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Abstract— This paper focuses on edge caching in dense hetero-
geneous cellular networks, in which small base stations (SBSs)
with limited cache size store the popular contents, and mas-
sive multiple-input multiple-output (MIMO)-aided macro base
stations provide wireless self-backhaul when SBSs require the
non-cached contents. Our aim is to address the effects of cell
load and hit probability on the successful content delivery (SCD)
and present the minimum required base station density for
avoiding the access overload in an arbitrary small cell and
backhaul overload in an arbitrary macrocell. The achievable
rate of massive MIMO backhaul without any downlink channel
estimation is derived to calculate the backhaul time, and the
latency is also evaluated in such networks. The analytical results
confirm that hit probability needs to be appropriately selected
in order to achieve SCD. The interplay between cache size and
SCD is explicitly quantified. It is theoretically demonstrated that
when non-cached contents are requested, the average delay of
the non-cached content delivery could be comparable to the
cached content delivery with the help of massive MIMO-aided
self-backhaul, if the average access rate of cached content delivery
is lower than that of self-backhauled content delivery. Simulation
results are presented to validate our analysis.

Index Terms— Edge caching, dense small cell, massive MIMO,
self-backhaul.

I. INTRODUCTION

A. Motivation and Background

NEW findings from Cisco [1] indicate that mobile video
traffic accounts for the majority of mobile data traffic.

To offload the traffic of the core networks and reduce the back-
haul cost and latency, caching the popular contents at the edge
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of wireless networks becomes a promising solution [2]–[4].
The latest 3GPP standard requires that the fifth generation (5G)
system shall support content caching applications and opera-
tors need to place the content caches close to mobile termi-
nals [5]. In addition, the emerging radio-access technologies
and wireless network architectures provide edge caching with
new opportunities [6].

Recent works have focused on the caching design and
analysis in various scenarios. In [7], a probabilistic caching
model was considered in single-tier cellular networks and the
optimal content placement was designed to maximize the total
hit probability. In [8], a stochastic content multicast schedul-
ing problem was formulated to jointly minimize the average
network delay and power costs in heterogeneous cellular
networks (HetNets), and a structure-aware optimal algorithm
was proposed to solve this problem. Caching cooperation in
multi-tier HetNets was studied in [9], where a low-complexity
suboptimal solution was developed to maximize the capacity
in such networks. Caching in device-to-device (D2D) networks
was investigated in the literature such as [10], [11]. In [10],
a holistic design on D2D caching at multi-frequency band
including sub-6 GHz and millimeter wave (mmWave) was
presented. In [11], the performance difference between maxi-
mizing hit probability and maximizing cache-aided throughput
in D2D caching networks was evaluated. The work of [12]
showed that in multi-hop relaying systems, the efficiency of
caching could be further improved by using collaborative
cache-enabled relaying. Joint design of cloud and edge caching
in fog radio access networks were introduced in [13] and [14],
where the popular contents were cached at the remote radio
heads. However, prior works [7]–[13] did not present design
and insights involving edge caching in the future dense/ultra-
dense cellular networks (e.g., 5G) with backhaul limitations,
where wireless self-backhauling shall be supported [4].

Cache-enabled small cell networks with stochastic models
have been investigated in the literature such as [15]–[19].
Cluster-centric caching with base station (BS) cooperation
was studied in [15], where the tradeoff between transmission
diversity and content diversity was revealed. In [16] where it
was assumed that the intensity of BSs is much larger than the
intensity of mobile terminals, two cache-enabled BS modes
were considered, namely always-on and dynamic on-off.
The work of [17]–[19] concentrated on the cache-enabled

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/195305745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-7911-3777
https://orcid.org/0000-0001-5255-7036
https://orcid.org/0000-0001-8337-5884
https://orcid.org/0000-0002-5168-0160


WANG et al.: EDGE CACHING IN DENSE HETNETs WITH MASSIVE MIMO-AIDED SELF-BACKHAUL 6361

multi-tier HetNets. Specifically, [17] and [18] studied opti-
mal content placement under probabilistic caching strategy,
and [19] considered the joint BS caching and cooperation,
in contrast to the single-tier case in [15]. However, [15]–[19]
only aimed to maximize the probability that the requested
content is not only cached but also successfully delivered.
In realistic networks, when the requested contents of users
are not cached at their associated BSs, they will be obtained
from the core network via wired/wireless backhaul, which also
needs to be studied in cache-enabled cellular networks.

In fact, existing contributions such as [20]–[22] have
studied the effects of backhaul on content delivery in
cache-enabled networks. The work of [20] considered that
non-cached contents were obtained via backhaul, and a
downlink content-centric sparse multicast beamforming was
proposed for the cache-enabled cloud radio access network
(Cloud-RAN), to minimize the weighted sum of backhaul cost
and transmit power. In [21], the network successful content
delivery consisting of cached content delivery and backhauled
content delivery was studied. The optimization problem was
formulated to minimize the cache size under quality-of-service
constraint. The work of [22] analyzed the capacity scaling law
when there are limited number of wired backhaul in single-tier
networks, and showed that cache size needs to be large enough
to achieve linear capacity scaling. However, none of [20]–[22]
has studied the cache-enabled cellular networks with specified
wireless backhaul transmission, such as massive multiple-input
multiple-output (MIMO) aided self-backhaul.

B. Novelty and Contributions

In this paper, we focus on the edge caching in dense
HetNets with massive MIMO aided self-backhaul, which has
not been understood yet. Massive MIMO aided self-backhaul
is motivated by the facts that it may not be feasible to
have optical fiber for every backhaul channel and massive
MIMO can support high-speed transmissions thanks to large
array gains and multiplexing gains [4]. Our contributions are
summarized as follows:

• In contrast to the prior works such as [15]–[22], we con-
sider cache-enabled HetNets, in which randomly located
small BSs (SBSs) cache finite popular contents, and
macro BSs (MBSs) equipped with massive MIMO anten-
nas provide wireless backhaul to deliver the non-cached
requested contents to the SBSs. Moreover, we also con-
sider the resource allocation when multiple users request
the contents from the same SBS, which has not been
studied in a cache-enabled stochastic model.

• We first derive the successful content delivery probability
when the requested content is cached at the SBS. The
maximum small cell load is calculated, and the minimum
required density of SBSs for avoiding access overload
is obtained. We show that hit probability needs to be
lower than a critical value, to guarantee successful cached
content delivery.

