
tion. Each separated object must be forwarded to one Autoencoder to be processed
for anomaly detection after the separation phase. The theoretical computing time of
Sep-Det is:

TSep–Det
c = tsep

c + n× tdet
c , (4.21)

where TSep–Det
c increases linearly with an increasing source number n. However, the pro-

posed Yoho-ResNet-50 extracts n abstract features fi from the mixture data, an anomaly
can be detected directly using Equation (4.16) instead of the complex Autoencoders.
This significantly reduces the computation complexity and implementation difficulty. The
evaluation results were also published in [12].

Table 4.4 lists the parameter size and the computational cost of Yoho-ResNet-50
and the Sep-Det. Note that a similar edition of Table 4.4 also appeared in [?], which was
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Table 4.5 Comparison of the model complexity and detection accuracy [11].

Model mAUC Computing Time Param MAdd

Yoho-Dual-Path 0.925 123.61 ms 3.63M 0.42G

Yoho-1D-MobileNet 0.764 87.08 ms 3.20M 0.35G

Yoho-ResNet-18 0.760 165.65 ms 11.02M 4.37G

Yoho-ResNet-50 0.895 254.23 ms 19.22M 9.08G

Sep-Det 0.611 541.49 ms 28.76M 27.27G

conducted undermy supervision. Under different setups, the parameter size Param and
the computational cost MAdd of Yoho-ResNet-50 were smaller than that of the Sep-Det.
The parameter size and computational cost of Yoho-ResNet-50 remained stable with a
growing source number n. Conversely, the parameter size and the computational cost
of the Sep-Det method increased linearly as the number of sources increases. The main
reason is that the Sep-Det has to perform 1+n independentmodels (one separator and n
detectors) to achieve multiple object detection, while Yoho-ResNet-50 is performed only
once as a one-stagemethod. Considering the specific implementation, when n increases,
Yoho-ResNet-50 only needs to change the output of the fully connected layer Convd in the
Decoder (see more details in Section 4.3.2), and the Sep-Det has to additionally employ
an AutoEncoder for every source, which leads to an increment in model parameters and
computation cost.

All of this indicates that the proposed Yoho-ResNet-50 can serve as a lightweight
one-stage multi-object acoustic anomaly detection process by using traffic filtering. Par-
ticularly, in more complex situations, the Yoho-ResNet-50 has a dominant advantage in
accuracy and analysis speed, which is more suitable for resource-constrained network
devices. The evaluation results were also published in [12].

4.5.3 Trade-off of the Backbones

Table 4.5 provides a comparison of themodel complexity and the separation accuracy of
four Yoho backbones and the Sep-Det. Based on these results, Yoho can indeed reduce
the model complexity and improve the detection accuracy of a multi-object anomalous
sound detection systems compared to the baseline Sep-Det, which can again support
the findings in Section 4.5.2.

It can be observed that Yoho significantly reduces the model complexity. Yoho
with the four backbones, i.e., Yoho-Dual-Path, Yoho-1D-MobileNet, Yoho-ResNet-18, and
Yoho-ResNet-50, had median computing times between 87.08 ms and 254.23 ms, which
contrasts the baseline Sep-Det’s 541.49 ms. This meant that Yoho showed a speed-up
of 53.05% to 83.92%. With the Dual-Path backbone, the reduction in computing time

4.5 Evaluation of Yoho 103



reaches 77.17%. Also, the Param and MAdd of Yoho were much smaller than the base-
line Sep-Det. The Sep-Det system consists of one separation model and n detection
models, and its computational complexity is linearly related to the number of sources
n. In contrast, the proposed one-stage framework can process mixed signals directly to
execute anomaly detection with more stable computational complexity.

Another finding is that all Yoho improves the detection accuracy. ThemAUC of Yoho
with four different backbones ranged from 0.760 to 0.925, while the baseline Sep-Det’s
was only 0.611. Yoho improved the detection accuracy by 24.39% to 51.39%, while the
maximum improvement was reached by Yoho-Dual-Path. The separator of the two-stage
system is trained independently from the detector. To ensure a fair comparison, they
were all trained using normal signals. During inference, the separator introduces extra
noise in its procedure, affecting the detector’s performance.

Observing the four backbones of Yoho shows that the model complexity of Yoho-
ResNet-50 was the highest, with a median computing time of 254.23 ms. As a lightweight
alternative to Yoho-ResNet-50, Yoho-ResNet-18 halved the model complexity, Param,
and MAdd. The proposed Yoho-Dual-Path method also performed very well in model
complexity, with the median computing time reduced to 123.61 ms. However, the
best performing variant in terms of model complexity was Yoho-1D-MobileNet, which
achieved the lowest median computing time of 87.08 ms. Particularly, Yoho-Dual-Path
and Yoho-1D-MobileNet dramatically reduced the Param and MAdd, i.e., the number of
parameters and the number of executed operations. Due to this characteristic, Yoho,
with the above two types of backbones, is also well suited for resource-constrained de-
vices (such as wearables and IoT devices).

In turn, the detection accuracy of Yoho-ResNet-50 was relatively high and attains
mAUC = 0.895. Correspondingly, the mAUC of the lightweight Yoho-ResNet-18 was re-
duced to 0.760. As ResNet-18 employs smaller convolutional layers, its effectiveness for
information extraction was reduced. As for Yoho-1D-MobileNet, the results were similar
to Yoho-ResNet-18, reaching mAUC = 0.764. However, the proposed Yoho-Dual-Path
obtained the highest detection accuracy with mAUC = 0.925, 0.030 higher than with
Yoho-ResNet-50. This is because traditional ResNet and MobileNet backbones typically
stack convolutional layers with the same scale. Moreover, the Dual-Path structure has a
richer receptive field within each convolutional layer. This ensures that it is more recep-
tive to model information while, at the same time, using only lightweight convolutions
(depth- and point-wise).

In conclusion, in terms of model complexity and detection accuracy, Yoho shows
benefits compared to Sep-Det, while the different backbones of Yoho also display various
trade-offs.

Next, the backbones were analyzed to evaluate the performance of the proposed
lightweight design. The trade-off of model complexity and detection accuracy of the four
backbones was evaluated bymeasuring the computing time andmAUC. In Figure 4.9, the
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Figure 4.9 The trade-off of computing time and detection accuracy [11].

closer the measurement is to the upper left corner, the better the performance of the
model, i.e., high detection accuracy is achieved in a short computing time. The proposed
Yoho-Dual-Path outperforms a range of other backbones.

The three baseline backbones of Yoho, i.e., ResNet-50, ResNet-18, and 1D-
MobileNet, showed a trendwhere themedian computing timedecreases from254.23ms
to 87.08 ms, while their detection accuracy diminished from 0.895 to 0.760. The mea-
surements indicate a trade-off between model complexity and detection accuracy. Al-
though the median computing time of Yoho-1D-MobileNet was 87.08 ms, which was the
shortest among all Yoho backbones, its mAUC (0.764) was one of the worst. This shows
that Yoho-1D-MobileNet sacrifices detection accuracy to achieve the model’s complexity
reduction. In contrast, the mAUC of Yoho-Dual-Path was the best among all backbones
(0.925), while its median computing time was 123.61 ms, which Yoho-1D-MobileNet only
outperformed.

Therefore, Yoho-Dual-Path achieves the best trade-off between model complexity
and detection accuracy. The evaluation results were also presented in [11].

4.5.4 Traffic Filtering Dive-in

In this experiment, the setup S-2 of pump s1 and fan s2 was chosen as an example to
show the filtered features. The evaluation results were also published in [12]. It was
intended to explore why Yoho can effectively extract anomaly information by visualizing
abstracted features f1 from the pump and f2 from the fan, and their anomaly scores a1
and a2.

Figure 4.10 shows the 256-dimensional values of the high-density information fea-
tures f1 and f2 filtered from pump and fan in a test round, where the horizontal axis
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Figure 4.10 Values of the filtered feature fi in 256 dimensions of one test round, the
source machines are s1 pump and s2 fan [12].

shows the feature dimension, and the vertical axis shows the feature value. As shown in
the figure, Yoho can filter the features of normal objects (yellow) to minimize zero values
and maximize the filtered features of abnormal objects (blue, non-zero) that approach
one. This distribution is consistent with the expectation of the loss function (see Equa-
tion (4.14)).

Moreover, the size of the high-density information features f1, and f2 was only 256,
while the length of the original data was m = 64000, which corresponded to 99.6% of
the redundant information being filtered. It can be concluded that, for a given mixed-
signal, Yoho suppresses information about normal objects – which is not relevant to that
anomaly detection – while it amplifies anomalous information about anomalous objects.
Yoho’s traffic filtering reduces redundant information while retaining relevant and use-
able data that is much smaller in size than the original data.

