8,481 research outputs found

    Scalable and Secure Big Data IoT System Based on Multifactor Authentication and Lightweight Cryptography

    Get PDF
    © 2013 IEEE. Organizations share an evolving interest in adopting a cloud computing approach for Internet of Things (IoT) applications. Integrating IoT devices and cloud computing technology is considered as an effective approach to storing and managing the enormous amount of data generated by various devices. However, big data security of these organizations presents a challenge in the IoT-cloud architecture. To overcome security issues, we propose a cloud-enabled IoT environment supported by multifactor authentication and lightweight cryptography encryption schemes to protect big data system. The proposed hybrid cloud environment is aimed at protecting organizations\u27 data in a highly secure manner. The hybrid cloud environment is a combination of private and public cloud. Our IoT devices are divided into sensitive and nonsensitive devices. Sensitive devices generate sensitive data, such as healthcare data; whereas nonsensitive devices generate nonsensitive data, such as home appliance data. IoT devices send their data to the cloud via a gateway device. Herein, sensitive data are split into two parts: one part of the data is encrypted using RC6, and the other part is encrypted using the Fiestel encryption scheme. Nonsensitive data are encrypted using the Advanced Encryption Standard (AES) encryption scheme. Sensitive and nonsensitive data are respectively stored in private and public cloud to ensure high security. The use of multifactor authentication to access the data stored in the cloud is also proposed. During login, data users send their registered credentials to the Trusted Authority (TA). The TA provides three levels of authentication to access the stored data: first-level authentication - read file, second-level authentication - download file, and third-level authentication - download file from the hybrid cloud. We implement the proposed cloud-IoT architecture in the NS3 network simulator. We evaluated the performance of the proposed architecture using metrics such as computational time, security strength, encryption time, and decryption time

    A Comprehensive Survey on the Cooperation of Fog Computing Paradigm-Based IoT Applications: Layered Architecture, Real-Time Security Issues, and Solutions

    Get PDF
    The Internet of Things (IoT) can enable seamless communication between millions of billions of objects. As IoT applications continue to grow, they face several challenges, including high latency, limited processing and storage capacity, and network failures. To address these stated challenges, the fog computing paradigm has been introduced, purpose is to integrate the cloud computing paradigm with IoT to bring the cloud resources closer to the IoT devices. Thus, it extends the computing, storage, and networking facilities toward the edge of the network. However, data processing and storage occur at the IoT devices themselves in the fog-based IoT network, eliminating the need to transmit the data to the cloud. Further, it also provides a faster response as compared to the cloud. Unfortunately, the characteristics of fog-based IoT networks arise traditional real-time security challenges, which may increase severe concern to the end-users. However, this paper aims to focus on fog-based IoT communication, targeting real-time security challenges. In this paper, we examine the layered architecture of fog-based IoT networks along working of IoT applications operating within the context of the fog computing paradigm. Moreover, we highlight real-time security challenges and explore several existing solutions proposed to tackle these challenges. In the end, we investigate the research challenges that need to be addressed and explore potential future research directions that should be followed by the research community.©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Enhancing healthcare services through cloud service: a systematic review

    Get PDF
    Although cloud-based healthcare services are booming, in-depth research has not yet been conducted in this field. This study aims to address the shortcomings of previous research by analyzing all journal articles from the last five years using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) systematic literature review methodology. The findings of this study highlight the benefits of cloud-based healthcare services for healthcare providers and patients, including enhanced healthcare services, data security, privacy issues, and innovative information technology (IT) service delivery models. However, this study also identifies challenges associated with using cloud services in healthcare, such as security and privacy concerns, and proposes solutions to address these issues. This study concludes by discussing future research directions and the need for a complete solution that addresses the conflicting requirements of the security, privacy, efficiency, and scalability of cloud technologies in healthcare