• We derive the successful content delivery probability
when the requested content is not cached and has to be
obtained via massive MIMO backhaul. We analyze the

Fig. 1. An illustration of cache-enabled heterogeneous cellular network with
massive MIMO backhaul.

massive MIMO backhaul achievable rate when downlink
channel estimation is not necessary, to evaluate the back-
haul transmission delay. The minimum required density
of MBSs for avoiding backhaul overload is obtained.
We show that hit probability needs to be higher than
a critical value, to guarantee successful self-backhauled
content delivery.

• We analyze the effects of cache size on the successful
content delivery, and provide important insights on the
interplay between time-frequency resource allocation and
cache size from the perspective of successful content
delivery probability. We characterize the latency in terms
of average delay in such networks. We confirm that when
the requested contents are not cached, the average delay
of the non-cached content delivery could be comparable
to the cached content delivery with the assistance of mas-
sive MIMO backhaul, if the average access rate of cached
content delivery is lower than that of self-backhauled
content delivery.

II. NETWORK MODEL

As shown in Fig. 1, we consider a two-tier self-backhauled
HetNet, in which each single-antenna SBS with finite cache
size can store popular contents to serve user equipment (UEs).
Each massive MIMO aided MBS equipped with N antennas
has access to the core network via optical fiber and delivers
the non-cached contents to the SBSs via wireless backhaul.
UEs, SBSs, and MBSs are assumed to be distributed following
independent homogeneous Poisson point processes (HPPPs)
denoted by ΦU with the density λU, ΦS with the density
λS, and ΦM with the density λM, respectively. It is assumed
that UEs are associated with the SBSs that can provide the
maximum average received power, which is also utilized in 4G
networks [6]. In addition, each channel undergoes independent
and identically distributed (i.i.d.) quasi-static Rayleigh fading.
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A. Content Placement

Content placement mechanism is mainly designed based on
content popularity [4]. We assume that there is a finite content
library denoted as F := {f1, . . . , fj, . . . , fJ}, where fj is the
j-th most popular content and the number of contents is J .
The request probability for the j-th most popular content is
commonly-modeled by following the Zipf distribution [23]

aj = j−ς/
∑J

m=1
m−ς , (1)

where ς is the Zipf exponent to represent the popularity
skewness [23]. Each content is assumed to be unit size and
each SBS can only cache L (L � J) contents. We employ the
probabilistic caching strategy [7], i.e., the probability that the
content j is cached at an arbitrary SBS is qj(0 ≤ qj ≤ 1),
and the sum of probabilities for all the contents being cached
at an arbitrary SBS should be less than the SBS’s cache size

(namely
J∑

j=1

qj≤L) [7]. Note that based on the probabilistic

caching strategy, each SBS only stores L files from the content
library for each caching realization, which is also illustrated
in [7, Fig. 1].

B. Self-Backhaul Load

We assume that the access and backhaul links share the
same sub-6 GHz spectrum. The bandwidths allocated to the
access and backhaul links are ηW and (1 − η) W , respec-
tively, where η is the fraction factor and W is the system
bandwidth. The number of UEs that is associated with an
SBS is denoted by K . The UEs in the same small cell are
served in a time-division manner with equal-time sharing.
Thus, the fraction of time-frequency resources allocated to
each access link is ηW/K during the cached content delivery.
When an associated SBS does not cache the requested content,
it has to be connected to an MBS that provides the strongest
wireless backhaul link such that the requested content can
be obtained from core networks. Note that different SBSs
may be served by different MBSs. Let Sj (N � Sj) denote
the number of SBSs served by the j-th MBS (j ∈ ΦM) for
wireless backhaul.

Hit probability characterizes the probability that a requested
content file is stored at an arbitrary SBS [4], and is calculated

as qhit =
J∑

j=1

ajqj . The set of SBSs can be partitioned into

two independent HPPPs Φa
S and Φb

S based on the thinning
theorem [24], where Φa

S with the density λSqhit denotes the
point process of SBSs with access links, and Φb

S with the
density λS (1 − qhit) denotes the point process of SBSs with
backhaul links. Let ωb = λS (1 − qhit) /λM represent the
average number of SBSs served by an MBS for wireless
backhaul.

C. Resource Allocation Model

We consider the saturated traffic condition, i.e., all the SBSs
keep active to serve their associated UEs.

1) Access: When the requested content is stored at a typical
SBS, the rate for a typical access link is given by

Ra =
ηW

K
log2

(
1 +

PahoL (|Xo|)∑

i∈Φa
S\{o}

PahiL (|Xo,i|)
︸ ︷︷ ︸

Ia

+σ2
a

)
, (2)

where Ia denotes the total interference power from other SBSs;
Pa is the SBS’s transmit power; L (|X |) = β (|X |)−αa denotes
the path loss with frequency dependent constant value β,
distance |X | and path loss exponent αa; ho ∼ exp(1) and |Xo|
are the small-scale fading channel power gain and distance
between the typical UE and its associated SBS, respectively;
hi ∼ exp(1) and |Xo,i| are the small-scale fading interfering
channel power gain and distance between the typical UE and
the interfering SBS i ∈ Φa

S\ {o} (except the typical SBS o)
respectively, and σ2

a is the noise power at the typical UE.
2) Self-Backhaul: When the requested content is not stored

at SBSs, it is obtained through massive MIMO backhaul.
For massive MIMO backhaul link, we consider that mas-
sive MIMO enabled MBS adopts zero-forcing beamforming
with equal power allocation [25]. In such a time-division
duplex (TDD) massive MIMO self-backhauled network, SBSs
will not perform any channel estimation,1 and we will adopt
an achievable backhaul transmission rate as confirmed in [29]
and [30]. Based on the instantaneous received signal expres-
sion in [29, eq. 6], given a typical distance |Yo| between the
typical SBS and its associated MBS, the instantaneous rate for
a typical massive MIMO backhaul link is given by

Rb = (1 − η) W log2 (1 + SINRb) (3)

with SINRb, as shown at the bottom of the next page,
where E {·} is the expectation operator. Here, Ib denotes
the total interference power from other MBSs; Pb is the
MBS’s transmit power; L (|Y |) = β (|Y |)−αb denotes the path
loss with the distance |Y | and path loss exponent αb; go ∼
Γ (N − So + 1, 1) is the small-scale fading channel power
gain between the typical SBS and its associated MBS; gj ∼
Γ (Sj , 1),2 and |Yo,j | are the small-scale fading interfering
channel power gain and distance between the typical SBS and
interfering MBS j, respectively, and σ2

b is the noise power at
the typical SBS.