After testing the 2000 sets of input data, the obtained 256-dimensional filtered
features were mapped to a 2-dimensional feature space using t-Distributed Stochastic
Neighbor Embedding (t-SNE) [103] to verify whether the filtered features can still distin-
guish between normal and abnormal sources; these features were subsequently used to
calculate the anomaly scores. Figure 4.11 visualizes the distribution of the 2000 filtered
features in the 2-feature space. The horizontal and vertical axes represent the values
of the first and second dimensions of fi. Note that a similar version of Figure 4.11 also
appeared in [?], which was conducted under my supervision. It can be observed from
the figure that the features of normal (yellow) and abnormal (blue) sources were divided.
Yoho effectively clustered the filtering features of normal sources and spread out the fil-
tering features of anomalous sources. This effectively ensures that in the subsequent
calculation of the anomaly scores, the anomaly scores of normal sources can converge
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Figure 4.11 Visualization of the filtered features f1 and f2, which was obtained from
2000 rounds of testing by projecting each 256-dimensional feature into a
two-dimensional feature space [?].
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Figure 4.12 Anomaly scores a1 and a2 derived from the filtered features f1 and f2 of the
2000 rounds of testing [12].

around zero, while those of anomalous sources will be further away from zero due to
the presence of the anomaly features.

Figure 4.12 shows the distribution of the anomaly scores a1 and a2 obtained based
on the filtered features f1 and f2, which were measured in 2000 rounds of tests. As can
be seen in the figure, most of the anomaly scores for the normal s1 and s2 sources were
concentrated at zero (about 1000 rounds), and all scores were below four. In contrast,
the anomaly scores of anomaly s1 and s2 spread to the non-zero domain, with only about
100 rounds scoring were below four and the rest scoring were above four. Given a
reference anomaly score threshold, this different distribution of anomaly scores can be
effective in detecting the anomaly sources, and this capability is also suggested by the
metric mAUC in Section 4.5.2. Therefore, one can conclude that our proposed Yoho can
effectively determine anomaly sources frommixed observations using the small-volume
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high-density feature.

4.6 Summary of Yoho

Abnormal sound detection is becoming more and more critical in modern smart facto-
ries; however, it suffers from slow data processing due to high-density data and high-
complexity analysis. In this chapter, for the first time, the new lightweight design is
proposed for multi-object anomalous sound detection with the help of the traffic filter-
ing design paradigm, which we call You only hear once (Yoho). This approach detects
anomalies directly from the mixed acoustic data of multiple sources by filtering redun-
dant datawithout recovering each source data. Moreover, with the proposed Yoho-Dual-
Path backbone, both low model complexity and high detection accuracy are achieved.
This chapter shows via extensive experiments that the new Yoho-Dual-Path approach
could reduce the inference time by up to 77.17% and improve the detection accuracy by
up to 51.39% [11–13].

It is also noted that the functional split of the NN model plays a crucial role when
it is deployed on multiple network devices [3]. A proper functional splitting can achieve
parallel resource utilization, avoid long cache time, etc.

The NN-based anomaly detection can also be integrated into programmable net-
works with a lightweight design. In Section 5.5, it would show that integrating the pro-
posed Yoho-Dual-Path into the network improves the overall data analysis task. It also
emphasizes the great necessity of supporting in-network computing in future networks.

108 Chapter 4 Traffic Filtering



Part III

Network Design

109





Chapter 5

Stateful Transport Module

111





5.1 Introduction

In-network computing is a new area of research that has arisen to the fore in recent
years. It generally refers to the idea of offloading computation from end hosts (e.g.,
servers, PCs, smartphones, etc.) to network devices (e.g., switches and network interface
cards). The main motivation is to leverage unused computing resources in the network,
and the “ideal” location of these resources along the data forwarding path, to naturally
reduce latency in collaborative computing scenarios [37].

In particular, driven by the emerging network softwarization (NFV [47], SDN [48],
etc.) and the most recently available programmable network hardware (e.g., Smart-
NICs [56–58], P4 programmable switches [104–107], or Field Programmable Gate Arrays
(FPGAs) [59]), many research approaches have evidenced the feasibility of in-network
computing with respect to modern networks. Beyond the traditional network-related
tasks, such as congest control and load balancing, which can benefit greatly from in-
network computing, further disruptive tasks have been proposed, such as performing
wide-range computations on payloads.

However, this disruptive way violates E2E principles of the transport protocol sig-
nificantly and challenges the current common understanding of how the network stack
operates. As it stands today, the Internet uses reliable and efficient E2E communications
provided through the transport protocol. The underlying E2E principle requires direct
addressing between hosts, while in the network, it is kept simple and only forwards pack-
ets without changing the packet payload. On the contrary, reliable transport protocols
(such as Transmission Control Protocol (TCP)) strictly follow the E2E principle, ensuring
that all transmitted packets are received and that no changes have been made to them.
The key aspect of the E2E principle is that the communication is explicit, and the two
entities involved are directly addressed. Any network packet that has been changed or
added to any data fragment in the transmission path is discarded. Thus, there is an
in-principle mismatch between the E2E principle and the target of the in-network com-
puting.

Yet, in-network computing encourages the modification of packets. Therefore, it
is likely that strict E2E principle is becoming inapplicable to in-network computing. In
this context, in-network computing needs to be harmonized with traditional transport
protocols. Note that in-network computing, the focus of this work, refers to computing
on the network hardware along the data forwarding path rather than edge computing.
Edge computing can be seen as a special case of extreme in-network computing. The
network hardware involved in the computation is located only at the very edge of the
data forwarding path.

Instead, the E2E principle can be multi-dimensionally diffused, becoming an end-to-
relay-to-end operation with changeable network packets. In this way, the network func-
tions/network devices involved can be explicitly addressed, which allows for the conver-
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gence of computing and transport. The network transport protocol UDP is an unreliable
transmission method that transmits packets on a best-effort basis without guarantee-
ing their successful transmission. Therefore, UDP is well suited for in-network computing
since packets that are added, changed, or dropped by the network would fit into existing
semantics smoothly.

Unfortunately, unlike traditional network-related tasks, identifying changes in the
network or operating on network traffic are the main challenges that need to be ad-
dressed by in-network computing. Tackling these above challenges, firstly, the network
nodes should be able to interpret the meaning of the received packets; secondly, a com-
putational state synchronizationmechanism suitable formulti-node communication sce-
narios is needed. With these abilities, the network nodes can know what changes have
been made to the payload and what is expected to be done. Existing concepts are not
applicable towards these abilities, and new concepts are desired to recognize the new
communication diversity.

This chapter introduces a stateful transport module to realize the challenges of in-
network computing in terms of data forwarding. Based on the existing forwarding layer,
two optimizations are made, so that network devices are able to accomplish in-network
computing using existing transport protocols. The two optimizations of the stateful trans-
port module are as follows:

• Message-based packaging: The header of the Internet Protocol (IP) packet is ex-
tended so that the data type and computation state type packets can be differen-
tiated by inspecting IP packets directly;

• State-based transport component: The forwarding layer is extended with a
lightweight component, which can cache required packets without hop-by-hop
relaying and intercept the temporal computation state packets.

Themessage-based packaging described in this chapter has been published in [1,2],
and the state-based transport component has been published in [1]. Their integration
with the computingmodules, as well as their performance evaluation, are published in [1,
6]. In addition, a complete system that applies in-network computing for one particular
application in Chapter 3, which is Blind Source Separation (BSS), is shown as a demo
in [9]. [1] is under reviewed at the moment of this dissertation’s submission.

Next, the transport issue of in-network computing is given in Section 5.2. Then,
the optimizations of forwarding layer are introduced in Section 5.3, namely stateful trans-
port module, which includes themessage-based packaging and the state-based transport
component. The computingmodules pICA and Yoho, introduced in Chapter 3 and Chap-
ter 4, are integrated with the proposed stateful transport module to construct full-stack
network emulations, which are respectively evaluated for performance in Section 5.4
and Section 5.5. Section 5.6 concludes this chapter.
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5.2 Background

In this section, first, Section 5.2.1 gives a description of the problems that need to be
tackled in order to realize data forwarding for in-network computing schemes. Afterward,
Section 5.2.2 describes the transport issues that are still faced. The discussion of such
transport issues for in-network computing is also published in [1,2].

5.2.1 Problem Statement

In Part II, the proposed pICA and Yoho (see Chapter 3 and Chapter 4) are pure com-
putational logic, without considering network packet forwarding. In traditional data for-
warding networks, network devices rely only on the addressing information in the packet
header (e.g., Media Access Control (MAC) address, IP address, etc.) to complete the
packet forwarding. However, in contrast, the in-network computing compatible network
devices are deployed with computing module that processes, updates, modifies, etc.,
the data in the packets’ payload. The computing module relies on the forwarding layer
below to cache the input data needed for the computation.