    SSO Based Fingerprint Authentication of Cloud Services for Organizations

    Get PDF
    Access to a pool of programmable resources, such as storage space, applications, services, and on-demand networks, is made possible by cloud computing technology. Involving the cloud with the organization reduces its efforts to meet the needs of its customers. The Single Sign-On (SSO) method, which enables users to access various application services using a single user credential, is one of the key benefits of cloud computing. There are numerous problems and difficulties with cloud computing that need to be highlighted. However, protecting user agent privacy against security assaults is far more challenging. To combat security and privacy assaults, this study suggests SSO-based biometric authentication architecture for cloud computing services. Since end devices are computationally inefficient for processing user information during authentication, biometric authentication is effective for resources controlled by end devices at the time of accessing cloud services. As a result, the proposed design minimizes security attacks in cloud computing. An innovative strategy that establishes a one-to-one interaction between the user agent and the service provider is also included in the suggested design. In this case, user agents can use their fingerprint to access various cloud application services and seek registration. The highlights of the suggested architecture have been offered based on comparison analysis with a number of existing architectures

    DPRL: Task offloading strategy based on differential privacy and reinforcement learning in edge computing

    Get PDF
    Mobile edge computing has been widely used in various IoT devices due to its excellent computing power and good interaction speed. Task offloading is the core of mobile edge computing. However, most of the existing task offloading strategies only focus on improving the unilateral performance of MEC, such as security, delay, and overhead. Therefore, focus on the security, delay and overhead of MEC, we propose a task offloading strategy based on differential privacy and reinforcement learning. This strategy optimizes the overhead required for the task offloading process while protecting user privacy. Specifically, before task offloading, differential privacy is used to interfere with the user’s location information to avoid malicious edge servers from stealing user privacy. Then, on the basis of ensuring user privacy and security, combined with the resource environment of the MEC network, reinforcement learning is used to select appropriate edge servers for task offloading. Simulation results show that our scheme improves the performance of MEC in many aspects, especially in security and resource consumption. Compared with the typical privacy protection scheme, the security is improved by 7%, and the resource consumption is reduced by 9% compared with the typical task offloading strategy.This work was supported in part by the Shandong Provincial Natural Science Foundation, China, under Grant ZR2020MF006; in part by the Industry-University Research Innovation Foundation of Ministry of Education of China under Grant 2021FNA01001 and Grant 2021FNA01005; in part by the Major Scientific and Technological Projects of the China National Petroleum Corp. (CNPC) under Grant ZD2019-183-006; and in part by the Open Foundation of State Key Laboratory of Integrated Services Networks, Xidian University, under Grant ISN23-09.Postprint (published version

    Security and the smart city: A systematic review

    Get PDF
    The implementation of smart technology in cities is often hailed as the solution to many urban challenges such as transportation, waste management, and environmental protection. Issues of security and crime prevention, however, are in many cases neglected. Moreover, when researchers do introduce new smart security technologies, they rarely discuss their implementation or question how new smart city security might affect traditional policing and urban planning processes. This systematic review explores the recent literature concerned with new ‘smart city’ security technologies and aims to investigate to what extent these new interventions correspond with traditional functions of security interventions. Through an extensive literature search we compiled a list of security interventions for smart cities and suggest several changes to the conceptual status quo in the field. Ultimately, we propose three clear categories to categorise security interventions in smart cities: Those interventions that use new sensors but traditional actuators, those that seek to make old systems smart, and those that introduce entirely new functions. These themes are then discussed in detail and the importance of each group of interventions for the overall field of urban security and governance is assessed

    Context Aware Middleware Architectures: Survey and Challenges

    Get PDF
    Abstract: Context aware applications, which can adapt their behaviors to changing environments, are attracting more and more attention. To simplify the complexity of developing applications, context aware middleware, which introduces context awareness into the traditional middleware, is highlighted to provide a homogeneous interface involving generic context management solutions. This paper provides a survey of state-of-the-art context aware middleware architectures proposed during the period from 2009 through 2015. First, a preliminary background, such as the principles of context, context awareness, context modelling, and context reasoning, is provided for a comprehensive understanding of context aware middleware. On this basis, an overview of eleven carefully selected middleware architectures is presented and their main features explained. Then, thorough comparisons and analysis of the presented middleware architectures are performed based on technical parameters including architectural style, context abstraction, context reasoning, scalability, fault tolerance, interoperability, service discovery, storage, security & privacy, context awareness level, and cloud-based big data analytics. The analysis shows that there is actually no context aware middleware architecture that complies with all requirements. Finally, challenges are pointed out as open issues for future work
    • …
    corecore