After obtaining the requested content via backhaul, the asso-
ciated SBS delivers it to the corresponding UE. In this case,

1In TDD massive MIMO systems, downlink precoder is designed based on
the uplink channel estimation, thanks to channel reciprocity [26]. Moreover,
when deploying massive number of antennas at MBS, wireless channel
behaves in a deterministic manner called “channel hardening,” and the effect
of small-scale fading could be negligible [27]. Thus, in the considered
massive MIMO backhaul scenario where MBSs and SBSs are usually still,
the coherence time of backhaul channel will be much longer than ever before,
and the time occupied by uplink channel estimation will be much lower.

It should be noted that when high-mobility UEs are served by TDD massive
MIMO BSs, downlink pilots may still be needed to estimate the fast-changing
channels [28].

2Γ (·, ·) is the upper incomplete gamma function [31, eq. (8.350)].
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the corresponding access-link rate is expressed as

Ra′ =
(1 − η)W

K

× log2

(
1 +

PahoL (|Xo|)∑

i′∈Φb
S\{o}

Pahi′L (|Xo,i′ |)
︸ ︷︷ ︸

Ia′

+σ2
a′

)
, (4)

where Ia′ is the total interference power, hi′ ∼ exp(1)
and L (|Xo,i′ |) = β (|Xo,i′ |)−αa are the small-scale fading
channel power gain and pathloss between the typical SBS and
interfering SBS i′ ∈ Φb

S\ {o}, respectively, and σ2
a′ is the noise

power at the typical UE.
From (3) and (4), we see that to reduce latency, massive

MIMO backhaul link needs to be of high-speed, which can
be achieved by using large antenna arrays at the MBS. In the
following section, we will further examine how much backhaul
time is needed at an achievable backhaul rate.

III. CONTENT DELIVERY EFFICIENCY

In this paper, there are two cases for successful content
delivery (SCD), i.e., 1) when the associated BS has cached
the requested content, SCD occurs if the time for successfully
delivering Q bits will not exceed the threshold Tth; and
2) when the requested content is not cached at the associated
BS and needs to be obtained via massive MIMO backhaul,
SCD occurs if the total time for successfully delivering Q bits
to the UE is less than Tth.

A. Cached Content Delivery

Different from [15], [16], and [18] where it is assumed that
each small cell has only one active UE, we evaluate SCD
probability by considering multiple UEs served by an SBS, and
analyze the effect of resource allocation on SCD probability.
We first have the following important theorem.

Theorem 1: When a requested content is stored at the
typical SBS, the SCD probability is derived as

Ψa
SCD (Q, Tth) =

Ka
max∑

k=1

PλU
λS

(k), (5)

where PλU
λS

(k) is the probability mass function (PMF)

that there are other k − 1 UEs (except typical UE)
served by the typical SBS, and is given by PλU

λS

(k) =

γγ

(k−1)!
Γ(k+γ)
Γ(γ)

�
λU
λS

�k−1

�
γ+

λU
λS

�k+γ with γ = 3.5 [32]. In (5), K =

Ka
max is the maximum load in a typical small cell, and can

be efficiently obtained by using Algorithm 1 to solve the

following equation

2
Ka

maxQ

ηWTth
+1 − 2

αa − 2
χa

k (Ka
max) =

1 − ε

qhitε
, (6)

where χa
k (Ka

max) = 2F1

[
1, 1 − 2

αa
; 2 − 2

αa
; 1 − 2

Ka
maxQ

ηWTth

]
,

2F1 [·, ·; ·; ·] is the Gauss hypergeometric function [31,
eq. (9.142)]3, and ε is the predefined threshold, i.e., SCD
occurs when the probability that Ra is larger than Q

Tth
is

above ε.

Algorithm 1 One-Dimension Search
1: if t = 0
2: Initialize ϕ = 1−ε

qhitε
, kl = 1, kh = 10 × λU

λS
, and calculate

F l = 2
klQ

ηW Tth
+1−2

αa−2 2F1

[
1, 1 − 2

αa
; 2 − 2

αa
; 1 − 2

klQ
ηW Tth

]

and

Fh = 2
khQ

ηW Tth
+1−2

αa−2 2F1

[
1, 1 − 2

αa
; 2 − 2

αa
; 1 − 2

khQ
ηWTth

]

3: else
4: While F l �= ϕ and Fh �= ϕ
5: Let k = kl+kh

2 , and compute Fk.
6: if Fk = ϕ
7: The optimal k∗ is obtained, i.e., Ka

max =
round (k∗).
8: break
9: elseif Fk < ϕ
10: kl = k.
11: else Fk > ϕ
12: kh = k.
13: end if
14: end while
15: end if

Proof: See Appendix A.
It is implied from Theorem 1 that in the dense small

cell networks (i.e., interference-limited),4 the SCD probability
depends on the ratio of UE density to SBS density and
hit probability given the time-frequency resource allocation.
Based on Theorem 1, we have

Corollary 1: From (6), we see that to achieve the load K =
Ka

max ≥ 1 in a small cell, the hit probability should satisfy

qhit ≤ min
{

Ξa
1 − ε

ε
, 1

}
, (7)

where Ξa =
(

2
Q

ηW Tth
+1−2

αa−2 χa
k (1)

)−1

.

3In MATLAB R2015b software, hypergeom([a,b],c,z) is the Gauss hyper-
geometric function 2F1 [a, b; c; z].

4The near-field pathloss exponent is assumed to be larger than 2 [4].

SINRb =
Pb
So

(
E
{√

go

})2
L (|Yo|)

Pb
So

(√
go − E

{√
go

})2
L (|Yo|) +

∑

j∈ΦM\{o}

Pb

Sj
gjL (|Yo,j |)

︸ ︷︷ ︸
Ib

+σ2
b

,
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It is indicated from (7) that there is an upper-bound on
the hit probability, which can be explained by the fact that
when more UEs can obtain their requested contents from
their associated SBSs in dense cellular networks with large hit
probability, there will also be more interference from nearby
SBSs that hinders the cached content delivery.

In realistic networks, there may be overload issues when the
scale of small cells is not adequate to support large level of
connectivity, which needs to be addressed. Therefore, given a
specified scale of UEs λU, we evaluate the minimum required
scale of small cells as follows.