Unfortunately, the existing forwarding layer does not support this caching and for-
warding very well. If the compute logic relies directly on the existing forwarding layer,
the expected benefits may be diminished or may even be harmed. All this suggests that
traditional packet structures and forwarding mechanisms no longer meet the needs of
the in-network computing scheme for the forwarding layer in the network.

Specifically, the definition “granularity [108]” is used to describe the smallest pro-
cessing unit. The hardware network devices of traditional communication networks,
such as backbone switches, process incoming packets on a per-packet basis. Therefore,
the granularity of the forwarding layer is based on a single packet. This is appropriate
for the general task of forwarding packets only. Still, it should not be sufficient for in-
network computing since the input data required for the computing logic is often larger
than the maximum amount of data transmitted in a packet. And depending on the state
of the computation, the required logical relationships may be spread over several pack-
ets. Therefore, the granularity of in-network computing is often larger than one packet,
and this granularity may be changing. Therefore, this choice of traffic granularity will
significantly impact how and where the computation is performed.

Another aspect is that traditional communication networks process packets on a
per-packet basis so that little to no state is retained between the forwarded packets.
However, with the in-network computing scheme, this leads to an inability for network
devices to engage, synchronize, and update each other’s intermediate computing state
when participating in a computation, and thus to a failure to ensure that network de-
vices cooperatively conduct the computation [109]. Therefore, in-network computing
compatible devices should support stateful packets with interpretable meanings.
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Figure 5.1 The computing module is embedded in the forwarding layer [1].

In summary, to implement in-network computing, a new forwarding layer is needed
to support the computing logic deployed on top of it. Such a forwarding layer needs to
know how the received packet is to be interpreted from the following two points:

• Big granularity across several packets;
• Intermediate computation state synchronization.

5.2.2 Transport Issues

In order to support the computing module, two approaches are available in the commu-
nication network based on the state-of-the-art data forwarding method: (i) Computing
module embedded at the forwarding layer and (ii) Computing module deployed at the
application layer. However, these two approaches possess several transport issues that
prevent accelerating data analysis applications. These issues are described in detail in
this section.

Computing Module Embedded at the Forwarding Layer

The current network forwarding layer can process incoming data packets on a per-packet
basis, as discussed in Section 5.2.1. This works well for short and instant jobs, such as
checking packet headers, checksum validation, etc. However, the existing forwarding
layer cannot embed the computing modules directly because the computing time is sev-
eral magnitudes longer than the usual packet-size processing, as illustrated in Figure 5.1.

Unfortunately, this is insufficient for the computing modules because the data re-
quired by the computingmodules cannot be encapsulated in one single packet’s payload,
i.e., the size of one packet’s payload is much smaller than the required data size βk to be

116 Chapter 5 Stateful Transport Module



Ingress
Port

Egress
Port

Unpacking & Caching

Application Layer

Forwarding Layer

An Intermediat Node

Computing Module

Control
Parameters

Cached Data

Re-packing
Packet Relay

Figure 5.2 The computing module is deployed at the application layer [1].

computed by pICA (see Chapter 3). Performing computing modules on only one packet
can not guarantee computing quality since the Maximum Transmission Unit (MTU) of
each packet is limited. Also, it is necessary to know the content of the surrounding pack-
ets. In other words, the computing modules work with much more data whose size is
several magnitudes larger than the size of a packet’s payload. If the computing modules
are directly embedded at the forwarding layer, the computing modules will temporally
suspend the data forwarding transmission until the performing of the computing mod-
ules is finished. This will block the forwarding path and introduce longer delays.

Due to the limited arithmetic operations, it comes at the cost of lower flexibility in
payload processing and the choice of algorithms. However, the computation granularity
and intermediate computation state synchronization can be guaranteed. Thus, integrat-
ing the computing modules with the forwarding layer will lead to a heavy forwarding
layer.

Computing Module Deployed at the Application Layer

Due to the limitation of embedding the computing module at the forwarding layer, an
alternative way is to deploy the computing module as a local application on the net-
work node without touching the forwarding layer. Still, in the application layer illustrated
by Figure 5.2.

Existing network protocols were designed mainly for packet forwarding purposes
when network technology was born. A packet is addressed according to its source and
destination addresses. Suppose the destination address of a packet does not match the
local interface of a network device. In that case, the packet will be directly forwarded to
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the next hop on an output port specified in the routing table or the flow table. If the
whole dataset is still specified with the IP address directly to the final destination (i.e.,
server node), the computing modules on intermediate nodes will never see any data.

As the computing module is deployed in the application layer, this forces the com-
puting to relay the packets hop-by-hop. Accordingly, the destination address has to be
changed every hop. Specifically, as shown in Figure 5.2, after a packet arrives, the packet
is first unpacked for data caching, then packed again after being processed, modified
with a new destination address, and sent to the next hop. This incurs unnecessary delay
because the unpacking and packing are repeated for every single packet on all network
nodes.

Furthermore, if the computing module works as a single-thread process, the long
execution time of the computing module will suspend packet relaying, which makes the
whole performance even worse. Although parallelizing the packet relaying and the com-
puting module execution could be an option, the packet relaying manner is still sub-
optimal, where the incurred delays cannot be avoided.

However, deploying the computing module at the application layer leads to a fur-
ther challenge. The existing forwarding layer does not support the computing module
well to cache the required data efficiently to guarantee the computation granularity and
intermediate state.

Network Joint Computing

The previous work that addressed the problem is Network Joint Independent Compo-
nent Analysis (NJICA) [2] and In-network deep learning [3], which leverages the generic
computing architecture of commodity servers. The works developed the distributed al-
gorithm of BSS tailored for in-network computing. In addition, they have successfully
offloaded the servers’ computing tasks. However, the drawback of both works is total
service latency since the data stream is delayed by caching and computing operations
at several intermediate network nodes.

In summary, if a computing module works on the existing forwarding layer without
any change, the expected acceleration will be weakened or even lost completely. Nec-
essarily, the key challenge is finding a solution for the forwarding layer that can provide
efficient packet transmission and support the big computation granularity and interme-
diate computation state synchronization. Especially regarding minimizing overall delay,
the design of the network forwarding layer is vital. A joint design is required, which will
be presented in this chapter for in-network computing.
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5.3 Solution: Stateful Transport Module

In this section, the general design principle of the transportmodule design is given in Sec-
tion 5.3.1. Afterwards, Section 5.3.2 and Section 5.3.3 describe the packet structure and
transport component for in-network computing. Following, remarks on the proposed
stateful transport module are mentioned in Section 5.3.4. The stateful transport module
was also published in [1], and partially in [2].

5.3.1 Design Principle

The key point is to eliminate the relaying scheme (i.e., the “receive-first-then-send”) with-
out intercepting the direct routing path to the final destination at the forwarding layer
while still being able to capture the required data. In order to solve the problems, data
forwarding is decoupled from the computingmodule execution asmuch as possible. The
forwarding layer needs to ensure that each node transmits data packets without pause.
Meanwhile, the required data for the computing module can still be cached. In addition,
the forwarding layer needs to capture the temporal results and other control parame-
ters (called temporal computation states) for the local computing module on network
nodes.

This chapter describes a stateful transport module for data forwarding of the in-
network computing scheme. The stateful transport module follows two strategies:
message-based packaging proposed in [1,2] and state-based transport component pro-
posed in [1].

First, each network node needs to be able to recognize a message so that it can
decide, based on the type of message, whether the message is within the granularity
required by the computational module andwhether it should be used to synchronize the
computational state of the computational module. Therefore, each packet has a specific
preamble header containing metadata information to explain the state of the payload,
which is used to identify the message. These states can be the type of load (data or
temporal computation states), the data sequence, computational control parameters,
etc. Depending on the packet payload type, the message is packaged together with
metadata. In turn, the network node can use these metadata in the header to decide to
cache data, set computation parameters, synchronize intermediate computation results,
packetize processed computation results, or forward the packet directly.

Subsequently, the network node interprets the packets according to the state con-
tained in these packets based on the message-based packaging. Specifically, a state-
based transport component is placed between the input and output ports. This compo-
nent parses the metadata from the packet header before performing transport-related
processing (e.g., matching and forwarding based on the flow table) on the network pack-
ets in the ingress queue. Based on the metadata, non-computation-related packets are
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Figure 5.3 Packet structure with the message-based packaging [1,2].

pushed to the transmit queue for forwarding as normal messages. On the contrary,
computing-related packets are pushed to the application layer to cache data for the
computing module or to be parsed for computing module configuration. In addition, the
output of the computing module is generated and packaged according to the message-
based packaging strategy and then pushed to the forwarding layer’s egress queue for
forwarding.

