1,175 research outputs found

    Energy Efficiency in Cache Enabled Small Cell Networks With Adaptive User Clustering

    Full text link
    Using a network of cache enabled small cells, traffic during peak hours can be reduced considerably through proactively fetching the content that is most probable to be requested. In this paper, we aim at exploring the impact of proactive caching on an important metric for future generation networks, namely, energy efficiency (EE). We argue that, exploiting the correlation in user content popularity profiles in addition to the spatial repartitions of users with comparable request patterns, can result in considerably improving the achievable energy efficiency of the network. In this paper, the problem of optimizing EE is decoupled into two related subproblems. The first one addresses the issue of content popularity modeling. While most existing works assume similar popularity profiles for all users in the network, we consider an alternative caching framework in which, users are clustered according to their content popularity profiles. In order to showcase the utility of the proposed clustering scheme, we use a statistical model selection criterion, namely Akaike information criterion (AIC). Using stochastic geometry, we derive a closed-form expression of the achievable EE and we find the optimal active small cell density vector that maximizes it. The second subproblem investigates the impact of exploiting the spatial repartitions of users with comparable request patterns. After considering a snapshot of the network, we formulate a combinatorial optimization problem that enables to optimize content placement such that the used transmission power is minimized. Numerical results show that the clustering scheme enable to considerably improve the cache hit probability and consequently the EE compared with an unclustered approach. Simulations also show that the small base station allocation algorithm results in improving the energy efficiency and hit probability.Comment: 30 pages, 5 figures, submitted to Transactions on Wireless Communications (15-Dec-2016

    Big Data Caching for Networking: Moving from Cloud to Edge

    Full text link
    In order to cope with the relentless data tsunami in 5G5G wireless networks, current approaches such as acquiring new spectrum, deploying more base stations (BSs) and increasing nodes in mobile packet core networks are becoming ineffective in terms of scalability, cost and flexibility. In this regard, context-aware 55G networks with edge/cloud computing and exploitation of \emph{big data} analytics can yield significant gains to mobile operators. In this article, proactive content caching in 55G wireless networks is investigated in which a big data-enabled architecture is proposed. In this practical architecture, vast amount of data is harnessed for content popularity estimation and strategic contents are cached at the BSs to achieve higher users' satisfaction and backhaul offloading. To validate the proposed solution, we consider a real-world case study where several hours of mobile data traffic is collected from a major telecom operator in Turkey and a big data-enabled analysis is carried out leveraging tools from machine learning. Based on the available information and storage capacity, numerical studies show that several gains are achieved both in terms of users' satisfaction and backhaul offloading. For example, in the case of 1616 BSs with 30%30\% of content ratings and 1313 Gbyte of storage size (78%78\% of total library size), proactive caching yields 100%100\% of users' satisfaction and offloads 98%98\% of the backhaul.Comment: accepted for publication in IEEE Communications Magazine, Special Issue on Communications, Caching, and Computing for Content-Centric Mobile Network

    Edge Caching in Dense Heterogeneous Cellular Networks with Massive MIMO Aided Self-backhaul

    Get PDF
    This paper focuses on edge caching in dense heterogeneous cellular networks (HetNets), in which small base stations (SBSs) with limited cache size store the popular contents, and massive multiple-input multiple-output (MIMO) aided macro base stations provide wireless self-backhaul when SBSs require the non-cached contents. Our aim is to address the effects of cell load and hit probability on the successful content delivery (SCD), and present the minimum required base station density for avoiding the access overload in an arbitrary small cell and backhaul overload in an arbitrary macrocell. The massive MIMO backhaul achievable rate without downlink channel estimation is derived to calculate the backhaul time, and the latency is also evaluated in such networks. The analytical results confirm that hit probability needs to be appropriately selected, in order to achieve SCD. The interplay between cache size and SCD is explicitly quantified. It is theoretically demonstrated that when non-cached contents are requested, the average delay of the non-cached content delivery could be comparable to the cached content delivery with the help of massive MIMO aided self-backhaul, if the average access rate of cached content delivery is lower than that of self-backhauled content delivery. Simulation results are presented to validate our analysis.Comment: Accepted to appear in IEEE Transactions on Wireless Communication

    A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-dense Networks

    Get PDF
    Heterogeneous ultra-dense networks enable ultra-high data rates and ultra-low latency through the use of dense sub-6 GHz and millimeter wave (mmWave) small cells with different antenna configurations. Existing work has widely studied spectral and energy efficiency in such networks and shown that high spectral and energy efficiency can be achieved. This article investigates the benefits of heterogeneous ultra-dense network architecture from the perspectives of three promising technologies, i.e., physical layer security, caching, and wireless energy harvesting, and provides enthusiastic outlook towards application of these technologies in heterogeneous ultra-dense networks. Based on the rationale of each technology, opportunities and challenges are identified to advance the research in this emerging network.Comment: Accepted to appear in IEEE Communications Magazin
    corecore