Corollary 2: To mitigate the harm of overloading, the min-
imum required SBS density needs to satisfy

λS =

⎧
⎪⎨

⎪⎩

λU

Ka
max + 1

, if PλU
λS

=Ka
max+1

(Ka
max + 1) ≤ ρ,

λU

μa
, if PλU

λS
=Ka

max+1
(Ka

max + 1) > ρ,
(8)

where μa ∈
(
0,

Ka
maxγ
γ+1

]
is the solution of

PλU
λS

=μa
(k = Ka

max + 1) = ρ with arbitrary small ρ > 0,

and can be easily obtained via one-dimension search, similar
to Algorithm 1. Such network deployment given in (8) can
guarantee PλU

λS

(k) ≤ ρ, ∀k > Ka
max.

Proof: See Appendix B.
From (8), we see that the minimum required density of

SBSs only depends on the maximum load of a small cell and
the density of UEs in dense cache-enabled cellular networks.

B. Self-Backhauled Content Delivery

1) Massive MIMO Backhaul: When the required content is
not stored at the typical SBS, SBS has to obtain it from the
core network via massive MIMO backhaul. Therefore, we need
to evaluate the backhaul time for delivering the requested
content to the typical SBS. It should be noted that the load
in a macrocell will not change fast, in order to deliver the
requested contents to the associated SBSs. Hence, given the
load So in a typical macrocell, the achievable transmission rate
for a typical backhaul link is given by

Rb (So) = (1 − η) W

∫ ∞

rb

Cb (y)
2πλMye−πλMy2

e−πλMr2
b

dy, (9)

where Cb (y) = log2

(
1+

Pb
So

Ξ1(y)
Pb
So

Ξ2(y)+Ξ3(y)+σ2
b

)
with Ξ1 (y) =

L (y)
(

Γ(N−So+ 3
2 )

Γ(N−So+1)

)2

, Ξ2 (y) = (N −So +1)L (y)−Ξ1, and

Ξ3 (y) = Pb2πλMβ y2−αb

αb−2 , and rb is the minimum distance
between the typical MBS and its associated SBS. A detailed
derivation of (9) is provided in Appendix C. Therefore,
the time for delivering Q bits to the typical SBS via wireless
backhaul is T1 = Q

Rb
. When the number of antennas at the

MBS grows large, we have the following corollary.
Corollary 3: For large N , the achievable transmission rate

for a typical backhaul link is tightly lower-bounded as

R
Low

b (So) = (1−η)W log2

(
1+Pbβ

N − So + 1
2

So
eΔ1−Δ2

)
,

(10)

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δ1 = −αbe
πλMr2

b

(
− Ei

(− r2
bπλM

)

2
+ e−r2

bπλM ln rb

)
,

Δ2 =
∫ ∞

rb

ln
(

Pbβ

2So
y−rb + Pb2πλMβ

y2−αb

αb − 2
+ σ2

b

)

× 2πλMy

e−πλMr2
b
e−πλMy2

dy,

in which Ei (z) is the exponential integral given by Ei (z) =
− ∫∞

−z
e−t

t dt [31]. Based on (10), the typical MBS’s required
time for delivering Q bits to its associated SBS satisfies

T1 ≤ Q(1 − η)−1
W−1

log2

(
1 + Pbβ

(N−So+ 1
2 )

So
eΔ1−Δ2

) . (11)

Proof: See Appendix D.
It is explicitly shown from Corollary 3 that large number

of antennas and bandwidths are required, in order to signifi-
cantly reduce the wireless backhaul delivery time. From (11),
we see that the backhaul delivery time can at least be cut
proportionally to 1/ log2 N .

In the self-backhauled networks, the number of SBSs being
simultaneously served by an MBS for wireless backhaul
should not exceed the maximum value denoted by Smax,
i.e., So ≤ Smax; otherwise high-speed massive MIMO aided
backhaul transmission cannot be guaranteed. Hence, given the
minimum required backhaul transmission rate Rmin

b , the max-
imum backhaul load of a typical massive MIMO MBS is
the solution of Rb (Smax) = Rmin

b , which can be efficiently
obtained by using one-dimension search since Rb (So) is a
decreasing function of So for large N , as suggested in Appen-
dix D. After obtaining Smax, we can obtain the minimum
number of massive MIMO aided MBSs that needs to be
deployed, in order to mitigate the backhaul overload.

Corollary 4: Similar to Corollary 2, the minimum required
density of MBSs is given by

λM =

⎧
⎪⎨

⎪⎩

λS (1 − qhit)
Smax + 1

, if Pωb=Smax+1 (Smax + 1) ≤ ρ,

λS (1 − qhit)
μb

, if Pωb=Smax+1 (Smax + 1) > ρ,

(12)

where Pωb (�) = γγ

(
−1)!
Γ(
+γ)
Γ(γ)

(ωb)�−1

(γ+ωb)�+γ , μb ∈
(
0, Smaxγ

γ+1

]
is

the solution of Pωb=μb (Smax + 1) = ρ with arbitrary small
ρ > 0, and can be easily obtained via one-dimension search.

It is explicitly shown in (12) that higher hit probability
can significantly reduce the scale of MBSs because of less
backhaul.

2) Access: After obtaining the required content via back-
haul, the typical SBS transmits it to the associated UE. Thus,
we have the following important theorem.

Theorem 2: When the required content is not stored at the
typical SBS and has to be obtained via massive MIMO self-
backhaul, the SCD probability is derived as

Ψb
SCD (Q, Tth) =

Kb
max∑

k=1

PλU
λS

(k), (13)
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where Kb
max is the maximum number of UEs that a typical

small cell can serve when the typical UE’s content needs to be
attained via backhaul, and Kb

max can be obtained by solving
the following equation5

2
Kb

maxQ

(1−η)W(Tth−T1)
+1 − 2

αa − 2
χb

k

(
Kb

max

)
=

1 − ε

(1 − qhit) ε
(14)

with χb
k

(
Kb

max

)
= 2F1

[
1, αa−2

αa
; 2αa−2

αa
; 1 − 2

Kb
maxQ

(1−η)W(Tth−T1)

]
,

and the minimum required SBS density for mitigating overload
is given from (8) by interchanging Ka

max → Kb
max.