In this way, both the packet transmission and the data computing in the network
can be done successfully. The following will introduce the approaches in detail.

Before continuing the discussion, the following assumptions are made about the
system settings:

• The network topology is linear, while the number of intermediate nodes can be
changed. The main interest is in how the in-network computing scheme can uti-
lize a given linear network topology best;

• Since it is mainly focused on the in-network computing design, it is assumed that
existing lower-layer protocols handle possible node failures;

• It is assumed that an intermediate network node is not as powerful as a COTS
server machine, reflecting the practical setup of network infrastructures. Thus, a
single intermediate network node shall not exclusively execute all data process-
ing tasks.

5.3.2 Message-based Packaging

The proposed computing modules, pICA in Chapter 3 and Yoho in Chapter 4, take two
types of messages as network packets: data packets (data-typemessage) and intermedi-
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ate computation state packets (state-typemessage). In the case of pICA, the data packets
are the mixture data X, and the temporal computation state packets include the inter-
mediate separation matrix Wi and the control parameters such as sampling step βi and
αi from the i-th node as its last hop. In the case of Yoho, the data packets are the in-
put mixture data X on the client node, and the temporal computation state packets are
the intermediate filtered traffic data and the filters’ identifies. In order to distinguish be-
tween the packet’s types, message-based packaging is a reasonable and flexible solution
to deliver a wide range of application data.

Recall the challenge of big granularity with the in-network computing scheme, the
transmission of network packets requires fragment messages into multiple chunks.
Message-based packaging encapsulates each chunk into a UDP datagram for IP packets.
Recall the challenge of intermediate computation state synchronization. Message-based
packaging specifies a preamble header for each network packet, containing metadata
information such as message type, message flags, message sequence number, chunk
sequence number, chunk length, and the control parameters.

The idle “Options” segment of an IP header defined in RFC791 [110] is used as a flag
bit field, highlighted in Figure 5.3:

• Flag = 0 indicates that the packet is an intermediate computation state packet;
• Flag = 1 indicates that the packet is a data packet.

The flag bit here is critical; it enables the stateful transport component to determine how
a packet should be handled directly without unpacking payloads.

Network nodes exploit this metadata in the header to collect and reassemble data-
typemessages and synchronize the intermediate computation states. The network node
can change the message flag depending on verifying its intermediate computing results.
If it meets the desired computing termination, the network node changes the message
flag to fully processed to inform the next node to fast-forward without any further pro-
cessing.

Since the stateful transport module involves assembling and processing network
packets in batches, it is recommended to leverage the Data Plane Development Kit
(DPDK), version 19.11, to implement the computing modules as NFs. DPDK bypasses
the kernel space to avoid costly data-copying operations, to increase packet process-
ing. However, note that DPDK’s alternative data plane processing technologies, such as
eXpress Data Path (XDP) [111], are also eligible.

Note that although the destination address of the two types of packets is the same,
the source IP addresses of every temporal computation state packet are different. The
reason is that the temporal computation states are generated after executing the com-
puting module on every intermediate node. So, naturally, its source IP address is the IP
address of that network node. On the other hand, all data packets are directly sent from
the first hop node (i.e., the client node) without any modification, so its source IP address
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Figure 5.4 State-based transport component with packet header identification [1].

is the IP address of the client node. Both data computing and data transmission are per-
formed on the data path connected to the server node, so the destination IP address of
both packets is the IP address of the server node.

5.3.3 State-based Transport Component

As aforementioned related works in Section 5.2.2, instead of integrating the computing
module to the forwarding layer, deploying it at the application layer is free of limited arith-
metic operations for payload processing and computing tasks. By utilizing the metadata
in the network packets’ header (see message-based packaging in Section 5.3.2), network
nodes are able to interpret coming packets in the forwarding layer to fulfill the require-
ments of big granularity and intermediate computation state synchronization for the
computing module in the application layer.

A state-based transport component is proposed, which could parse the metadata
in the packet header while the forwarding layer performs the regular packet forwarding
tasks. As shown in Figure 5.4, the state-based transport component locates in the for-
warding layer of a network node. It connects the ingress and egress port of the network
node. Meanwhile, the state-based transport component interacts with the computing
module deployed in the application layer. It acts as a “switcher” which can efficiently
decide how a packet should be handled based on the Flag in the header.

Specifically, when a packet is received at the ingress port:

• If Flag = 0, the network node sees the packet as an intermediate computation
state packet. The packet is then intercepted and is not forwarded anymore be-
cause the payload contains the control parameters only for the local computing
module;
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• If Flag = 1, the network node knows that the packet is a data packet. Then the
packet is imaged and simultaneously handed over to the default network pro-
tocol stack. Independently, an imaged packet is received locally, and its payload
is read out for data caching based on the required granularity of the computing
module;

• Meantime, the data packet is immediately forwarded (w.r.t. the destination ad-
dress) to the egress port.

By reaching the granularity and finishing state synchronization, this event will trigger the
execution of the computing module because it means that the current node has already
finished its data caching and computation setup.

Furthermore, in order to ensure the global synchronization of the intermediate com-
putation state of the network, the present network node has to update or create new
state packages. Once the computing module of this network node completes its lo-
cal computation, its temporary computation results, computational control parameters,
etc., are handled as intermediate computation states. These intermediate computation
states are repackaged according to the message-based packaging strategy and pushed
to the egress port in the forwarding layer for further forwarding. The state-based trans-
port component of the subsequent network nodes can continue to cache data and syn-
chronize the states for their computation modules.

Generally, the proposed solution parallelizes the execution of computing modules
and data forwarding in a much more efficient way.

5.3.4 Remarks

The challenge of how the existing forwarding layer can better support in-network com-
puting is a new research area that is also observed in [108]. The proposed stateful trans-
port module exemplifies how to realize in-network computing with data whose granu-
larity is much larger than a single packet. The key design principles can be summarized
as follows:

1. The design sticks to the E2E transport principle, which minimizes the delay from
data forwarding because data transmission always remains at the forwarding
layer;

2. The design has minimal modifications to existing network protocol stacks, where
only a state-based transport component, which is lightweight, is added to identify
packets that are relevant to the local computing module;

3. Data forwarding and computation are fully decoupled so that a network node
can ideally process arbitrary granularity of data without interrupting/suspending
the packet forwarding. This enables many large-scale data analysis applications
or high-complexity computations to be performed in-network.
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These design principles can inspire to solve similar in-network computing applications.

Next, the stateful transport module proposed in this chapter is implemented with
practical computingmodules to build full-stack in-network computing systems to be eval-
uated. Specifically, Section 5.4 applies the pICA computing module proposed in Chap-
ter 3, followed by Section 5.5 which incorporates the Yoho computing module proposed
in Chapter 4.

5.4 Evaluation of In-network pICA

In this section, the pICA computing module based on the progressive computing
paradigm is deployed in the application layer of the network nodes, the forwarding layer
incorporates the stateful transport module which builds the full-stack in-network pICA
system. The design of the computing module pICA can be found in Chapter 3. This sec-
tion focuses on the performance evaluation of the stateful transport module supporting
packet forwarding caching for pICA computing module.

In particular, Section 5.4.1 describes the evaluation dataset, emulation design,
and evaluation metrics. It is followed by the evaluation of in-network pICA’s service
times in Section 5.4.2, and the evaluation of in-network pICA for computing loads
innSection 5.4.3. Then, Section 5.4.4 tests the impact of the stateful transport mod-
ule on the parallelization of data computation and data forwarding. Finally, Section 5.4.5
summarizes the evaluation of in-network pICA. Please note that, similar evaluation of
in-network pICA is also presented in [1]

5.4.1 Experiment Design

Dataset

A published dataset MIMII from [84] was used for the evaluation of in-network pICA.
MIMII has collected 26092machinery operating acoustic data of n = 4 types of machines
(including valves, pumps, fans, and slide rails). Every segment of the data is a 10-second
long single-channel data with a sample rate of 16 kHz. Therefore, the size of one acoustic
data source si is m = 16 kHz × 10 s = 160000 (i.e., sample rate×duration). Since there
are four types of data sources, the original data S forms a 4× 160000 source matrix.

To mimic the mixing process, a 4× 4 mixing matrix A was generated from a normal
distribution. A would be applied on the source data matrix S according to Equation (3.1)
to simulate the effect of mutual interference among all data sources. Therefore, the
client node would receive the mixture data matrix X with the same size of S. Note that
this was just 10 s audio data of 4 types of machines. In reality, more types of machines
are monitored and time span is also much longer, time of transferring the sensing data
and after that processing them may delay critical anomaly detection. After all network
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nodes were used to perform the separation task, the remaining separation tasks were
processed by the server node.