Proof: See Appendix E.
It is indicated from (14) that when a typical UE’s requested

content is not stored at the typical SBS, the number of UEs
that can be served by the typical SBS decreases with increasing
backhaul time. Based on Theorem 2, we have the following
corollary

Corollary 5: From (14), we see that to achieve the load
K = Kb

max ≥ 1 in a small cell, the hit probability should
satisfy

qhit ≥
[
1 − Ξb

1 − ε

ε

]+

, (15)

where Ξb =

(
2

Q

(1−η)W(Tth−T1)
+1

−2
αa−2 χb

k (1)

)−1

, and [x]+ =

max {x, 0}.
From (15), we see that there is a lower-bound on the hit

probability, i.e., minimum cache capacity is demanded at the
SBS, since more backhaul results in more interference, which
will degrade the self-backhauled content delivery.

Corollary 6: After obtaining the maximum load Kb
max,

we can calculate the minimum required SBS density given
from (8) by interchanging Ka

max → Kb
max, to overcome

overload.
Based on Theorem 1 and Theorem 2, the SCD probability

in dense cellular networks with massive MIMO self-backhaul
for a typical UE is calculated as

ΨSCD (Q, Tth)
= qhitΨa

SCD (Q, Tth) + (1 − qhit)Ψb
SCD (Q, Tth)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kb
max∑

k=1

PλU
λS

(k) + qhit

Ka
max∑

k=Kb
max+1

PλU
λS

(k),

Ka
max ≥ Kb

max,
Ka

max∑

k=1

PλU
λS

(k) + (1 − qhit) ×
Kb

max∑

k=Ka
max+1

PλU
λS

(k),

Ka
max < Kb

max,

(16)

where Ka
max and Kb

max are given by (6) and (14), respectively.
The SCD probability given in (16) can be intuitively under-

stood based on the fact that when the small cell load is light,
UEs’ requested contents can be successfully delivered whether
they are cached or obtained from the core networks via

5It can be solved by following Algorithm 1.

massive MIMO backhaul. However, after a critical value of
cell load, UEs can only obtain their requested contents that
are cached by the SBSs or via backhaul, which depends
on the maximum cell load in cached content delivery and
self-backhauled content delivery cases.

IV. CONTENT PLACEMENT, CACHE SIZE AND LATENCY

In this section, we study the effects of content placement
and cache size on the content delivery performance. Then,
we evaluate the latency in such networks.

A. Content Placement and Cache Size

As shown in (16), hit probability plays an important role in
content delivery. Since hit probability depends on the cache
size and content placement, SBSs with large storage capacity
can cache more popular contents, to avoid frequent backhaul
and reduce backhaul cost and latency. Therefore, higher hit
probability is meaningful to reduce the network’s operational
and capital expenditures (OPEX, CAPEX). Given the SBS’s
cache size, different content placement strategies may result
in various hit probability, and caching the most popular con-
tents (MPC) can achieve the highest hit probability, which is
commonly-considered in the literature involving edge caching
such as [13] and [33]. Therefore, we consider MPC caching
and analyze the appropriate cache size in such networks.
Considering the fact that for large J with MPC caching,
qhit =

∑L
j=1 aj ≈ (

L
J

)1−ς
, we have

Corollary 7: Given Tth−T1
Tth

≤ η
1−η (i.e., more time-

frequency resources are allocated to the cached content
delivery), the SCD probability is

ΨSCD (Q, Tth) ≈
Kb

max∑

k=1

PλU
λS

(k), (17)

and it is an increasing function of the cache size, if the cache

size L ∈
[
J
([

1 − Ξb
1−ε

ε

]+) 1
1−ς

, J
(

1
2

) 1
1−ς

]
and the mini-

mum SBS density satisfies the condition given in Corollary 6;
Given Tth−T1

Tth
> η

1−η , the SCD probability is

ΨSCD (Q, Tth) ≈
Ka

max∑

k=1

PλU
λS

(k), (18)

if L ∈
[
J
(

1
2

) 1
1−ς ,

(
min

{
Ξa

1−ε
ε , 1

}) 1
1−ς

]
, and the minimum

SBS density satisfies the condition given in Corollary 4.
Proof: See Appendix F.

The above corollary provides some important insights into
the interplay between time-frequency resource allocation and
cache size in cache-enabled dense cellular networks with
massive MIMO backhaul, which plays a key role in the content
delivery performance.

B. Latency

To evaluate the latency in such networks, we consider the
average delay for successfully obtaining the requested content
in such networks. It should be noted that when the small
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TABLE I

SIMULATION PARAMETERS

cells are overloaded, UEs may suffer longer delay. There are
many approaches to solve the overload issue such as deploying
enough small cells following the rule of Corollary 2 and
Corollary 6 or advanced multi-antenna techniques. Moreover,
it may be more lightly loaded in realistic small cell net-
works [34]. For tractability, we assume that the load of a small
cell will not exceed its maximum load Kmax. As suggested
in [35], the average delay for requesting a content from a
typical small cell can be expressed as

D =
Kmax∑

k=1

PλU
λS

(k)
(

qhit
Q

E {Ra}

+ (1 − qhit)
(
T1 +

Q

E {Ra′}
))

, (19)

where T1 is the massive MIMO backhaul time detailed in
Section III-B, and E {Ra} and E {Ra′} are the average access
rate of the cached and self-backhauled content delivery, respec-
tively, which are given by

⎧
⎪⎨

⎪⎩

E {Ra} =
∫ ∞

0

ϕ (x, qhit, η)dx,

E {Ra′} =
∫ ∞

0

ϕ (x, 1 − qhit, 1 − η)dx,
(20)

where ϕ (x, θ1, θ2) =
(

1 + θ1
2

kx
θ2 W

+1−2
αa−2 χ (k)

)−1

with

χ (k) = 2F1

[
1, 1 − 2

αa
; 2 − 2

αa
; 1 − 2

kx
θ2 W

]
is the comple-

mentary cumulative distribution function of the Ra or Ra′ ,
respectively, which is obtained by using the approach
in Appendix A.

Given the hit probability, i.e., the cache size is fixed,
the spectrum fraction η = ηo for meeting E {Ra} = E {Ra′}
can be easily obtained by using one-dimension search, consid-
ering the fact that E {Ra}−E {Ra′} is an increasing function
of η.

Corollary 8: When η < ηo, the average delay of
self-backhauled content delivery could be lower than cached
content delivery if massive MIMO antennas meet

N ≥
(

2Θ(ηo) − 1
PbβeΔ1−Δ2

+ 1
)

So − 1
2

(21)

with Θ (ηo) = (1−ηo)−1W−1
E{Ra}E{Ra′}

E{Ra′}−E{Ra} , for a specified typi-
cal backhaul load So.

Fig. 2. The complementary cumulative distribution function (CCDF) of the
Ra: Q

Tth
= 1 Mbps, λU = 3 × 10−4 m−2, λS = 10−4 m−2, η = 0.5, and

Cache Size = 3 × 103.

The proof of Corollary 8 can be easily obtained by
considering T1 ≤ Q

E{Ra}−
Q

E{Ra′} for η < ηo and Corollary 3.

It is implied from Corollary 8 that for the case of requesting
non-cached contents, the average delay of the non-cached
content delivery via massive MIMO backhaul could be com-
parable to that of the cached content delivery, if the average
access rate of cached content delivery is lower than that of
self-backhauled content delivery.

V. SIMULATION RESULTS

In this section, simulation results are presented to validate
the prior analysis and further shed light on the effects of key
system parameters including cell load, cache size, BS density,
and massive MIMO antennas on the performance. The basic
simulation parameters are shown in Table I.

A. Cached Content Delivery

In this subsection, we illustrate the cell load, SCD proba-
bility, and minimum required SBS density when the requested
content is cached at the associated SBS.

Fig. 2 shows the complementary cumulative distribution
function (CCDF) of the rate Ra for different number of UEs
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Fig. 3. The SCD probability: Q
Tth

= 1 Mbps, λU = 3 × 10−4 m−2,

λS = 10−4 m−2, and η = 0.5.

served in a small cell. The analytical maximum cell load Ka
max

for different CCDF thresholds are obtained from (6), which
has a precise match with the Monte Carlo simulations. The
CCDF is a decreasing function of number of UEs served in a
small cell, since resources allocated to each UE become less
when serving more UEs.

Fig. 3 shows the SCD probability when the requested
content is cached at the associated SBS, based on Theorem 1
and Fig. 2. The stair-like curves are induced by the fact that
the SCD probability given by (5) is a discrete function of
maximum cell load. We see that for fixed cache size, the SCD
probability decreases when the system requires higher SCD
threshold ε, since higher ε reduces the level of maximum
allowable cell load, as suggested in Fig. 2. Moreover, for a
given ε, the SCD probability decreases with increasing the
cache size. The reason is that hit probability increases with
increasing the cache size, i.e., UEs are more likely to obtain
the requested contents cached by their associated SBSs, which
results in more interference at the same frequency band and
reduces the maximum allowable cell load.

Fig. 4 shows the minimum required SBS density to avoid
the overload issue given the UE density λU. Without loss of
generality, we assume that the maximum allowable load of a
small cell is Ka

max = 5 in this figure (note that for specified
system performance requirement, the maximum small cell
load is obtained from (6), as illustrated in Fig. 2.). The
numerical result precisely matches with the analysis shown
in Corollary 2. We see that when the probability that more
than Ka

max UEs need to be served in a small cell is not larger
than ρ = 0.1, the minimum required SBS density satisfies
λU
λS

= Ka
max + 1 = 6, as confirmed in (8). When the system

requires lower ρ = 0.1 (i.e., lower overload probability.),
the density ratio λU

λS
in such networks decreases, which means

that more SBSs need to be deployed.

B. Massive MIMO Backhaul Transmission

In this subsection, we focus on the massive MIMO backhaul
achievable rate, which determines the amount of backhaul time

Fig. 4. The minimum required SBS density for avoiding overloading.

Fig. 5. Backhaul achievable rate: λM = 10−5 m−2, η = 0.5 and
rb = 5 m.

when an SBS obtains the requested content from its associ-
ated MBS. Note that the macrocell load and minimum required
MBS density have been studied in Section III-B, which are
similar to Theorem 1 and Corollary 2, and numerical results
can be easily obtained by following Figs. 2 and 4.

Fig. 5 shows the backhaul achievable rate for different
macrocell load and massive MIMO antennas. The analytical
exact and lower-bound curves are obtained from (9) and (10),
respectively, which tightly matches with the simulated exact
curves. We see that the backhaul achievable rate decreases
when macrocell load increases, since each SBS will obtain less
transmit power and array gains. Adding more massive MIMO
antennas improves the achievable rate because of larger array
gains.

C. Latency

In this subsection, we evaluate the average delay in
two scenarios: 1) The requested content is cached at the
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Fig. 6. Average delay: Q = 1 Gbit, λU = 3 × 10−4 m−2, λS = 10−4

m−2, λM = 10−5 m−2, N = 128, So = 10, K = 5, η = 0.45, and
rb = 5 m.

associated SBS; and 2) the requested content is not cached
and needs to be obtained via massive MIMO backhaul.

Fig. 6 shows the average delay for different cache size. The
analytical curves are obtained based on the average rate given
by (20). We see that the average delay for cached content deliv-
ery is lower than that of the self-backhauled content delivery.
The average delay for cached content delivery increases with
increasing the cache size. In contrast, the average delay for
self-backhauled content delivery decreases with increasing the
cache size. The reason is that larger cache size results in higher
hit probability, and more SBSs can provide cached content
delivery. This results in more inter-SBS interference over the
frequency band allocated to the cached content delivery, and
less inter-SBS interference over the frequency band allocated
to the self-backhauled content delivery. In addition, the content
delivery time of massive MIMO backhaul T1 is much lower
than that of the access.

VI. CONCLUSION

We have studied content delivery in cache-enabled HetNets
with massive MIMO backhaul. In such networks, the suc-
cessful content delivery probability involving cached content
delivery and non-cached content delivery via massive MIMO
backhaul was analyzed. The effects of hit probability, UE and
SBS densities on the performance were addressed. Partic-
ularly, we provided the minimum required SBS and MBS
densities for avoiding overloading. The derived results demon-
strated that hit probability needs to be properly determined,
in order to achieve successful content delivery. The interplay
between cache size and time-frequency resource allocations
was quantified from the perspective of successful content
delivery probability. The latency was characterized in terms
of average delay in this networks. It was proved that when
UEs request non-cached contents, the average delay of the
non-cached content delivery could be comparable to that of
the cached content delivery with the help of massive MIMO
aided self-backhaul in some cases.