Scenarios

The evaluation was conducted on the network emulator Communication Networks Em-
ulator (ComNetsEmu) [112]. A linear network topology was set up, which consisted of
several k intermediate network nodes. The bandwidth among all network devices were
1000 Mbit/s, the propagation latency of each link was 10 ms. In each network node,
the proposed stateful transport module was integrated in the forwarding layer, the pICA
computing module was performed in the application layer.

The evaluation tested four intermediate node scenarios: k = [0, 1, 4, 7] intermedi-
ate nodes, representing the resource availability from a low-to-high level. Specifically,
k = 0 intermediate node means that the network does not have in-network computing
capability, which is equivalent to a traditional network, i.e., running centralized FastICA
(see Section 3.2.3 for more introduction to FastICA); k = 1 intermediate node represents
the minimum setup for a network with in-network computing capability; k = 4 interme-
diate nodes represents a network with a moderate in-network computing capability; and
note that in the k = 7 scenario, for the MIMII dataset, seven intermediate nodes reach
the upper limit of acceleration in most cases, and this set k = 7 lies between the theo-
retical upper and lower bounds (4 ≤ k ≤ 8) derived from Section 3.4. Therefore, in this
scenario, the results of Section 3.4 can also be evaluated. In other words, a larger k was
not necessary for this selected dataset X anymore.

For evaluation, three comparison systems are chosen:

• FastICA: The baseline mode without in-network computing feature. It is equiva-
lent to pICA with k = 0;

• pICA–: pICA running over a traditional hop-by-hop forwarding layer without the
stateful transport module proposed in this chapter;

• pICA+: pICA jointly with the proposed stateful transport module.

For each given number of k intermediate nodes, the emulation was repeated 50
times, in order to exhibit the randomness of the mixing matrix A and the input source
data S. In every test, the mixing matrix A was fixed but the input source data S were
randomly sampled from the dataset. All emulations were done on a COTS server with
an i7-6700T CPU with 16GB RAM using Ubuntu 18.04 LTS.

Measured Metrics

Three metrics were considered, which are listed as follows:

• Service Time Ts: This metric represents the total RTT of one emulation, i.e., from
the moment the data enters the network to the moment the estimated original
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data Ŝ is derived at the server node. Ts greatly affects the Quality-of-Service (QoS)
of audio separation tasks. With Ts, the general acceleration can be directly ob-
served;

• Computing Time Tc: This metric is to account the time only spent on executing
pICA computing module. This excludes the time spent on data forwarding but
focuses on the computational cost only. A smaller Tc means shorter time to pro-
cess the mixture data X thus carry out the separation matrix W. Therefore, the
total computational loads are also reduced. Accordingly, it is denoted the com-
puting time spent on a specific network node i to finish its pICA executions as ti

c,
and the residual computing loads on the server node is tserver

c ;
• Separation Accuracy Source-to-Distortion Ratio (SDR): A SDR metric from [85] is
used to quantify the accuracy of the estimated original data Ŝ. Its definition is
given in Equation (5.1):

SDR = 10 · log10

(
struth

2

einterf + enoise + eartif
2

)
, (5.1)

where struth is the known truth from the picked dataset, einterf, enoise, and eartif are
the respective errors of interference, noise, and artifacts errors, respectively.
These values can be evaluated with the output Ŝ of any separation algorithm with
an open-source BSS Eval Toolbox [86].

For involved time measurements, a Python module time (with 1 microsecond (μs)
precision) was used. In addition, the selected SDR definition was the most widely used
metric nowadays because different types of errors are comprehensively considered.

5.4.2 Service Time

Figure 5.5 provides a comparison of the service time Ts in the four scenarios. In this eval-
uation, pICA run with the new forwarding solution “stateful transport module” proposed
in Section 5.3. Figure 5.5 not only presents the measurement of Ts of all 50 times’ experi-
ments but also gives a box-plot summary on the top. Specifically, the measurements are
sorted in increasing order. Therefore, every curve is Ts ’s Cumulative Distribution Func-
tion (CDF) for each scenario.

The key result is that the in-network computing scheme indeed accelerates data
separation, compared to the centralized method FastICA. It can be observed that all of
the three curves with pICA+ are on the left side of the curve with FastICA. This means that
the chance to have a shorter service time Ts (i.e., Pr{Ts ≤ t}) is larger than the chance of
a centralized solution according to the CDFs.

The box-plot above also reflects this conclusion. The median values of all three
curves with pICA+ were much smaller than the median value of the curve with FastICA.
More importantly, the service time of upper quartiles (75%) for all three tests with pICA+
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Figure 5.5 Comparison of service time with in-network pICA [1].

was shorter than the lower quartile (25%) of the FastICA’s service time. Specifically, the
median service time Ts decreased from 8.08 s to ca. 5.48 s, a 32.18% acceleration. When
k = 1, pICA+ started outperforming FastICA. The gap became larger when k → 7. This
proved that pICA+ yielded a higher acceleration rate with an increasing number of in-
termediate nodes k (see both higher chances of shorter service time among the three
pICA+’s CDF curves and smaller median values as well as left-shifted quartiles among the
three pICA+’s box-plots).

Since with the in-network computing scheme, the computing tasks are partly done
by intermediate nodes, it is meaningful to quantitatively measure how many tasks are
left at the end for the last node (i.e., the server node), called “Residual Computing Loads”
measured by the computing time tserver

c on the server node.

5.4.3 Residual Computing Loads

With the same statistic method as Figure 5.5, Figure 5.6 shows the residual computing
loads tserver

c on the server node with different computing schemes (i.e., pICA+ vs. FastICA)
It is observed that the residual computing loads left to the server node with the pICA+
are much less than FastICA. Similarly, the composed CDF curves tell that the chance of
getting less residual computing loads on the server node (i.e., Pr(tserver

c < t)) with using
pICA+ is much higher than the chance of using FastICA.

Specifically, first of all, it is noticeable that themedian value tserver
c dropped from 4 s to

0.4 s when the number of intermediate nodes k increased (see the box-plot wherein the
three quartile bars with pICA+ shifting to the left side). Additionally, the upper quartiles
(75%) of all three groups of pICA+ tests were smaller than the lower quartile (25%) of
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Figure 5.6 Comparison of residual computing loads on the server node with in-network
pICA [1].

FastICA. Especially when k = 7, it can be seen that the server node got only < 0.4 s
residual computing loads in half of the emulations, while in 75% emulation tests, the
server node got only < 1.2 s residual computing loads. This indicates that with high
probability, the server node has significantly less delay when making a decision if the
in-network computing scheme is applied.

Another observation is that in some cases, pICA+ would reach an acceleration cap
when k = 7. The cap means that the server node can already obtain the separation
matrix W from its previous intermediate network nodes without any additional compu-
tation, i.e., tserver

c = 0. In other words, addingmore intermediate nodes above a threshold
k̄would not yield further accelerations, because all the data processing jobs were already
done during transmission in previous hops less than k̄. This also agrees with the result
of the theoretical bounds in Theorem 1, which are 4 ≤ k ≤ 8. Therefore, a wise strategy
is to estimate the total amount of processing tasks in terms of the input mixture data
when determining the required number of intermediate nodes.

Moreover, further observation showed that there is an upper bound on the opti-
mization of service latency by pICA using in-network computing. Specifically, when k = 0,
two algorithms showed similar performances, which was not surprising because in this
case, no acceleration possibility with in-network processing. The reason for this out-
come is that partial or complete offloading of the server’s separation tasks to the net-
work nodes is undertaken. The network nodes parallelize the data forwarding and data
computing, thus reducing the time consumed by the server to complete the residual
separation tasks after the transmission. Optimally, the entire separation algorithm is
processed in parallel during the data transmission, and the service latency is essentially
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equal to the network transmission latency.

This also explains the decrease in service latency Ts in Figure 5.5. Because the num-
ber of forwarded message packets X do not change during the whole transmission pro-
cess, only two computing state packets are added, and the forwarding process is not
interrupted additionally due to the proposed stateful transport module, so the trans-
mission latency does not change. However, with pICA, the tserver

c on the server node is
greatly reduced. These lead to the decrease in service latency Ts.

In general, this group of experiments in Section 5.4.2 and Section 5.4.3 demon-
strates that pICA+ can effectively reduce the service latency by parallelizing the data pro-
cessing and forwarding via the proposed in-network computing scheme–pICA.