APPENDIX A
PROOF OF THEOREM 1

Based on (2), SCD probability is calculated as

Ψa
SCD (Q, Tth) = Pr

(
Ra ≥ Q

Tth

)

= EK

{
Pr

(
Ra ≥ Q

Tth
|K = k

)

︸ ︷︷ ︸
Λ(k)

}

=
∑

k=1

PλU
λS

(k) Λ (k), (A.1)

where PλU
λS

(k) is the probability mass function (PMF) of the

number of other k − 1 UEs (except typical UE) served by
the typical SBS, and Λ (k) is the conditional SCD probability
given K = k. According to [36], PλU

λS

(k) can be calculated as

PλU
λS

(k) =
γγ

(k − 1)!
Γ (k + γ)

Γ (γ)

(
λU
λS

)k−1

(
γ + λU

λS

)k+γ
, (A.2)

where γ = 3.5 [32]. Given K = k, Λ (k) is calculated as

Λ (k) = Pr
(

Ra ≥ Q

Tth

)

= E|Xo|

{
Pr

(
PahoL (|Xo|)

Ia + σ2
a

≥2
kQ

ηW Tth − 1
)}

=
∫ ∞

0

Pr
(

PahoL (x)
Ia + σ2

a

≥2
kQ

ηW Tth − 1
)

︸ ︷︷ ︸
Υ1(x)

f|Xo| (x) dx,

(A.3)

where f|Xo| (x) = 2πλSx exp
(−πλSx2

)
is the probability

density function (PDF) of the distance between the typical
UE and its associated SBS, and Υ1 (x) is the conditional SCD
probability given K = k and |Xo| = x. Considering the fact
that dense cellular network is interference-limited in practice,
the effect of noise power on the performance is negligible.
As such, we can evaluate Υ1 (x) as

Υ1 (x)

= EΦa
S

{
exp

(
−2

kQ
ηW Tth − 1
PaL (x)

Ia

)}

(a)
= exp

⎛

⎝−2πλSqhit

∫ ∞

x

(
2

kQ
ηWTth − 1

)
xαar1−αa

1 +
(
2

kQ
ηWTth − 1

)
xαar−αa

dr

⎞

⎠

= exp
(
− 2πλSqhit

x2

αa − 2

(
2

kQ
ηW Tth − 1

)

× 2F1

[
1, 1 − 2

αa
; 2 − 2

αa
; 1 − 2

kQ
ηW Tth

])
, (A.4)

where step (a) is obtained by using the generating functional
of the PPP [37]. By substituting (A.4) into (A.3), Λ (k) can
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be derived in closed-form as

Λ (k) =
1

1 + qhit
2

kQ
ηWTth

+1−2
αa−2 χa

k (k)
, (A.5)

where χa
k (k) = 2F1

[
1, 1 − 2

αa
; 2 − 2

αa
; 1 − 2

kQ
ηWTth

]
. Based

on (A.5), the maximum load Ka
max of a typical small cell is

given by

Λ (k)|k=Ka
max

= ε, (A.6)

where ε is the threshold that SCD occurs when Λ (k) ≥ ε.
Although the closed-form solution with respect to (w.r.t.) k =
Ka

max of (A.6) is unfeasible, it can be efficiently obtained by
using one-dimension search as detailed in Algorithm 1 due
to the fact that Λ (k) is a decreasing function of k. The SCD
probability in (A.1) is rewritten as

Ψa
SCD (Q, Tth) =

Ka
max∑

k=1

PλU
λS

(k), (A.7)

where PλU
λS

(k) and Ka
max are defined by (A.2) and (A.6),

respectively, and the proof of Theorem 1 is completed.

APPENDIX B
PROOF OF COROLLARY 2

After obtaining Ka
max, we can find out how many small

cells are sufficient to serve a specified scale of UEs λU,
since serving larger than Ka

max UEs in a small cell cannot
achieve SCD. Assuming that PλU

λS

(Ka
max + 1) = ρ with

arbitrary small ρ > 0, we need to guarantee PλU
λS

(k) ≤ ρ,

∀k > Ka
max, in order to avoid content delivery failure resulting

from overloading. Let

PλU
λS

(k + 1)

PλU
λS

(k)
=

(
1 +

γ

k

) λU
λS

γ + λU
λS

≤ 1, k ≥ Ka
max + 1.

(B.1)

We can intuitively interpret (B.1) based on the fact that given
the maximum load Ka

max, the probability that serving more
than Ka

max UEs should be lower when adding more UEs.
From (B.1), we get λU

λS
≤ Ka

max + 1 such that PλU
λS

(k) ≤ ρ,

∀k > Ka
max. Then, we need to solve PλU

λS

(Ka
max + 1) = ρ

w.r.t. λU
λS

under the constraint λU
λS

≤ Ka
max +1. The first-order

partial derivative of PλU
λS

(k) w.r.t. λU
λS

is

∂PλU
λS

(k)

∂ λU
λS

=
γγΓ (k + γ)
(k − 1)!Γ (γ)

(
λU

λS

)k−2 (
γ +

λU

λS

)−(k+γ+1)

×
(

(k − 1) γ − (γ + 1)
λU

λS

)
. (B.2)

From (B.2), we see that for k = Ka
max+1,

∂PλU
λS

∂
λU
λS

≥ 0 as λU
λS

∈
(
0,

Ka
maxγ
γ+1

]
, and

∂PλU
λS

∂
λU
λS

< 0 as λU
λS

∈
(

Ka
maxγ
γ+1 , Ka

max + 1
]
.

Therefore, the minimum required density of SBSs satisfies

λU

λS
=

⎧
⎨

⎩
(Ka

max + 1) , if PλU
λS

=Ka
max+1

(Ka
max + 1) ≤ ρ,

μa, if PλU
λS

=Ka
max+1

(Ka
max + 1) > ρ,

(B.3)

where μa ∈
(
0,

Ka
maxγ
γ+1

]
is the solution of

PλU
λS

=μa
(Ka

max + 1) = ρ, and can be easily obtained by using

one-dimension search approach, since PλU
λS

=μa
(Ka

max + 1)

is an increasing function of μa as μa ∈
(
0,

Ka
maxγ
γ+1

]
. Thus,

we obtain the minimum required SBS density, in order to
avoid overloading.