5.4.4 Parallelization of Forwarding and Computing

In the previous subsections, the performance evaluation results are presented from a
system-wide perspective. Furthermore, it is to be inspected how the acceleration actually
happens on every intermediate node with the in-network computing scheme. In order
to demonstrate the impact of the stateful transport module in the forwarding layer, both
pICA– and pICA+ are compared with FastICA.

Figure 5.7 presents a group of evaluation results on separation accuracy SDR with
intermediate nodes under three different scenarios k = [1, 4, 7]. Specifically, the metric
separation accuracy SDR was measured and its improvements are shown after every
intermediate node finishes its local pICA execution. This can tell how fast the estimated
source data Ŝ are improved with in-network computing scheme.

The first row figures, i.e., Figure 5.7-a to Figure 5.7-c, present the results evaluated
with pICA–. The general conclusion is that pICA– showed worse performances than Fas-
tICA, where the improved speed of the SDR was slower than the improved speed of
FastICA. Even worse, more intermediate nodes caused longer delays when using pICA–
(see the pICA–’s curves deviate from the FastICA’s curves farther). Specifically, achieving
the same accuracy (SDR= 27.06 dB), pICA– took 8.32 s, 11.55 s and 15.79 s, respectively,
while FastICA took 8.08 s under all three scenarios.

The total time of using pICA– to achieve the same accuracy was longer than FastICA
does. However, carefully reviewing the results, it can be found out that the improvement
rate of pICA– was actually higher than the rate of FastICA on intermediate nodes. There
are flat periods between every two consecutive improvements that heavily delay the ser-
vice time of pICA–. For example, when k = 1 (Figure 5.7-a), pICA– quickly improved the
SDR values 0 dB → 5.60 dB in 4.05 s while FastICA took around 5 s. The next improve-
ment of pICA– continued at 5.37 s. In other words, the improvement is not persistent
but interrupted between intermediate nodes. This phenomenon occurs in other two
scenarios (k = 4 and 7) as well.

This confirmed the problem analysis in Section 5.2, where the forwarding layer in-
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Figure 5.7 Improvements of separation accuracy over time with three deployment
modes [1].

deed influences the performance. Since pICA– had to specify the destination address to
the address of the next hop. This stop the data transmission and only after that node
cache required data for its local pICA computing module, the node will resume forward-
ing the data further to the next hop.

The flat period between two consecutive improvements is exactly the waiting time
where a node was receiving/caching the required data. Once the caching is done, the
local pICA computing module starts to work and yields a fast improvement rate. The
stateful transport module proposed in this chapter aims to remove such flat periods.
The evaluation results with pICA+ are shown with second row figures, i.e., Figure 5.7-d to
Figure 5.7-f.

The observation is that the total service time to achieve the same SDR now becomes
less than the time of FastICA, as shown that all pICA+ curves are on the left side of the
FastICA’s curves. It decreased from 6.78 s → 5.48 s (when k = 1 increases to k = 7).
The second observation is that it shows the importance of having a joint design together
with the application layer (pICA computing module) and the forwarding layer (stateful
transport module). In every scenario, with pICA+, the flat periods are significantly short-
ened. This clearly demonstrates the advantages of parallelizing computation and packet
forwarding. Though the destination address with pICA+ is directly set to the final destina-
tion, the data can still be cached in parallel on every intermediate node. This enables the
data transmission without suspension, and every node can cache required data. Once
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the temporal computing result is provided from the previous hop, the pICA can start
immediately without any delay.

Specifically, in Figure 5.7-d (when k = 1), the first node cached the least amount of
data and quickly started to improve the result, with its SDR jumps from 0 dB → 5.60 dB
in 0.07 s. In parallel, the rest majority of the data kept being forwarded to the last hop.
This is why it took longer for the last node to receive the whole dataset. However, with
a temporal computing result provided from the first node, the last node took less time
than FastICA did to yield the final result. With adding more nodes (e.g., k = 4, as shown
in Figure 5.7-e), the improvement continued on the first four nodes, i.e., no presence of
the flat period. Only on the 5th node/server node, it took a longer time to receive all the
rest of the data, and there were still certain amounts of residual computing loads left to
be done.

When k = 7 shown in Figure 5.7-f, the improvement rate is continuous without
obvious delays between every two consecutive nodes. More importantly, the comput-
ing job is almost done in parallel with the data forwarding on the path. The separa-
tion accuracy SDR almost reached the best, and the last improvement occurred from
25.54 dB → 27.06 dB. This also matches the results of residual computing loads in Fig-
ure 5.6, where much fewer jobs are left to the server node when k = 7.

5.4.5 Summary of In-network pICA

This set of evaluations tested the pICA solution with and without the stateful transport
module proposed in this chapter, which are published in [1]. These three sets of compar-
isons confirmed the necessity of joint consideration of computing and transport mod-
ules when designing an in-network computing system. The two modules intertwine with
each other, a local computing module shares the computing tasks with intermediate re-
sources on network nodes. However, without the coordination from the stateful trans-
port module, its benefits cannot be maximized and even be hurt.

5.5 Evaluation of In-network Yoho

This section uses Yoho, a computational module designed following the traffic filtering
paradigm, whose design details have been described in Chapter 4 carefully. Together
with the stateful transport module proposed in this chapter, Yoho forms a full-stack
system, namely in-network Yoho. This full-stack system uses the in-network computing
scheme for acoustic anomaly detection. The evaluation focuses on reducing the trans-
mission time by filtering redundant data, which ultimately accelerates the whole service.

At the beginning of this section, the experimental setup is described in Section 5.5.1,
which covers the test data preparation, the implementation of the emulation network,
and the choice of evaluation metrics. Next, the core global service times are evaluated
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in Section 5.5.2. Following that, the computing load of the computing module under dif-
ferent experimental scenarios is evaluated in Section 5.5.3. And Section 5.5.4 discusses
Yoho’s network traffic filtering and its impact on transmission. Finally, Section 5.5.5 sum-
marizes the in-network Yoho experiments. Similar evaluations are presented in [10],
although different experiment settings and reference objects were used.

5.5.1 Experiment Design

Dataset

Like the previous experiments, MIMII [84] was used as the dataset for this experiment.
MIMII is a real-world acoustic dataset widely used for industrial manufacturing machine
inspection. It contains 26092 normal and abnormal acoustic segments from four types
of machines. Each acoustic segment is a 10-second length of single-channel data, with
a sampling rate of 16 khz.

The input acoustic segments were randomly selected from each of the four types of
machines. Due to the memory limitation of the experimental equipment, the 10-second
sound segments were cut out for 4-second as the source data S of the experiment. Cor-
relation coefficients of standard distribution mixed these source data to reproduce a
realistic multi-machine scenario. Therefore, according to the Yoho application setting
(Equation (4.1)), the input mixture data X of the in-network Yoho was a one-dimensional
data with the length of m = 16000 Hz× 4 s = 64000.

Scenarios

The network emulator Communication Networks Emulator (ComNetsEmu) [112] was
used to simulate a multi-hop linear network. Since Yoho was split into three filters, i.e.,
Filter ♯0, ♯1, ♯2, this network contains k = 2 intermediate nodes, connecting the client
node and the server node, respectively, making a total of four network nodes. For more
details on the splitting of Yoho, please refer to Section 4.4.

Each network node can perform both computing and forwarding operations. More
specifically, three filters were deployed in the application layer of the client node and the
two intermediate nodes as NFs. In addition, the forwarding layer of all network nodes
was integrated with the proposed stateful transport module. Each filter’s filtered results
were considered intermediate computation states, and their packet header flags were
marked accordingly.

The client node connected to the intermediate nodes and sent the input mixture
data X using UDP to the server node. The payload size of UDP packet was set to its max-
imum value of 576 byte. Since the input data size m = 64000, the transmitted input
data size was 64000×4 = 256000 bytes. All topology links had the same homogeneous
bandwidth of 1000 Mbit/s and a fixed propagation delay of 10 ms. In the experiments,
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Table 5.1 Filters deployment of Yoho– and Yoho+.

Benchmark Deployment Filter Rate

Yoho–

NULL on the client node r0 = 1.000

NULL on the 1st intermediate node r1 = 1.000

NULL on the 2nd intermediate node r2 = 1.000

Filter ♯0, ♯1, ♯2 on the server node rs = 0.016

Yoho+

Filter ♯0 on the client node r0 = 0.250

Filter ♯1 on the 1st intermediate node r1 = 0.156

Filter ♯2 on the 2nd intermediate node r2 = 0.016

NULL on the server node rs = 0.016

packet losses were not considered, and all packets were received sequentially by assum-
ing that error correction and congest control were handled by lower-layer protocols. It
was also assumed that all devices and connections are general-purpose and available
commercially. These settings can be considered typical for networks.

For evaluation, two comparison systems are chosen:

• Yoho–: The baseline method without in-network computing feature. All computa-
tion of Yoho is performed on the server nodes, the traffic reminds unchanged on
the forwarding path, i.e., without the proposed stateful transport module;

• Yoho+: Yoho with traffic filtering feature along the forwarding path. The three
filters of Yoho are deployed on the client node and the two intermediate nodes,
and data forwarding is enabled by the stateful transport module proposed in this
chapter.

The deployment of Yoho’s filters in the two benchmarks is listed in Table 5.1. The client
node, intermediate nodes, and server node were implemented in Python. When oper-
ating an in-network computing scheme, the SDN controller inserted rules into the flow
table of each network node to forward the data traffic through each middle-box to build
an SFC.

For each scenario, 50 measurements were performed in which the client node sent
the input mixture data to the server node to ensure the experimental results were sta-
tistically significant. The evaluation has covered various data types and mixing cases by
doing this. All emulations were conducted on a COTS server with an i7-6700T CPU with
16GB RAM using Ubuntu 18.04 LTS.

Measured Metrics

To evaluate the in-network Yoho, the considered metrics are listed as follows:
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• Service Time Ts: This metric is the RTT between the request sent by the client
node and the response delivered by the server node. It includes all forwarding
and computing delays introduced by end nodes (client and server) and network
nodes, i.e., from the mixture X entering the network till the anomaly score of all
sources is calculated. Ts greatly affects the QoS of anomaly detection tasks;

• Computing Time Tc: To measure the computing load of Yoho’s filters, the metric of
computing time Tc is introduced, which is the time required by all nodes to com-
plete the filters deployed on them. Similar-wise, the computing time spent on a
specific node i to execute the filter is denoted as ti

c. With the same computational
power, a smaller ti

c means that the filter on the node is completed faster. As a
result, the computing load of this filter is small. Conversely, a larger ti

c implies a
large computing load for this task.

• Forwarding Time Tf: Forwarding time Tf is the time taken by the network to trans-
mit the packets over the links, including propagation delay, queuing delay, and
transmission delay. For the same network setup – e.g., bandwidth, MAC access,
and so on – Tf is closely related to the size of data transmitted on the links.

For involved time measurements, a python module time (with 1 microsecond (μs)
precision) was used.

5.5.2 Service Time

Figure 5.8 presents a comparison of the service time Ts of Yoho– and Yoho+. It not only
shows the CDF of all 50 experimental measurements Ts results but also gives a box-plot
summary on the top.

The key finding is that the in-network computing system Yoho+ indeed accelerated
the anomaly detection service compared to the centralized approach Yoho–. Themedian
service time was observed to be reduced from 4.13 s with Yoho– to 2.87 s with Yoho+,
which is a 30.51% reduction.

In the lower CDF statistics, it can be clearly seen that the CDF curve with Yoho+ is
on the left side of the curve with Yoho–. This means that, according to the CDF, the
chance of a short service time with Yoho+ is much greater than that of the centralized
Yoho–, i.e., Pr{Ts ≤ t}. The upper box-plot also reflects this conclusion, i.e., the median
value of Yoho+ is much smaller than Yoho–. More importantly, the box-plot shows that
the maximum service time of Yoho+ was also lower than the minimum service time of
Yoho–. This means that in the 50 tests, all Yoho+ services were significantly accelerated.

This set of experiments has revealed the significant advantage of in-network com-
puting and traffic filtering in speeding up the anomaly detection service. The stateful
transport module proposed in this chapter allows the network packets to be cached by
the corresponding filters of Yoho. The computational state can be synchronized among
the three filters deployed on the network nodes to ensure the successful operation of
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Figure 5.8 Comparison of service time with Yoho– and Yoho+ [10].

the computing modules. The nodes in the network not only forward the data, but also
participate in the computation to filter the redundant information.

However, as mentioned above, the service consists of both forwarding and comput-
ing. It is also curious if the reduction in service time is mainly due to the reduction in
forwarding time by Yoho’s traffic filtering paradigm. Therefore, it is meaningful to quan-
tify the computing load of the network nodes. The computing load of the four nodes
in the network was measured by tclient

c , t1c , t2c , and tserver
c The quantitative analysis is given

in Section 5.5.3. Traffic filtering is also quantitatively analyzed in Section 5.5.4 for the
data throughput forwarded in the network and the forwarding time.

5.5.3 Computing Load

In this set of experiments, the computing load on each node and on the whole network
in both experimental scenarios (Yoho– and Yoho+) is measured by the computing time.
Their mean and median values are listed in Table 5.2.

Themost important finding regarding the computing load is that the total computing
time Tc for Yoho– and Yoho+ was almost the same. Yet, the computing load for Yoho+
was offloaded from the server node to the network nodes.

First, because the computational logic of Yoho– and Yoho+ was the same (1.79 s vs.
1.58 s of Tc), the only difference was that they are deployed in different nodes. Therefore,
it is not surprising that the total computing load was similar between the two. The slight
difference should be caused by the difference in computational resource availability and
task scheduling in the network simulator. Therefore, it is concluded that the in-network
Yoho system does not impose extra computing load compared to the traditional cen-
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Table 5.2 The mean and median values of each network node’s computing time and
the total computing time in the network by using Yoho– and Yoho+.

Benchmark
Client Node 1 Node 2 Server Total

tclient
c t1

c t2
c tserver

c Tc

Yoho–
mean 0 s 0 s 0 s 1.80 s 1.80 s

median 0 s 0 s 0 s 1.79 s 1.79 s

Yoho+
mean 1.26 s 0.34 s 0.05 s 0 s 1.64 s

median 1.29 s 0.35 s 0.04 s 0 s 1.58 s

tralized system and remains essentially the same.

Second, a noteworthy point in the experimental results is that all the computing load
was offloaded into the network by Yoho+ (1.79 s→ 0 s on the server node). This offload-
ing not only reduced the computational resource consumption on the server node. But
this non-trivial offloading rather plays a critical role in accelerating the service. Because
Yoho’s three filters are offloaded from the server nodes to the network nodes, Yoho
can filter the redundant information passing through each node, thereby reducing the
amount of data that needs to be further forwarded. Next, Yoho’s network traffic filtering,
and its effect on forwarding time, will be discussed.

5.5.4 Forwarding Time with Traffic Filtering

Figure 5.9 shows the 50 times measured forwarding time Tf for Yoho– and Yoho+. In the
lower part of Figure 5.9, the CDF of the two forwarding times are given, and their box-plot
in the upper part is also shown.

From this set of experimental results, it is easily observed that the forwarding time
Tf of Yoho+ was much smaller than that of Yoho–. Specifically, the median forwarding
time was reduced from 2.33 s to 1.60 s, a 31.33% acceleration of forwarding. Through
the box-plot, it can also be confirmed that all forwarding times for Yoho+ were smaller
than those for Yoho–. At the same time, it is also observed that the forwarding time of
Yoho+ had a larger deviation compared to that of Yoho–, reaching 1.9 s in the upper
quartile and 1.3 s in the lower quartile. This deviation may be due to the perturbation of
the packing of intermediate computation states in in-network computing scheme.

Analyzing the two experimental scenarios of Yoho– and Yoho+, the forwarding time
Tf is positively correlated with the data throughput under the same network settings
(including bandwidth, network latency, and nodes’ performance). Therefore, it can be
deduced that the traffic filtering paradigm of Yoho plays a key role in the reduction of
forwarding time here. Therefore, the data throughput on each link in the network is also
measured to verify the above derivation.
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Figure 5.9 Comparison of forwarding time with Yoho– and Yoho+.

Table 5.3 The transmitted data volume and the filtering rate on each link, and the total
median forwarding time of the network by using Yoho– and Yoho+ [10].

Benchmark Client→Node 1 Node 1→Node 2 Node 2→Server Tf

Yoho–
256957 bytes 256957 bytes 256957 bytes

2.33 s
100% 100% 100%

Yoho+
64623 bytes 41012 bytes 17906 bytes

1.60 s
25.15% 15.95% 6.97%

Theory 25% 15.6% 1.6% ––

Table 5.3 shows the median data throughput and total forwarding time on all links
for the Yoho– and Yoho+ scenarios, and the ratio of these throughputs to the original
input data (filtering rate) is also given. At the same time, the theoretical filtering rates are
listed for comparison with the experimental measurements.