APPENDIX C
DETAILED DERIVATION OF (9)

Since the typical SBS is associated with the nearest MBS,
the PDF of the typical communication distance is

f|Yo| (y) =
2πλMy

e−πλMr2
b
e−πλMy2

, y ≥ rb, (C.1)

where rb is the minimum distance between the typical MBS
and its associated SBS. According to (3) and [29] and [30],
the achievable transmission rate can be written as

Rb = (1 − η)WE|Yo|

{
log2

(
1 +

Pb
So

Ξ1

Pb
So

Ξ2 + Ξ3 + σ2
b

)}

= (1 − η)W

∫ ∞

rb

Cb (y) f|Yo| (y) dy, (C.2)

where Cb (y) = log2

(
1 +

Pb
So

Ξ1(y)
Pb
So

Ξ2(y)+Ξ3(y)+σ2
b

)
with Ξ1(y) =

L (y)
(
E
{√

go

})2
, Ξ2 (y) = L (y) var

{√
go

}
,6 and Ξ3 (y) =

E|Yo|=y {Ib}.
We first calculate Ξ1 as

Ξ1 (y) = L (y)
(∫ ∞

0

√
x

xN−Soe−x

Γ (N − So + 1)
dx

)2

= L (y)

(
Γ
(
N − So + 3

2

)

Γ (N − So + 1)

)2

. (C.3)

Then, Ξ2 is given by

Ξ2 (y) = L (y) E {go} − Ξ1 = (N − S + 1)L (y) − Ξ1.

(C.4)

By using the Campbell’s theorem [24], Ξ3 is obtained as

Ξ3 (y) =
Pb

Sj
E {gj} 2πλMβ

∫ ∞

y

t1−αbdt

= Pb2πλMβ
y2−αb

αb − 2
. (C.5)

By substituting (C.3), (C.4) and (C.5) into (C.2), we obtain (9).

6var {·} is the variance operator.
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APPENDIX D
PROOF OF COROLLARY 3

According to the Stirling’s formula, i.e., Γ (x + 1) ≈(
x
e

)x √2πx as x → ∞, we have

Ξ1(y) ≈ L(y)

⎛

⎜⎝

(
N−So+

1
2

e

)N−So+ 1
2
√

2π
(
N − So + 1

2

)

(
N−S

e

)N−So
√

2π (N − So)

⎞

⎟⎠

2

≈ L (y)
N − So + 1

2

e

(
1 +

1
2 (N − So)

)2(N−So)

(a)≈
(

N − So +
1
2

)
L (y), (D.1)

when the number of antennas at the MBS grows large. Note
that step (a) is obtained by the fact that

(
1 + 1

x

)x ≈ e as
x → ∞. Thus, Ξ2 (y) = L(y)

2 . By using Jensen’s inequal-
ity [38], we derive a tight lower-bound on the achievable
transmission rate (C.2) as

R
Low

b = (1 − η) W log2

(
1 +

Pb

So
eΔ1−Δ2

)
, (D.2)

where
⎧
⎨

⎩

Δ1 = E|Yo| {ln Ξ1},
Δ2 = E|Yo|

{
ln

(
Pb

So
Ξ2 + Ξ3 + σ2

b

)}
.

(D.3)

For large N , based on (D.1), Δ1 can be asymptotically derived
as

Δ1 ≈ ln
(

N − So +
1
2

)
+ E {ln L (y)}

= ln
(

N − So +
1
2

)
+ ln (β)

− αb

e−πλMr2
b

(
− Ei

(− r2
bπλM

)

2
+ e−r2

bπλM ln rb

)

︸ ︷︷ ︸
Δ1

,

(D.4)

where Ei (z) is the exponential integral given by Ei (z) =
− ∫∞

−z
e−t

t dt. Then, Δ2 can be asymptotically calculated as

Δ2 =
∫ ∞

rb

ln
(

Pb

So
Ξ2 (y) + Ξ3 (y) + σ2

b

)
f|Yo| (y) dy

≈
∫ ∞

rb

ln
(

Pbβ

2So
y−rb + Pb2πλMβ

y2−αb

αb − 2
+ σ2

b

)

× 2πλMy

e−πλMr2
b
e−πλMy2

dy
︸ ︷︷ ︸

Δ2

. (D.5)

Substituting (D.4) and (D.5) into (D.2), we obtain (10).
Considering the fact that T1 = Q

Rb
≤ Q

R
Low
b

, we obtain T1 ≤
Q

(1−η)W

(
log2

(
1 +

Pbβ(N−So+ 1
2 )

So
eΔ1−Δ2

))−1

, which con-

firms the Corollary 3.

APPENDIX E
PROOF OF THEOREM 2

Based on (4), SCD probability is given by

Ψb
SCD (Q, Tth) = Pr

(
Ra′ >

Q

Tth − T1

)

=
∑

k≥1

PλU
λS

(k) Λb
k, (E.1)

where PλU
λS

(k) is given by (A.2), and Λb
k is the conditional

SCD probability given K = k. Similar to (A.3), Λb
k is

calculated as

Λb
k = Pr

(
Pa′hoL (|Xo|)

Ia′ + σ2
a′

>2
kQ

(1−η)W(Tth−T1) − 1
)

=
1

1 + (1 − qhit) 2

kQ

(1−η)W(Tth−T1)
+1

−2
αa−2 χb

k

, (E.2)

where χb
k = 2F1

[
1, 1 − 2

αa
; 2 − 2

αa
; 1 − 2

kQ

(1−η)W(Tth−T1)

]
.

Like (A.6), the maximum load Kb
max of a typical small cell is

the solution of Λ (k)|k=Kb
max

= ε. Then, the SCD probability
is obtained as (13).

APPENDIX F
PROOF OF COROLLARY 7

Based on (6) and (14), we see that Ka
max ≥ Kb

max

if Tth−T1
Tth

≤ η
1−η and qhit ≤ 1

2 . In this case, UE’s
requested contents are more likely to be delivered via mas-
sive MIMO self-backhaul. As such, based on (16), the
SCD probability can be approximated as ΨSCD (Q, Tth) ≈
Kb

max∑
k=1

PλU
λS

(k) given in (17). Considering the fact that qhit =
(

L
J

)1−ς ≥ [
1 − Ξb

1−ε
ε

]+
in Corollary 5 and qhit =(

L
J

)1−ς ≤ 1
2 , the corresponding cache size is obtained as

L ∈
[
J
([

1 − Ξb
1−ε

ε

]+) 1
1−ς

, J
(

1
2

) 1
1−ς

]
. Moreover, increas-

ing the cache size boosts the hit probability, and thus
enhances the maximum cell load Kb

max for self-backhauled
content delivery. The reason is that more SBSs can deliver
the cached contents, which reduces inter-cell interference in
self-backhauled content delivery.

Likewise, Ka
max < Kb

max if Tth−T1
Tth

> η
1−η and

qhit > 1
2 , and we can obtain (18) and the corresponding cache

size L ∈
[
J
(

1
2

) 1
1−ς ,

(
min

{
Ξa

1−ε
ε , 1

}) 1
1−ς

]
.
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