As can be seen in Table 5.3, using Yoho+, the bandwidth between the client node
and Node 2 consumed only 25.15% and 15.95% of the original data, respectively. And
the high-density information reaching the server node was compressed to 6.97% of the
original data after filtering by filter ♯2 on the Node 2. In contrast, the data throughput of
Yoho– remained the same as the original data, so the transfer time cannot be reduced.
As a result, the total transmission time Tf of Yoho+ was reduced to about 1.60 s. In
contrast, the Tf of Yoho– remained at about 2.33 s.

Comparing Yoho– and Yoho+, although they hold essentially the same computing
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load, with the help of the in-network computing scheme, redundant data is filtered by fil-
ters on the network nodes, thus reducing the transmission time and ultimately obtaining
a lower service time.

However, the measured filtering rates of Yoho+ in the experiment (see Table 5.3)
were slightly larger compared to the theoretical filtering rate (last row of Table 5.3). This
is due to the fact that the proposed Yoho can only filter the payload of network packets,
while the packet headers remain unchanged. Therefore, it achieves better filtering when
the total payload is relatively large. One possible optimization is to use header compres-
sion techniques [113,114], e.g., Robust Header Compression (RoHC) and Static Context
Header Compression (SCHC), that can reduce the packet headers and thus maximize
the filtering effect.

5.5.5 Summary of In-network Yoho

In summary, this section evaluated the performance of in-network computing driven by
the traffic filtering paradigm that aims to accelerate feature extraction tasks, in particular
acoustic anomaly detection. The evaluation was performed in a full-stack implementa-
tion of the network emulator, which integrated the Yoho computing module proposed
in Chapter 4 and the stateful transport module proposed in this chapter. Quantitative
experimental results have shown that by jointly designing the application and forward-
ing layers of the in-network computing system, redundant information can be filtered
out along the forwarding path, reducing the forwarding time and ultimately accelerating
the overall service.

5.6 Summary of Stateful Transport Module

The primary motivation for in-network computing is to exploit computational resources
in the optimal locations along the network data forwarding path by processing network
packets, thereby allowing for a natural reduction of latency in data analysis applications.
However, the end-to-end principle of transport protocols is severely violated with this
disruptive approach. Furthermore, it challenges the widespread understanding of how
the network stack currently operates, i.e., that packets should not be modified and that
network nodes are agnostic about packet’s payload.

This chapter has presented a stateful transport module to solve the transport issues
of in-network computing [1,2,9,10]. It modifies the existing structure of IP headers, i.e.,
message-based packaging, so packets can be directly identified at the IP packet level with
the promise of a broader application. Accordingly, a lightweight state-based transport
component is introduced at the forwarding layer, which directly caches the data stream
and intercepts the intermediate computation states provided by other nodes. This en-
sures optimal forwarding efficiency of the network transport and allows network packets
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to be operated on the forwarding path.
The key advantage of the proposed stateful transport module (i.e., new packet struc-

ture and added components) is that data forwarding remains purely E2E persistent with-
out any interruptions. In particular, neither delays due to pausing the operation of the
integrated computing module at the application layer nor unnecessary packet unpack-
ing delays due to the computation state synchronization among the relays. Together
with the proposed two compute modules, it forms an in-network computing solution to
accelerate acoustic data analysis.
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6.1 Main Contribution

In the era of digital transformation, 5G and 6G networks are going to face significant
challenges due to massive connections andmassive data to be computed. Various verti-
cals with 5G and 6G will require very low end-to-end latency (1-10 ms) and high reliability
(99.9999%). These elements create an urgent need for low-latency data analysis. Next,
traditional store-and-forward communication networks can no longermeet this demand.
Therefore, in addition to the function of transmitting data, in-network computing scheme
has implied the need for processing data on-the-fly during the transmission process.

This need for computational resources is a key challenge, which implies studying
network-computing design and realization. In-network computing changes the legacy
compute-and-forward paradigm, transforming networks from data transmission infras-
tructure to information computing and delivery platforms. Network devices compute-
and-forward data so that users directly receive the desired data processed by the net-
works. However, in-network computing poses disruptive requirements for communi-
cation networks. On the one hand, the task of network devices is no longer limited to
forward packets but also to provide data computation capabilities. On the other hand,
data packets are no longer transparent to intermediate network devices under the end-
to-end transmission mechanism, but network devices should support packet computing
and modification.

This dissertation introduced the full-stack in-network computing solutions to tackle
the above challenges. Two data analysis design paradigms, namely progressive computing
and traffic filtering, were designed from a computational perspective to allow the comput-
ing modules to be effectively integrated into the network. Furthermore, a new transport
module, the stateful transport module, was proposed from a network perspective to al-
low network devices to support packet modification by the computing modules while
being compatible with the current end-to-end transmission mechanism. A blueprint of
the system architectures was presented in Chapter 2 for two widely used data analysis
applications: data reconstruction and feature extraction.

Chapter 3 took a commonly used data pre-processing technique in acoustics - Blind
Source Separation (BSS) - as an example of data reconstruction. A computing module
has been presented, that adapts to the in-network computing scheme: progressive ICA
(pICA), which follows the progressive computing design paradigm. pICA allows network
devices on the forwarding path to perform BSS starting with partial data, and optimizing
the separation results progressively. First, each network device follows a greedy strategy
and performs partial separation computation as its resources allow. Then, multiple net-
work devices follow a growing strategy, progressively increasing the volume of processed
data along the forwarding path to optimize the separation results. The theoretical anal-
ysis of pICA was also conducted, whose conclusions can guide the network deployment
to maximize the acceleration of pICA. The final simulation results showed that pICA could
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accelerate blind source separation application by 43.75% compared to a non-in-network
computing baseline system.

Chapter 4 followed the traffic filtering design paradigm and introduced a Convolu-
tional Neural Network (CNN)-based computing module for acoustic anomaly detection
applications: You only hear once (Yoho). Since anomaly detection is an application that ex-
tracts anomaly-related features, Yoho can filter redundant data unrelated to anomalies
on the data forwarding path. Furthermore, a Dual-Path backbone has been proposed
due to the resource-constrained characteristics of network devices. Finally, in order to in-
tegrate Yoho and similar DeepNeural Network (DNN)-based computingmodules into the
network, three DNN functional splitting principles were also given. Through experimen-
tal simulations, the evaluation results showed that Yoho could accelerate the anomaly
detection by up to 77.17% and improve the detection accuracy by 51.39%.

Chapter 5 introduced the stateful transport module, which can directly image the data
flow and intercept intermediate computational results from the other network nodes.
First, the transport module extends the IP packet header so that network packets carry
message-related metadata (message-based packaging). Then, the forwarding layer of the
network device is optimized to forward, cache, and update network packets based on
the computational state while following an end-to-end transport mechanism (state-based
transport component). Overall, the stateful transport module supports in-network comput-
ing by guaranteeing an optimal forwarding efficiency.

On top of the stateful transport module, pICA in Chapter 3 and Yoho in Chapter 4
were integrated into the Communication Networks Emulator (ComNetsEmu) to realize
full-stack network systems, i.e., in-network pICA and in-network Yoho, respectively. The
experimental results of the network emulations reported that the service time of BSS
is accelerated by 32.18%, and the service time of anomaly detection is speeded up by
30.51%.

All the results confirmed the expected benefits of the initial system architecture
blueprint. Computing and networking were jointly designed to accelerate data analy-
sis with in-network computing through all the contributions mentioned above. These
are promising results for the design and actual realization of future communication net-
works. It is envisioned that the convergence trend of information technology and com-
munication networks will continue and grow for digital transformation in the data era.

6.2 Future Work

Although contributions have been made in this work, many issues remain to be ad-
dressed. This work has only pointed out some of these problems and provided solu-
tions.

First, the performance of the solutions proposed in this work may be affected by
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packet loss or, in more extreme cases, by the failure of the nodes performing the com-
puting modules. This is because the intermediate results of in-network computing must
be relayed along the occupied forwarding path. Furthermore, if any failure breaks the
computational process on the forwarding path, the entire data analysis application may
face problems. This is a reliability/resiliency issue that is worth to be studied. Network
slicing is noted to guarantee QoS for specified services [4, 15, 23], which could be a po-
tential solution.

Second, in-network computing encourages network packets to be modified in the
forwarding path. Although the solution of this work has ensured that modified packets
can be successfully forwarded under the end-to-end protocol, if the modifier on the
forwarding path is untrusted, the privacy of the data may be harmed. Therefore, this
data and network security topic should also be taken seriously.

As a further part of future work, resource allocation and task scheduling for comput-
ingmodules need to be investigatedwhen network conditions (e.g., topology, bandwidth,
etc.) change dynamically. In particular, when the multi-path topology is introduced, a
new phenomenon, namely data aggregation, arises. Compared to the linear topology
dealt with in this work, data fusion generates more opportunities and challenges for in-
network computing.
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